
Expectation and Complex Event Handling in BDI-based
Intelligent Virtual Agents (Demonstration)

Surangika Ranathunga
Department of Information Science

University of Otago
Dunedin 9054, New Zealand

surangika@infoscience.otago.ac.nz

Stephen Cranefield
Department of Information Science

University of Otago
Dunedin 9054, New Zealand

scranefield@infoscience.otago.ac.nz

ABSTRACT

When operating in virtual communities, intelligent agents should

maintain a high-level awareness of the physical and social envi-

ronment around them in order to be more believable and capable.

However, due to the inherent differences between virtual worlds

and agent systems such as BDI, such a high-level of awareness has

not been achieved for IVAs. In this paper we present a system that

enables IVAs to maintain a high-level awareness of their environ-

ment by identifying complex events taking place in their environ-

ment, as well as by being able to monitor for the fulfilment and

violation of their expectations.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent agents, Mul-

tiagent systems

General Terms

Design

Keywords

Intelligent Virtual Agents, Expectations, BDI, Complex Event Pro-

cessing

1. INTRODUCTION
Intelligent Virtual Agents (IVAs) are present in many virtual com-

munities alongside human participants. While interacting with hu-

man participants in virtual communities these IVAs are expected to

exhibit an acceptable level of awareness of the environment they

are operating in.

The task of dynamically perceiving and comprehending what is

happening in an agent’s surrounding environment is non-trivial,

given the inherent differences between virtual worlds and agent

systems. First and foremost, there is an information representa-

tion gap between agent systems and virtual worlds. Virtual worlds

operate with low-level primitive data while agent systems such as

those based on the BDI (Belief-Desire-Intention) architecture are

declarative, operating at higher abstraction levels. Solutions imple-

mented for this problem have mainly focused only on creating static

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

abstractions of virtual environments. Moreover, virtual worlds op-

erate at a much higher frequency and generate large amounts of

low-level sensor data, when compared with agent systems that per-

ceive their environment at a lower frequency. This results in a cog-

nitive overload for the IVA.

In this paper, we present our solution that enables an IVA to

dynamically comprehend the abstract events unfolding in its sur-

rounding environment and make use of this knowledge to iden-

tify the fulfilments and violations of its expectations. In achiev-

ing this, the implemented framework has two main components:

The first component is a data processing module that processes

the low-level sensor data received from a virtual world to identify

domain-specific abstract information that is of interest to an IVA.

This process is based on a virtual environment formalism we have

developed in previous research [4]. This high-level information is

used by the expectation monitor component to identify fulfilments

and violations of agent expectations. The agent can also use this

high-level information as percepts in its deliberation process.

2. SOLUTION OVERVIEW
The first step in dynamically comprehending the surrounding en-

vironment is to create a coherent snapshot of the virtual environ-

ment, based on the primitive sensor data. This step is important

because a piece of sensor data received from a virtual world at a

given time instant may not contain the state of all the entities in

that environment. However, for the successful implementation of

the subsequent steps, it is important that we have a complete view

of the environment observable by the IVA at the time instant of the

received piece of sensor data. The snapshot generated in the first

step accomplishes this requirement. The second step is to iden-

tify the static relationships (e.g. spatial or structural) among the

entities included in an individual snapshot. This provides the first

level of abstraction over the sensor data. In the third step, snap-

shots enriched with the entity relationship information are subject

to complex event recognition techniques to identify the dynamic

(i.e. temporal) relationships between entities, thus further abstract-

ing the low-level sensor data.

We have presented an interface that can be implemented by an

agent platform to enable its agents to start and stop monitoring for

their expectations [3]. Through this interface, monitoring for agent

expectations can be delegated to a monitoring service provided by

the local agent platform. This enables agents to monitor for the ful-

filment and violation of their expectations without relying on a cen-

tralised monitoring mechanism. This way, it is possible for agents

to have plans that respond to identified fulfilments and violations of

their expectations, while being able to make use of well established

expectation monitoring techniques.



3. IMPLEMENTATION
In Figure 1, the Data Processing Module is the central process-

ing component that identifies high-level domain-specific complex

events. The monitoring service contains the logic for identifying

fulfilments and violations of expectations delegated by agents.

The VW Connection Manager provides an interface to connect

agent systems with the given virtual world and our data processing

module over a TCP/IP connection. It can accommodate multiple

concurrent agents to be deployed in the virtual world1. Figure 1

shows how this interface is used to deploy Jason [1] agents in the

popular multi-purpose virtual world Second Life2. The SL Client

module contains logic specific to extracting sensor data from Sec-

ond Life.

