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ABSTRACT
We take an agent-based approach to real-time traffic signal
control based on coordinated look-ahead scheduling. At each
decision point, each agent constructs a schedule that opti-
mizes movement of the currently approaching traffic through
its intersection. For strengthening its local view, each agent
queries the scheduled outflows from its direct upstream neigh-
bors to obtain an optimistic observation, which is capable of
incorporating non-local impacts from indirect neighbors. We
summarize results on a road network of tightly-coupled in-
tersections that demonstrate the ability of our approach.1
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1. INTRODUCTION
Intelligent traffic signal control presents the potential to

substantially reduce congestion in road networks. However,
how to achieve effective real-time control remains challeng-
ing [2]. Not only are the number of joint signal control
sequences and local observations huge for just one intersec-
tion, but efficient flow of traffic through a road network also
requires coordination among neighboring intersections.

Given the complexity and inherently distributed nature
of real-time traffic signal control, we take an agent-based
approach to solving this problem. We assume that each
intersection is controlled by an agent using a schedule-driven
intersection control strategy (SchIC) [4]. To strengthen the
local views of individual agents and avoid myopic decisions,
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each agent asynchronously requests a projection of output
flows from its direct upstream neighbors at each decision
point to obtain an optimistic observation, which is capable
of incorporating non-local impacts from indirect neighbors.

2. PROBLEM DEFINITION
To keep the following description of our coordinated look-

ahead scheduling as simple as possible, we focus on an one-
way road network of signalized intersections. At each inter-
section, the traffic light cycles through a fixed sequence of
phases I, where each phase i ∈ I governs the right of way for
a set of non-conflicting movements from entry to exit roads.

Each intersection is controlled by an agent that proceeds
according to a rolling horizon [2–4], by holding a finite signal
sequence SSTL, and continually appending it with a short
sequence (SSext) at each successive decision point. Each
signal sequence contains a sequence of green phases and as-
sociated durations. Furthermore, SSTL always satisfies the
timing constraints for fairness and safety: each phase i has
a variable duration (gi) that can range between a minimum
(Gmin

i ) and maximum (Gmax
i ), while the yellow light after

each phase i runs for a fixed duration (Yi).
For traffic signal control, the objective is to minimize the

average delay of vehicles traveling through the road network.

3. INTERSECTION CONTROL
We adopt a schedule-driven intersection control (SchIC)

strategy [4]. The basic idea is to form a scheduling problem
using the current observation (o), particularly the inflows
(IF ) in the prediction horizon (H), and to generate a sched-
ule that obtains a near optimal control flow (CF ∗).

To achieve efficiency, we exploit an aggregate flow repre-
sentation. Vehicles in a given non-uniform flow are organized
using an ordered cluster sequence C = (c1, · · · , c|C|), where
|C| is the number of clusters in C. Each cluster c is defined
as (|c|, arr, dep), where |c| is the number of vehicles in c, and
arr (dep) gives the expected arrival (departure) time at the
intersection respectively for the first (last) vehicle in c.

An observation o contains the current decision time cdt,
the current phase index cpi and duration cpd of SSTL, and
the inflows IF containing the currently sensed vehicles.

Formally, IF = (CIF,1, · · · , CIF,|I|), where CIF,i is a clus-
ter sequence containing the vehicles with the right of way
during phase i. Clusters in each CIF,i are further aggre-
gated into an anticipated queue and arriving clusters.

A control flow CF contains the results of applying a signal
sequence that clears all clusters in an observation o. For-
mally, CF = (S,CCF ), where S is a sequence of phase in-
dices, i.e., (s1, · · · , s|S|), and CCF contains a sequence of
clusters (cCF,1, · · · , cCF,|S|) that are reorganized from IF .



Algorithm 1 Obtain an optimistic non-local observation

1: m = GetEntryRoadByPhase(i) {For each phase i}
2: UpAgent = GetUpstreamAgent(m)
3: Request COF from UpAgent using (cdt,m,Hext)
4: Shift(COF , the travel time on m)
5: Append COF into CIF,i

Algorithm 2 Return COF for a message (cdt, n,Hext)

1: (COF , SOF ) = (C∗CF , S
∗) ∩ [cdt, cdt + Hext]

2: for k = |COF | to 1 do
3: |cOF,k| = |cOF,k| · tp(sOF,k, n) {turning proportion}
4: end for

For any k, all vehicles in cCF,k belong to CIF,sk .
The scheduling search space is formed by viewing each

cluster as a non-divisible job. The jobs in CIF,i can only
leave the intersection when the phase index is i, and the jth
job can only leave after the (j−1)th one has left. Each S is a

schedule with |S| =
∑|I|

i=1 |CIF,i|. For a partial schedule Sk

(the first k elements of S), its schedule status is defined as
X=(x1, · · · , x|I|), where xi ∈ [0, |CIF,i|]. In the state update
that adds sk to Sk−1, we have xsk = xsk + 1, cCF,k comes
from the xsk th cluster in CIF,sk , and the actual arrival time
and cumulative delay of cCF,k are determined according to a
greedy construction of the corresponding signal sequence [4].

