
Infraworld, a Multi-agent Based Framework to Assist in
Civil Infrastructure Collaborative Design (Demonstration)

Jaume Domínguez Faus
Centre for 3D GeoInformation

Ålborg Universitet
9220 Ålborg, Denmark

jaume@land.aau.dk

Francisco Grimaldo
Departament d’Informàtica

Universitat de València
Av. de la Univesitat s/n

Burjassot (València), Spain 46100
francisco.grimaldo@uv.es

ABSTRACT
Infraworld is an experimental framework for Computer Aided
Engineering (CAE) systems which is designed for distributed
design. The framework is based on Multi-agent systems that
allow engineers to synchronize their work by keeping track
of their changes and facilitating the detection and manage-
ment of semantic conflicts that arise when different actors
are working in parallel. Conflicts are detected according of
each engineers semantics which are defined by using OWL
ontologies and SWRL rules. When they are detected, the
framework allows solving them by negotiating possible alter-
natives. Then the alternatives are evaluated by expressing
preferences and the picked alternative, being the one that
maximizes the global welfare, is applied in all the models in
the distributed environment. The system is completed with
a machine learning module that allows the agents to suggest
similar solutions to future conflicts with similar semantic
context.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent
Systems

Keywords
Distributed decision making, Semantic conflict detection

1. INTRODUCTION
Civil Infrastructure design has evolved from its very initial

steps of paper design to Computer Aided Engineering tools
that help in its complex tasks. These tools include sets of
predefined features to compute concrete situations such as,
e.g, the distribution of forces in a structure. However, these
works are always carried out by sets of teams that specialize
in some profile of the multidisciplinar Civil Infrastructure
project. Unfortunatelly, most of the existing tools are geared
to individual workplaces. Although there are some efforts
to make this work more distributed like file repositories or
the most advanced BIM [1] servers there is low support for
handling conflict situations caused when several separated
works have to be put together to align all the project designs.

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Unfortunately, despite previous works like [2] the process
of alignment still a prominent manual one. The civil en-
gineers meet regularly to align their works and in the best
case they can do it using 3D representation of the models
that are navigated and analyzed by the authors in order to
find conflicts. Thus, there is a need for this process to be
automated. When some error is not detected in design time
and the project is already in the construction phase, it is
very costly to fix it. And this situation is still happening
today with the corresponding project overheads and delays.
Studies estimate them at around 5-10% of the total budget
in average [1]. To fulfill this gap, we present the Infraworld
framework. Infraworld allows the definition of the semantics
of a model on a per-engineering-profile basis. The semantics
are defined by sets of OWL [3] ontologies from which the
base knowledge is built, and the conflicts are detected by
using SWRL rules. They are used by the JADE agents that
control the evolution of the project in each workstation and
allow, in front of a conflict, to negotiate how to solve it with
the other stakeholders of the project.

2. THE INFRAWORLD FRAMEWORK
The Infraworld framework is composed of three main log-

ical pieces: 1) a reasoning engine that can be used by Val-
idator agents, 2) the collaboration module that defines the
negotiation protocol that is carried out when solving con-
flicts, and 3) a learning module that, when the negotiation
ends, captures the solution applied and the context of the
conflict in order to infer solutions for future similar conflicts.

2.1 Reasoning Engine
Unlike the usual systems in which the conflict detection

is based on pure geometric overlapping of the objects, also
called Features, in the model, Infraworld framework extends
the concept of conflict to the semantics. To do that, there
is a Core Ontology that defines the concepts of Feature, At-
tribute, Geometry, and Relationship. A Feature represents
an entity of the world and it is composed of the Attributes
that parameterize it, the Geometry that gives its physical
shape in the world and its Relationships with other Fea-
tures in the model. The second level of abstraction is the
FeatureCatalog ontology which gives the meaning of what
Feature represents. For instance there is a Building concept
in this ontology that when applied to a Feature defines it as
a building.

Beyond these ontologies, each engineering profile provides
with their own. This approach allows a feature to be treated



differently depending on the point of view. For instance, a
sewerage conduction might only be an obstacle for an engi-
neer that is planing a gas supply conduction and only needs
to ensure it does not overlap his designs. However, the en-
gineer designing the sewerage has to ensure that there are
no other conductions underneath. In other words, the sewer
profile needs to take care of other specific problems than just
regular geometry overlaps.
To complete the knowledge, SWRL rules are supported.

