
Prioritized Shaping of Models for Solving DEC-POMDPs∗

(Extended Abstract)
Pradeep Varakantham†, William Yeoh†, Prasanna Velagapudi‡, Katia Sycara‡, Paul Scerri‡

†School of Information Systems, Singapore Management University, Singapore 178902
‡Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15217, USA

†{pradeepv, williamyeoh}@smu.edu.sg ‡{pkv, katia, pscerri}@cs.cmu.edu

ABSTRACT
An interesting class of multi-agent POMDP planning prob-
lems can be solved by having agents iteratively solve individ-
ual POMDPs, find interactions with other individual plans,
shape their transition and reward functions to encourage
good interactions and discourage bad ones and then recom-
pute a new plan. D-TREMOR showed that this approach
can allow distributed planning for hundreds of agents. How-
ever, the quality and speed of the planning process depends
on the prioritization scheme used. Lower priority agents
shape their models with respect to the models of higher pri-
ority agents. In this paper, we introduce a new prioritization
scheme that is guaranteed to converge and is empirically bet-
ter, in terms of solution quality and planning time, than the
existing prioritization scheme for some problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Experimentation

Keywords
DEC-POMDP, Uncertainty, Multi-Agent Systems

1. INTRODUCTION
Cooperative multi-agent and multi-robot teams in do-

mains such as sensor networks and disaster rescue [1, 2] re-
quire that agents plan courses of action that achieve their
joint objectives. In complex domains, where agents are
faced with many options, uncertainty and risk, finding good
plans can be computationally extremely difficult. An in-
teresting class of multi-agent POMDP planning problems
can be solved by having agents iteratively solve individ-
ual POMDPs, find interactions with other individual plans,
shape their transition and reward functions to encourage

∗This research is supported by the Singapore National Re-
search Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

good interactions and discourage bad ones then recompute
a new plan. One such algorithm, Distributed-Team’s Re-
shaping of Models for Rapid Execution (D-TREMOR), has
been shown to efficiently compute POMDP plans for hun-
dreds of agents, an order of magnitude scale up over most
centralized, joint POMDP planners [2].

However, the speed and quality of the D-TREMOR plan-
ning process depends on how the models are shaped with
respect to possible interactions. In this paper, we look at
the priority ordering of agents when they shape their models
to improve interactions. The intuitive idea is to give order
to the agents and make lower priority agents plan around
the plans of the higher priority agents. In decentralized pri-
oritized planning, the agents can plan simultaneously with
conflicts in the plans resolved in favor of the higher priority
agents. One prioritization scheme that is shown to work well
is prioritize agents that are more valuable to the team. We
have applied this same concept to D-TREMOR, creating an
algorithm called PD-TREMOR. Specifically, priorities are
dynamically set based on the expected utility the agent com-
putes for its local plan. Although these values change at each
iteration, at least one additional agent’s priority is fixed to
ensure convergence.

2. BACKGROUND
We employ the DPCL model [2] to represent the prob-

lems of interest in this paper. DPCL is similar to the DEC-
POMDP model in that they are both represented by the
tuple of 〈S,A,P,R,Ω,O〉, where S,A,Ω are the joint states,
actions and observations, respectively, and P,R,O are the
joint transition, reward and observation functions, respec-
tively. The primary difference between DPCLs and DEC-
POMDPs is that the interactions between agents in DPCL
are limited to coordination locales (CLs). CLs represent sit-
uations where the actions of one agent affect the local tran-
sition and reward functions of other agents. There are two
kinds of CLs: positive and negative CLs. Intuitively, posi-
tive CLs are CLs where the effects result in a positive gain in
joint rewards. Conversely, negative CLs are CLs where the
effects result in a negative gain in joint rewards. Formally,
a CL is defined as the tuple of 〈t, {(si, ai)}n1 〉, where t is the
decision epoch, si is the local state of agent i and ai is the
action taken by agent i. The set of CLs is computed from
the joint transition and reward functions.

D-TREMOR [3] is a distributed DPCL algorithm, where
each agent iteratively solves its individual POMDP, broad-
casts its individual plan to all other agents, computes its own
CLs, shapes its own POMDP model taking into account its
active CLs, that is, CLs with a high probability of occur-



Algorithm 1 PD-TREMOR(Agent i)

1: πi ← SolveIndividualPOMDP(Mi)
2: iter ← 0
3: for all cl ∈ allCLs do
4: R0

i,cl ← SetInitialPriority(Mi, cl, πi)
5: while iter < MaxIterations do
6: αCLs← ComputeActiveCLs(Mi, allCLs, πi)
7: for all cl ∈ αCLs do
8: vali,cl ← EvaluateCL(Mi, cl, πi)
9: CommunicateCL(i, cl, pri,cl, vali,cl, R

iter
i,cl )