The cumulative delay of CF ∗ is minimized by a dynamic

programming process [4], which has |I|2 ·
∏|I|

i=1(|CIF,i| + 1)
state updates in the worse case, where |CIF,i| ≤ H, and
each state update can be executed in constant time. It is
polynomial in H since |I| is limited in the real world.

The first job in CF ∗, if available, is used to determine
SSext. There are two possible extension choices: 1) ter-
minate the current green phase and move to the next (if
|S∗| ≡ 0, or s∗1 6= cpi, or arr(c∗CF,1) ≥ SwitchBack(cpi));
or otherwise 2) extend the current phase, in which case
ext = min(dep(c∗CF,1)− cdt, thext), where thext is the upper
limit. A repair rule is applied lastly to ensure that SSTL

does not violate any time constraints after appending SSext.

4. BASIC COORDINATION MECHANISM
In a road network, an agent is susceptible to myopic deci-

sions if its local prediction horizon is not sufficiently long. To
counteract this possibility we extend each agent’s local view
with an optimistic non-local observation from its upstream
agents, as shown in Algorithm 1. For each phase index i,
the corresponding entry road m is identified, and the corre-
sponding upstream agent UpAgent is obtained. The agent
then sends UpAgent a request message (cdt,m,Hext), where
Hext is the maximum horizon extension, for the planned out-
put flow COF of UpAgent. Upon receipt of COF , the down-
stream agent adds an offset time — the average travel time
between the two agents (intersections) — to all the clusters
in COF and appends the clusters to the end of CIF,i.

UpAgent executes Algorithm 2 to obtain the output flow
COF at the current time cdt, based the previously planned
control flow (S∗, C∗CF ). The entry road m of the requesting
agent is the exit road n of UpAgent. In Line 1, (COF , SOF )
is obtained as the subsequence of (C∗CF , S

∗) that belongs to
the time period [cdt, cdt + Hext]. In Line 3, tp(i, n) is the
portion of traffic turning onto exit road n during phase i.

An essential property of this protocol is that non-local
impacts from indirect neighbors can be included if Hext is
sufficiently long, since the control flow of direct neighbors
contains flow information from their upstream neighbors.
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Figure 1: (a) 5X5 grid network; (b) Average Results.

The optimistic assumption that is made is that direct and
indirect neighbors are trying to follow their schedules. The
optimization capability of SchIC makes schedules quite sta-
ble. Minor schedule changes in neighbors can be absorbed
by exploiting the temporal flexibility in their control flows.

5. RESULTS
We simulate performance using SUMO2 on a 5X5 one-way

grid network as shown in Figure 1 (a). In this network, all
road lengths are 75 meters, except for the horizontal roads 2
→ 3 and 0 → 1, which are respectively 25 and 150 meters.

On each road, the free-flow speed is 10 meters per second.
For each intersection, Y , Gmin and Gmax are respectively
5, 5, and 55 seconds. Because the minimal switchback time
(Y +Gmin + Y = 15 seconds) is longer than the travel time
on one road (2.5 or 7.5 seconds), non-local impacts from in-
direct neighbors might be nontrivial and cannot be ignored.

Only through traffic movements are considered. For back-
ground traffic, each minor route generates a flow of 1/20 of
the total traffic. There are two major flows on C and 3 that
generate 3/5 of the total traffic. The total simulation time
is one hour, and for each twenty minute period, the demand
ratios between C and 3 are 35:25, 40:20, and 45:15.

Figure 1 (b) shows the average results of three control
strategies, i.e., BPU, SchIC, and CoL0, for different de-
mands. BPU (balanced phase utilization) [1] is an adaptive
coordination strategy using offset calculation, SchIC is the
isolated control strategy [4], and CoL0 applies the optimistic
non-local observation (Hext = 15 seconds) to SchIC.

CoL0 produced lower waiting times than both other strate-
gies. Comparison to SchIC demonstrates the added benefit
of optimistic non-local observation. Furthermore, CoL0 out-
performs BPU without requiring explicit offset calculation;
coordination between neighbors is instead accomplished im-
plicitly by looking ahead to upstream output flows. Future
work will explore the use of additional coordination mecha-
nisms to address specific situations (e.g., queue spillbacks).
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2Simulation of urban mobility: http://sumo.sourceforge.net