They are also provided by each profile and they are meant for
detecting the conflicts. These rules consist of an antecedent
and a consequent. The antecedent is evaluated against the
model and when it resolves to true, then the consequent is
said to be also true. For instance a conflict like the one
explained above could be captured with a SWRL rule as
follows:

Conduction(?c1) ∧ Sewerage(?c2) ∧ isBelow(?c1, ?c2)

→ PositionNotAllowedConflict(?c1, ?c2)

This rule would mark features that match the condition
expressed in the antecedent (first row) as a PositionNotAl-
lowedConflict.

2.2 Collaboration Module
The collaboration module defines a Multiagent society

(see Figure 1) composed of Validators, Negotiators and Co-
ordinators. As the engineers work in parallel, changes are
performed to the model. These changes are monitorized
by the Validator agent that executes the Reasoning Engine
when changes to the model are detected. When conflicts
are detected as a result of the execution of the reasoner, the
engineers have the possibility to solve the conflict by means
of negotiation. The negotiation is based on MARA (Multi
Agent Resource Allocation) as a general mechanism to make
socially acceptable decisions and follows a ContractNet-like
protocol that is executed when a Validator agent wants to
solve a conflict. It consists of two round negotiation. In the
first round, the Coordinator agent notifies all the Negotia-
tors that a conflict has been detected and asks for alterna-
tives to solve it. Then, Negotiators record the alternatives
provided by the engineers and send them back to the Co-
ordinator agent. The Coordinator agent collects all the al-
ternatives and send them again, in a second round, to the
Negotiators so that their engineers can provide with prefer-
ences. The engineers express their preferences by giving a
score ranging from -5 to 5 to each alternative and the Ne-
gotiators send them to the Coordinator. The Coordinator
picks the alternative that maximizes the global welfare as the
solution and notifies this decision to the Negotiators. This
solution is finally applied to all the models in the distributed
environment.

2.3 Learning Module
The third module is aimed to learn from the engineers ex-

perience and behavior. After a conflict has been solved in
a negotiation the context of the conflict, i.e. the Features
and their Attributes that were in conflict, as well as the
related Features this Feature may have by means of its Re-
lationships, are registered for future processing. If the same
conflict occurs in the future, the Validator agent might find
coincidences in the history and suggest the past solution to
help the engineers to find a solution for it.

Figure 1: Overview of the system

3. EXPERIMENTS AND RESULTS
We applied our framework to two use cases to test it. The

Reasoning Engine showed to be adequate to detect project-
specific semantic problems. The Collaboration Module al-
lowed to perform the negotiation. Finally, the Learning
Module could suggest solutions for repeating problems.

• Urban Development Use Case consisting of a model
with 4107 ontology instances covering the development
of the city of Drammen in Norway. In this use case two
profiles (a traffic engineer and a builder) were design-
ing the model. The goal was to ensure that the road
network was not exceeded by the population living in
the buildings being planned.

• Power Plant Electricity Installation Use Case
with 4592 ontology instances in which two engineer-
ing profiles in charge of the foundations and the wiring
structure had to solve conflicts regarding the bolts con-
necting both elements that were misplaced. Since this
conflict was repeating, the Learning Module helped
solving it by automatically suggesting solutions.

4. ACKNOWLEDGEMENTS
This work was supported by Norwegian Research Coun-

cil, Industrial PhD scheme case no: 195940/I40 through
Vianova Systems AS, Norway; the Spanish MICINN, Con-
solider Programme and Plan E funds, European Commission
FEDER and Universitat de València funds, under Grants
CSD2006-00046, TIN2009-14475-C04-04, UV-INV-AE11 -
40990.62

5. REFERENCES
[1] C. Eastman, P. Teicholz, R. Sacks, and K. Liston. BIM

Handbook, a guide to Building Information Modeling
for Owners, Managers, Designers, Engineers, and
Contractors. John Wiley & Sons, Inc. New Jersey, 2008.

[2] F. Peña-Mora and C.-Y. Wang. Computer-supported
collaborative negotiation methodology. Journal of
Computing in Civil Engineering, pages 64–81, April
1998.

[3] W3C OWL Working Group. OWL 2 web ontology
language document overview. Technical report, W3C,
Oct. 2009.