3.1 Data Processing Module
The data processing module has three main processing levels.

First, data inference and data amalgamation mechanisms are em-

ployed on the received dynamic low-level sensor data of entities

(objects and avatars), and snapshots of the virtual environment are

created. A snapshot provides a complete view of the environment

observable by the agent at a given time instant. Based on our virtual

environment formalism, a snapshot at this level contains low-level

dynamic property values of entities (e.g. their positions, velocities

and the currently played animations), messages exchanged in the

public chat channels, and primitive events generated by the changes

of dynamic property values of entities.

In the second step, each snapshot is analysed to identify the non-

temporal relations between entities. Such relations can include the

location of entities with respect to given land marks in the environ-

ment, and entities close to a given entity.

The Data Pre-Processor is responsible for both these processing

steps. It makes use of a static relation identifier that contains logic

needed to identify relations for a given virtual simulation. This is

implemented as an external rule-based dynamic script. Thus this

logic is readily customisable for the specific needs of a simulation.

It also utilises an external database to store the static information

needed to identify these relations.

The third step is to identify the temporal relations included in

these snapshots. The Complex Event Detector (CED) achieves this

task. Currently, we employ the Esper complex event processing

engine3 to identify the high-level temporal relations between the

snapshots generated by the Data Pre-Processor.

The Data preparation sub module processes the snapshots re-

ceived from the Data Pre-Processor into a format suitable for the

CED module. This way, a new complex event recognition mech-

anism can be easily employed. Finally, the Data Post-Processor

amalgamates the identified high-level temporal relations with the

original snapshot. It then converts the snapshot to a string repre-

sentation to be sent over the TCP/IP connection. At this level, the

snapshot contains three levels of abstractions of the virtual world

sensor data. It is possible to eliminate the inclusion of low-level

sensor data in the snapshot, thus reducing the number of percepts

sent to the agent. If the snapshot is communicated to the agent only

when an interesting temporal relation occurred, this further reduces

the amount of information sent to the agent.

3.2 Monitoring for Expectations
Snapshot strings generated by the data processing module are

used by the Jason Environment class to prepare percepts for Jason

1Only one connection is shown in the figure for clarity.
2
http://secondlife.com/
3
http://esper.codehaus.org/

Monitoring Service

Data Processing Module

Agent specific data processor

Jason Platform

Jason 

Agent

Jason 

Environ

ment

VW Connection 

Manager

S

VW Connection 

Manager

S

Complex Event Detector

Expectation 

Monitor

Second Life Server

Avatar

!"#$%&

Static 

relation 

identifier

MC Connection 

Manager

S

Static Information

SL client

Sensor

Actuator

Low-level 

sensor data

snapshot string

Data Pre-Processor

Data Post-Processor

Data preparation 

sub module 

Figure 1: Framework

agents. Using a TCP/IP connection in the EM Connection Man-

ager, the Environment class also forwards these snapshot strings

to a separate monitoring service. The monitoring service imple-

ments instances of an expectation monitor developed in previous

research [2]. This expectation monitor is implemented in Python,

and is integrated with the C#-based monitoring service using Iron-

Python4. A single expectation monitor is responsible for monitor-

ing for a specific agent expectation defined as a rule in temporal

logic. We have introduced two new Jason internal actions that en-

able agents to start and stop monitoring (i.e. starting and stopping

of expectation monitors) for their expectations [3]. Fulfilments and

violations identified by an expectation monitor are communicated

back to the corresponding agent as events to be handled by plans.

4. REFERENCES
[1] R. H. Bordini, J. F. Hubner, and M. Wooldridge.

Programming multi-agent systems in AgentSpeak using Jason.

John Wiley & Sons Ltd, England, 2007.

[2] S. Cranefield and M. Winikoff. Verifying social expectations

by model checking truncated paths. Journal of Logic and

Computation, 21(6):1217–1256, 2011.

[3] S. Ranathunga, S. Cranefield, and M. Purvis. Integrating

Expectation Handling into Jason. In International Workshop

on Programming Multi-Agent Systems (ProMAS 2011), pages

105 – 120, 2011. http://www.cs.huji.ac.il/

~jeff/aamas11/workshops/ProMAS2011.pdf.

[4] S. Ranathunga, S. Cranefield, and M. Purvis. Identifying

events taking place in Second Life virtual environments.

Applied Artificial Intelligence, 26:137–181, 2012.

4
http://ironpython.net/


