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ABSTRACT
In many situations, agents optimize their own operations locally
but their local problems are interdependent. We consider the prob-
lem of coordinating these local problems to find a globally optimal
solution. We model the coordination problem as a Distributed Con-
straint Optimization Problem that can take advantage of the locality
of interactions, and then show how incremental elicitation and solv-
ing techniques can minimize the effort required. We illustrate the
approach on an example of coordinating logistics service providers,
for example couriers in a delivery company.

1. INTRODUCTION
In any cooperative multi agent setting, agents need to coordinate

their actions. Take as an example a logistics setting, where indi-
vidual couriers pick up and deliver packets. The decision on who
is assigned which packet must be coordinated, i.e no two couriers
should try to pick up the same packet, because this leads to a waste
of resources. Furthermore, no two coordinated assignments are the
same, i.e. some assignments use the available resources more effi-
ciently then others. Also, individual couriers could have individual
preferences over different routes. They might prefer one restaurant
over another for lunch, know which roads are more likely to be con-
gested and so on and so forth. This latter information is difficult to
formalize, and hence it would be best if each courier would be able
to plan its own route. We thus have a global coordination problem
with local preferences.

More generally, one can say that coordination problems consist
of two highly interrelated parts: the local problems of each par-
ticular agent, that determine the preferences of individual packet
assignments, and the coordination problem that determines which
assignments are compatible. In this paper we argue that the DCOP
paradigm [2] is a natural model for coordination problems. DCOP
algorithms, however, have been designed without regard of the pos-
sible difficulty of solving the local problems of the agents. This pa-
per evaluates a range of DCOP algorithms on problems with non-
trivial local problems.

2. MULTI AGENT COORDINATION PROB-
LEMS

Many coordination problems are resource or task allocation prob-
lems: given a finite set of resources or tasks, distribute them over
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the agents. Often, however, multiple outcomes are feasible, and the
agents have preferences over these outcomes. A solution to a co-
ordination problem is thus a feasible outcome that maximizes the
local preferences of the different agents.

An example of a coordination problem can be found in logistics.
Being able to efficiently distribute goods using couriers has large
practical value. The types of problems we are looking at in this
paper are inspired by a project with a courier company in a large
european city, where couriers make independent decisions about
their routes. The particular model used in this paper is an adaptation
of the Truck Task Coordination (TTC) problem as given in [4].

We take the perspective of a single company, consisting of a
group of couriers, dispersed over a geographical area. Each courier
has its own garage, from which it operates. Customers offer pack-
ets for pickup and delivery to the company, but there are restrictions
on which couriers are allowed to service them: packets will only be
offered to couriers whose garages are within a certain range of the
pickup and delivery locations. Furthermore, the range of the couri-
ers will also be limited. These two restrictions together make that
not all possible packet assignments are feasible. The main differ-
ence with standard VRP problems [6] is that not all couriers are
able to service all packets. Furthermore, the goal is to maximize
utility and not to minimize driving distance, where the utility is
defined as the payment obtained from delivering a set of packets,
minus the cost incurred by driving.

The DCOP paradigm is well suited to model the TTC problem.
Let Pi ⊆ P be the set of packets that has been offered to courier ti,
and let Tj ⊆ T be the set of couriers that have been requested to
deliver packet pj . Then for each courier ti and every packet pj such
that pj ∈ Pi and |Tj | > 1, ti owns a binary variable xij . Packets
pj for which |Tj | = 1 are assumed to be delivered by this courier,
if within courierRange. If xij = 1, then ti will service packet pj ,
and if xij = 0 it will not service it. If a packet is not serviced,
a penalty γ is incurred. For each packet, this is modeled through
a |Tj |-ary constraint, running over all variables that represent the
particular packet. The coordination constraint must enforce that no
two couriers will deliver the same packet. This is captured by the
following hard constraint.

xik + xjk ≤ 1 (1)