10: recCLs← ReceiveCLs()
11: Mi ← ShapeModel(Mi, recCLs, {Riter

i,cl })
12: {πi, vali} ← SolveIndividualPOMDP(Mi)
13: iter ← iter + 1
14: for all cl ∈ allCLs do
15: Riter

i,cl ← UpdatePriority(vali, vali,cl)

rence, and repeats the above steps until convergence or for
a maximum number of iterations. The agents shape their
POMDP models in two steps: (a) the individual transition
and reward functions are modified in such a way that the
joint plan evaluation is equal (or nearly equal) to the sum
of individual plan evaluations; and (b) incentives or hin-
drances are introduced in the individual agent models based
on whether a CL accrues extra reward or is a cost to the
team members. This incentive/hindrance is the difference
in the value of the plan for the team with the CL. To ensure
convergence, D-TREMOR employs two mechanisms – prob-
abilistic shaping of agent models to resolve positive CLs and
a prioritization scheme that determines which agent model
to shape to resolve negative CLs.

3. PD-TREMOR
Unfortunately, the prioritization scheme used by D-

TREMOR is rather ad-hoc. It is based on agent IDs, which
are arbitrary. As a result, one can construct simple exam-
ples where the scheme can lead to arbitrarily bad results.
We thus introduce a prioritization scheme that associates
the priority of an agent with the expected value of its indi-
vidual plan. The larger the expected value of an agent, the
higher the priority of that agent. The intuition is that agents
with small expected rewards should shape their models so
that they can find individual plans with higher expected re-
wards. This scheme is dynamic across iterations since the
individual plans can change across iterations. However, this
scheme ensures that the priority of at least one agent is fixed
at each iteration to ensure convergence. Thus, it takes at
most n iterations to fix the agent models of all agents.

We implement this scheme over D-TREMOR and re-
fer to the new extension as Prioritized D-TREMOR (PD-
TREMOR). Algorithm 1 shows the pseudocode. The over-
all algorithm has the same distributed structure as the D-
TREMOR, with each “self” agent i running in parallel to
other agents in the system. Each agent i now maintains
a priority Riter

i,cl for each CL cl and iteration iter. Each
agent starts by computing its individual plan πi assuming
no other agents exist in the environment (line 1) and sets
its initial priorities with the SetInitialPriority() func-
tion (lines 3-4). It then computes its active CLs (line 6)
and for each active CL, it evaluates the effect of that CL
(line 8) and broadcasts that information together with its
priorities to the other agents (line 9). Upon receiving the

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Problem Instance

V
a

lu
e

 

 

PD−TREMOR

D−TREMOR

(a) Solution Quality

1 2 3 4 5 6 7 8 9 10
3.5

4

4.5

5

x 10
6

Problem Instance

S
e

c
o
n

d
s

 

 

PD−TREMOR

D−TREMOR

(b) Runtime

Figure 1: Experimental Results

CL and priority information of all other agents (line 10),
each agent shapes its model according to those priorities
with the ShapeModel() function (line 11). Intuitively, for
each CL, low priority agents shape their models in favor
of higher priority agents. Finally, each agent solves its in-
dividual POMDPs with its newly shaped model (line 12)
and repeats these steps for a maximum number of iterations
(line 5).

4. EXPERIMENTS
We run experiments using the disaster rescue problem de-

scribed in [2]. Each problem instance was solved once by PD-
TREMOR and 5 times with (non-prioritized) D-TREMOR.
As D-TREMOR contained probabilistic shaping heuristics,
these multiple runs were necessary to measure characteris-
tic performance, which was unnecessary for PD-TREMOR’s
deterministic prioritization heuristics. However, we show re-
sults for problems with only negative interactions only due
to space constraints. Our algorithm failed to perform statis-
tically better for problems containing positive interactions.

Figure 1(a) shows the expected value of the solutions
(joint plans) generated by D-TREMOR and PD-TREMOR.
As D-TREMOR is stochastic, its performance data is dis-
played as a boxplot over each of the 10 problem instances.
While overall value was highly specific to individual map
instances, PD-TREMOR’s plans consistently matched and
exceeded the value of average D-TREMOR plans on most
maps. This suggests that dynamic prioritization offers com-
petitive performance when resolving negative interactions.
An additional benefit of the dynamic prioritization can be
seen in Figure 1(b), a plot of the total time taken for 10 iter-
ations of each algorithm. Here, the solid line represents PD-
TREMOR, and the dotted line represents the time taken by
D-TREMOR. In every case, PD-TREMOR is able to com-
plete the same number of iterations faster, implying that it
is performing a more efficient search.

5. REFERENCES
[1] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.

Networked Distributed POMDPs: A synthesis of
distributed constraint optimization and POMDPs. In
Proceedings of AAAI, pages 133–139, 2005.

[2] P. Varakantham, J. Kwak, M. Taylor, J. Marecki,
P. Scerri, and M. Tambe. Exploiting coordination
locales in distributed POMDPs via social model
shaping. In Proceedings of ICAPS, pages 313–320, 2009.

[3] P. Velagapudi, P. Varakantham, P. Scerri, and
K. Sycara. Distributed model shaping for scaling to
decentralized POMDPs with hundreds of agents. In
Proceedings of AAMAS, pages 955–962, 2011.


