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1. INTRODUCTION
We begin by describing two important theoretical notions related

to our body of work.

1.1 Classic Cooperative TU Games
In classic cooperative games with transferable utility [4] (TU

games), there is a set of agents N = {1, . . . , n}, where each sub-
set S of N has some value v(S). The goal of the agents is to
first form a coalition structure by partitioning N into disjoint sets;
second, the value of each set in the partition is divided among its
members. The payoff division x = (x1, . . . , xn), often referred
to as an imputation, is then analyzed. It is often desirable that x
maintains some notion of stability; over the years, several methods
of payoff distribution, or solution concepts, have been suggested.
Formally, given a game G = (N, v), a solution concept SC (G) is
a set of imputations; if SC (G) is a singleton for all games, SC is
called a value. One of the most popular solution concepts is the
core. We say that an imputation x is in Core(G) if for all sets
S ⊆ N ,

∑
i∈S xi ≥ v(S). Other popular solution concepts are the

Shapley value, the bargaining set, and the nucleolus.

1.2 OCF Games
Overlapping Coalition Formation (OCF) games [2] are coopera-

tive games where agents can participate in several coalitions. Each
agent i ∈ N controls some finite resource such as time, computa-
tional power, or money. The key feature of OCF games is that un-
like classic cooperative games, where an agent must devote all of
his resources to a coalitions, agents are allowed to contribute only
some of their effort to a coalition. Thus, a coalition is no longer a
subset of N , but rather a vector c in [0, 1]n, where the i-th coordi-
nate of c, ci, denotes how much of i’s resource is devoted to c. The
valuation function v is now from [0, 1]n to R. Under this setting,
a coalition structure CS is a list of vectors in [0, 1]n, (c1, . . . , ck),
and its value is simply

∑k
j=1 v(cj). Having formed CS , agents

must divide the payoffs from c1, . . . , ck in some manner; such a
payoff division, x = (x1, . . . ,xk), consists of vectors xj , such
that

∑n
i=1 x

i
j = v(cj). Similarly to the non-overlapping setting, if

cij = 0, i.e. agent i does not contribute to cj , then imay not receive
any payoff from cj . Those agents for which cij > 0 are called the
support of cj . The pair (CS ,x) is called an outcome of G.

As noted in [2], stability in OCF games is a complicated matter;
when deviating from (CS ,x), a set S may abandon some, but not
all of the coalitions it is involved in. The main issue is whether S
gets to keep its payoffs under (CS ,x) from coalitions that are un-
affected by the deviation. In [2] the authors introduce three possi-
ble reactions to deviation: the conservative, refined, and optimistic.
Under the conservative reaction, S may expect no payoffs from any
coalition; like in the non-overlapping case, it assumes that it is “on

its own” if it deviates; under the refined reaction, S may expect
payoff from all coalitions that were not changed by the deviation;
under the optimistic, S may still receive payoff from a coalition cj ,
if it can reduce its contribution to cj while still paying all agents in
N \ S the same amount they got from cj under (CS ,x).

2. ARBITRATED OCF GAMES
In the paper [7], we propose a general model for the study of

stability in the OCF setting. Reaction to deviation is described by
an arbitration function A, whose input is an outcome (CS ,x), a
deviating set S, and S’s deviation from (CS ,x); A’s output is a
value ρj specifying how much is the coalition cj willing to give S,
given its deviation. ρj does not have to depend only on the effect
S had on cj ; it is possible that members of cj are aware of global
effects to the outcome. For example, ρj is 0 if some agent in the
support of cj was hurt by S in some other coalition cj′ .

Using this extension of the OCF model, we proceed to fully
characterize arbitrated solution concepts and their properties. Our
characterizations hold under minimal assumptions on the valuation
function v and the arbitration function A. We describe the arbi-
trated core, nucleolus, bargaining set, and Shapley value; we show
that the solution concepts we define share many of the properties of
their non-OCF counterparts. For example, the arbitrated nucleolus
is never empty and that it is always in the core if the latter is not
empty (for a fixed arbitration function). We also show that the OCF
Shapley value can be derived using an axiomatic approach. How-
ever, different axiomatic assumptions lead to two different values,
which are the unique values which satisfy these axioms.

3. COMPUTATIONAL ASPECTS
OF OCF GAMES

There is a well established body of literature studying computa-
tional aspects of cooperative games (for a detailed literature review
see [3]). [2] study some computational issues in OCF games, but
they limit their attention to a class of OCF games called thresh-
old task games. We study computational aspects of games with
overlapping coalitions in [6]. Given a game G = (N, v) and an
arbitration function A,

1. OPTVAL: Can we find an optimal coalition structure in poly-
nomial time?

2. MAXDEV: Given an outcome (CS ,x), can we compute the
most a set S ⊆ N can get by deviating?

3. INCORE: Given an outcome (CS ,x), is (CS ,x) in the core
under A?



4. ISSTABLE: Given a coalition structure CS , can we find x
such that (CS ,x) is in the core under A?

Our goal is to analyze the computational complexity of the above
questions. Unfortunately, even OPTVAL is NP-hard. We then turn
to exploring what structural issues in OCF games induce NP-hardness.
It turns out that intractability stems to some extent from agents hav-
ing large weights, but to a greater degree it stems from complex
agent interaction. We show that if one assumes that agents have
polynomially bounded weights and interactions are simple, then all
above questions can be answered in polynomial time. Interactions
must be simple in two respects. First, agents must not be allowed
to form coalitions with whoever they wish; we show that if agents
form a hierarchical interaction structure (i.e. a tree), or have an
interaction structure that is nearly hierarchical (i.e. has a bounded
treewidth), then all above questions can be answered in polynomial
time. Second, agents’ reaction to deviation must be local in nature.
Recall that given an outcome (CS ,x), a set S and S’s proposed
deviation, the arbitration function A needs to assign a value ρj for
each coalition cj in CS . ρj can depend, in general, on S’s effect
on coalitions other than cj . However, we show that if A allows
this (a behavior type which we term global), then one cannot com-
pute the most S can get by deviating in polynomial time, unless
P equals NP. Thus, it is important to assume that A has local be-
havior, i.e. its decision on how much should S get from cj should
depend solely an S’s effect on cj .