The local utility of an agent depends on the set of packets it is
assigned, and on the route that it will take. Only packets that are
within a certain distance are to be serviced. Let distance(ti, pj) =
truewhen both the pickup and delivery city of packet pj are within
courierRange, and false otherwise. Then ownPacketsi =
{pj |distance(ti, pj) = true ∧ |Tj | = 1} is the set of packets
that only courier ti can service, and coordinationPacketsi =
Pi \ ownPacketsi is the set of packets courier ti needs to co-



ordinate over. For every delivered packet pj , a courier gets paid
αwpj , where wpj is the weight of packet pj and α is the pay-
ment per unit weight. Hence it is guaranteed a payment of pr =∑

p∈ownPacketsi
αwp. The cost of the route is provided by the

local solver. If the assignment contains a packet whose pickup or
delivery city is outside of the courierRange, or when the capacity
constraint cannot be met, it is infeasible and this is indicating by
setting the cost to∞.

vrpi(ownPacketsi, x
i
j1 , . . . , x

i
jm) = (2)

pr +

m∑
k=1

xijkαwpjk
− cost of the route

3. EXPERIMENTAL RESULTS
The main goal of the experiments presented in this section is to

investigate the influence of the presence of non trivial local prob-
lems on the complexity of the coordination problem. Performance
is measured using both simulated time [5] and Non Concurrent
Constraint Checks (NCCC) [1].

3.1 Experimental Setup
We evaluated several DCOP algorithms on the TTC problem.

We created a map of size 1000x1000, with 50 cities, 6 couriers and
16 packets randomly dispersed over the cities. The customer range
and courier range are taken from {200, 250, 300, 350, 400} and for
each combination of parameters we generated a 101 instances. We
evaluated DPOP, O-DPOP, DSA, MGM and MGM2 on all these
problems, setting the penalty for querying the local problem at 60
seconds per query. The local solver used for O-DPOP is not guar-
anteed to generate packet assignments in a best first order, and any
violations are recognized and the utilities capped. The local search
algorithms are run until they converge.

All algorithms have been written in Java, and have been imple-
mented in the Frodo [3] framework. All experiments have been run
on a four core Intel xeon 3 Ghz machine running linux, and each
run was allocated 2 Gb of internal memory.

3.2 Results
Due to space constraints we show only a fraction of the experi-

mental results. Figure 1 shows the solution quality obtained by the
algorithms, and Figure 2 shows the simulated runtime. First, note
that the local search algorithms are only able to find good solutions
for the simplest problems. Furthermore, the lack of results for lo-
cal search algorithms on problems with a customer range of more
than 350 is caused by the fact that they are not able to find feasi-
ble solutions. The more complex the problems become, the more
suboptimal the found solutions are. As for runtime, it is clear that
O-DPOP outperforms DPOP. For the smaller problems it is even
faster than the local search algorithms, but never worse.

4. CONCLUSIONS
There is a wide range of methods for solving coordination prob-

lems. In this paper we show that the DCOP paradigm is a natural
choice for modeling such problems. Experimental results show that
DCOP methods allow one to take advantage of the problem struc-
ture to obtain optimal solutions with reasonable complexity.

Furthermore, the results show that if the problems do not ask for
a great amount of coordination, i.e locally good solutions are part
of globally good solutions, the incremental elicitation algorithm O-
DPOP needs to perform little to no work to find the optimal alloca-
tion of goods. It even outperforms local search algorithms.

300 350 400 450 500
−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Customer Range

S
o

lu
ti
o

n
 Q

u
a

lit
y

 

 

DPOP
DSA
MGM
MGM2
O−DPOP

Figure 1: Utility for courier range of 400
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Figure 2: Simulated Runtime for courier range of 400

In future work, we plan to improve the preference elicitation
scheme used here to make it more efficient and also allow for any-
time performance. We are also considering more efficient data
structures for task allocation that could improve the communica-
tion efficiency of the process.
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