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ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) are com-
monly used for modeling multi-agent coordination problems. DCOPs
can be optimally solved by distributed search algorithms, based
on messages exchange. In centralized solving, maintaining soft
arc consistency techniques during search has proved to be bene-
ficial for performance. In this thesis we aim to explore the main-
tenance of different levels of soft arc consistency in distributed
search when solving DCOPs.

1. PRELIMINARIES

1.1 DCOPs
Distributed Constraint Optimization Problems (DCOPs)

[12] can be used for modeling many multi-agent coordina-
tion problems, such as distributed meeting scheduling [10],
sensor networks [7], traffic control [8], and others. DCOPs
involve a finite number of agents, variables and cost func-
tions. The cost of an assignment of a subset of variables is
the evaluation of all cost functions on that assignment. The
goal is to find a complete assignment with minimum cost.

Researchers have proposed several distributed search al-
gorithms to optimally solve DCOPs. The first proposed
complete algorithm was ADOPT [12], which performs dis-
tributed search using a best-first strategy. Later on, the
closely related BnB-ADOPT [13] was presented. This algo-
rithm changes the nature of the search from ADOPT best-
first search to a depth-first branch-and-bound search strat-
egy, obtaining a better performance. Both algorithms are
complete, compute the optimum cost and terminate.

DCOPs are NP-hard, so an exponential time is needed in
the worst case to find the optimum. This severely limits the
application of existing solving approaches.

1.2 Soft Arc Consistency
In the centralized case, several techniques have been de-

veloped to speed up the solving of constraint optimization
problems. In particular, search can be improved by enforc-
ing soft arc consistency, which identifies inconsistent values
that can be removed from the problem.

Several soft arc consistency levels have been proposed [9].
By enforcing them it is possible to infer that some values
are suboptimal and can be removed from the problem. In
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practical terms, the effect is that the search tree is reduced
and there are fewer nodes to explore, but on the other hand
more computational work must be done per node. Globally,
the overall effect is very beneficial.

2. THESIS GOAL
The thesis goal is to include in distributed search algo-

rithms for DCOPs solving some techniques to enforce soft
arc consistency during search. Such as it happens in the cen-
tralized case, we expect that this combination would cause
performance improvements.

We consider soft arc consistencies conceptually equal in
the centralized and distributed case. However, maintaining
soft arc consistencies during distributed search requires dif-
ferent techniques. While in the centralize case all problem
elements are available to the single agent performing the
search, in the distributed case agents only know some part
of the problem and must exchange information in order to
achieve the desired consistency level. In this process, oper-
ations that modify the problem structures should be done
in such a way that the partial representation of the whole
problem remains coherent on every agent.

We measure the efficiency of the proposed algorithms with
respect to existing ones in terms of (synchronous) cycles [12],
non-concurrent constraint checks (NCCCs) [11], and net-
work load (total number of messages exchanged).

3. RESEARCH DONE

3.1 Contributions to Distributed Search
We have experimented with existing complete DCOP al-

gorithms, namely ADOPT and BnB-ADOPT. As result of
this work, we have improved them to a large extent, as ex-
plained in the following.

On their execution, ADOPT and BnB-ADOPT exchange
a large number of messages, which is a major drawback for
their practical use. Aiming at increasing their efficiency, we
show that some of these messages are redundant and can
be removed without compromising optimality and termina-
tion. Removing most of those redundant messages we ob-
tain ADOPT+ [3] and BnB-ADOPT+ [4]. When tested on
commonly used benchmarks, these algorithms obtain large
reductions in the number of messages, a slight reduction in
NCCCs, and the number of cycles remains constant. BnB-
ADOPT+ was able to process only half of messages in the
worst case and reach the optimal solution in almost the same
number of cycles [4], while ADOPT+ divided the number of



messages by a factor from 1.1. to almost 3 on the bench-
marks tested [3].

In addition, we have proposed the new algorithm ADOPT(k)
[6], which generalizes ADOPT and BnB-ADOPT. These
two algorithms share similar data and message structures,
but differ on their search strategies: the former uses best-
first search and the latter uses depth-first branch-and-bound
search. ADOPT(k) generalizes ADOPT and BnB-ADOPT
in the following way. Its behavior depends on the k pa-
rameter. It behaves like ADOPT when k = 1, like BnB-
ADOPT when k = ∞ and like a hybrid of ADOPT and
BnB-ADOPT when 1 < k <∞. We prove that ADOPT(k)
is a correct and complete algorithm and experimentally show
that ADOPT(k) outperforms ADOPT and BnB-ADOPT in
terms of runtime and network load on several benchmarks
across several metrics. Additionally, ADOPT(k) provides a
good mechanism for balancing the tradeoff between runtime
and network load [6].

3.2 Connection with Soft Arc Consistency
We have experimented with BnB-ADOPT+, on top of

which we maintain the soft arc consistency levels AC and
FDAC. During BnB-ADOPT+ execution, we can assure in
some cases that the value of a variable is not in the opti-
mal solution. Then, this value is deleted unconditionally
in the agent handling the variable. Unconditional deletions
are propagated in such a way that they can be known by
other neighboring agents. When deletions are propagated,
AC/FDAC is reinforced on neighboring agents, which may
generate new deletions that will also be propagated. The
global effect is that we search in a smaller space, causing
performance improvements.

We presented the new algorithms BnB-ADOPT+- AC and
BnB-ADOPT+-FDAC [2], which combine distributed search
with the levels of consistencies AC and FDAC. Maintaining
AC level (BnB-ADOPT+-AC) we observe a clear decrement
in the number of messages and also in the number of cycles.
Maintaining FDAC level (BnB-ADOPT+-FDAC) enhances
this reduction. In the worst case, when maintaining FDAC
our approach divides the number of required messages by
a factor of 3, substantially decreasing the number of cycles
as well. Although agents need to perform more local com-
putation to maintain consistency and some new messages
are introduced to propagate deletions, this is largely com-
pensated by a decrement in the number of messages used
to solve the problem and as result, the number of NCCCs
shows important reductions as well [2].

More recently, we presented several improvements for BnB-
ADOPT+-AC [5]. First, we propose some modifications
in the implementation of the algorithm. Secondly, we ad-
dress the issue of simultaneous deletions. When neighbor-
ing agents perform deletions at the same time, the order of
projections in both agents is opposite and as a result some
costs might be lost from the problem. This costs that were
lost could have contributed to identify sub-optimal values.
To avoid this, we provide a synchronization mechanism to
assure that projections are always done in the same order on
every agent. Finally, we propose to search on cost functions
that are made AC in a preprocessing step. With this, lower
bounds calculated for every value can provide a heuristic for
value selection during search.

The aggregation of these three modifications produces a
complete algorithm with communication and computation

efforts substantially smaller than previous versions of BnB-
ADOPT+ (including either AC [2], DP2 heuristics [1] or a
combination of both). In most cases, messages and NCCCs
are reduced by at least a factor of 2, reaching up to one order
of magnitude for some cases [5].

4. FUTURE WORK
We aim to extend our work to higher levels of soft arc

consistency. To maintain these levels agents need to have
a wider knowledge about the global problem. This may
compromise privacy, which is an issue to resolve.

Furthermore, we want to explore soft arc consistency main-
tenance in problems with global constrains. In this case,
performance can be improved, since often local consistency
can be achieved more efficiently when global constraints are
involved instead of an equivalent binary formulation.
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