4. CHARACTERIZING STABLE
OCF GAMES

The arbitrated core of an OCF game is an appealing solution
concept; however, it is often the case that it is empty. The objec-
tive of [8] is to provide characterizations of stable games, and offer
sufficient conditions for arbitrated core non-emptiness. Indeed, [2]
provide an initial characterization of outcomes that are stable w.r.t.
the conservative arbitration function via a notion of convexity for
the characteristic function v. Given an OCF game G = (N, v),
we can construct an non-OCF game Ĝ = (N,Uv) where Uv is a
function on subsets of N , with Uv(S) equaling the most that S can
make on its own. In a sense, Ĝ can be seen as a discrete, opti-
mized version of G. We show that G has a non-empty conservative
core if and only if Ĝ has a non-empty core. Moreover, we show
that the convexity condition stated in [2] implies convexity of Uv .
If the arbitration function is refined, we provide a characterization
of coalition structures that can be stabilized which is equivalent to
the Bondareva-Shapley [1, 5] characterization of stable non-OCF
games. This characterization allows us to identify a sufficient con-
dition on v which ensures that the refined core is not empty: if the
superadditive cover of v is convex, then the refined core of (N, v)
is not empty. Finally, we introduce a class of games which are guar-
anteed to have a non-empty optimistic core, which we call Linear
Bottleneck Games (LBGs). Briefly, an LBG is described by a list
of tasks T = (T1, . . . , Tk), where each task requires the partici-
pation of some set of agents Aj ⊆ N ; if the least contribution of
the agents in Aj is x, then the profit generated by Tj is xpj , where
pj is the value of Tj . These games model a variety of optimiza-
tion problems, such as multicommodity flow games. Using linear
programming techniques, we show that LBGs have a non-empty
optimistic core. This essentially means that LBGs can be stabilized
regadless of agent reaction to deviation, since the optimistic core is
contained in all other arbitrated cores.

5. MANIPULATING THE QUOTA IN
WEIGHTED VOTING GAMES

In a weighted voting game (WVG), there is an integer weight wi

assigned to each agent and a quota q. Given a set of agents S, we
define w(S) =

∑
i∈S wi; w(S) is called the weight of S. S has

value 1 if and only if w(S) ≥ q, and is 0 otherwise. This model
is useful in describing the behavior of decision making agents. It is
often useful to measure the relative power of individual agents, i.e.
how central is an agent in the decision making process. One such
measure of influence is the Shapley value of a player i, denoted ϕi;
the higher the value, the more influential the agent. In [9], we study
the effects of changes to the quota on the Shapley value of players
in a WVG; thus, ϕi becomes a function of q, denoted ϕi(q).

In [9] we state several decision problems:

1. Is there an efficient method of finding a quota q0 for which
ϕi is maximal/minimal

2. Is there an efficient method of deciding whether the value of
ϕi(q) is maximal/minimal?

First, we show that finding a maximizing q0 is easy: simply set
q0 = wi. Second, we show that both versions of (2) are NP-hard.
Finally, we show via empirical analysis that the answer to the min-
imization version of (1) is usually setting the quota to either 1 or
wi +1, with the preferred setting depending on the agent’s relative
weight; in particular, we show that if an agent’s weight is below the
median weight, it is always preferable to set the quota to wi + 1 if
one wishes to minimize ϕi.

6. REFERENCES
[1] O. Bondareva. Some applications of linear programming

methods to the theory of cooperative games. Problemy
kibernetiki, 10:119–139, 1963.

[2] G. Chalkiadakis, E. Elkind, E. Markakis, M. Polukarov, and
N. Jennings. Cooperative games with overlapping coalitions.
Journal of Artificial Intelligence Research, 39:179–216, 2010.

[3] G. Chalkiadakis, E. Elkind, and M. Wooldridge.
Computational Aspects of Cooperative Game Theory. Morgan
and Claypool, 2011.

[4] B. Peleg and P. Sudhölter. Introduction to the Theory of
Cooperative Games, volume 34 of Theory and Decision
Library. Series C: Game Theory, Mathematical Programming
and Operations Research. Springer, Berlin, second edition,
2007.

[5] L. Shapley. On balanced sets and cores. Naval Research
Logistics Quarterly, 14(4):453–460, 1967.

[6] Y. Zick, G. Chalkiadakis, and E. Elkind. Overlapping coalition
formation games: Charting the tractability frontier. In Proc. of
the 11th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2012), 2012.

[7] Y. Zick and E. Elkind. Arbitrators in overlapping coalition
formation games. In Proc. of the 10th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2011),
pages 55–62, 2011.

[8] Y. Zick, E. Markakis, and E. Elkind. Stability via LP duality
in games with overlapping coalitions. Submitted to the 26th
Conference on Artificial Intelligence (AAAI 2012), 2012.

[9] Y. Zick, A. Skopalik, and E. Elkind. The Shapley value as a
function of the quota in weighted voting games. In
Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI 2011), pages
490–495, 2011.


