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1. INTRODUCTION
Consider a prediction market, in which participants can

trade shares (binary options) at the current market price
pm. Each share is worth $1 if the event occurs, and nothing
otherwise. What fraction of your wealth w should you risk
if you believe the probability of the event is p? Buying is
favorable if p > pm, in which case risking your entire wealth
will maximize your expected profit with respect to your be-
lief. However, that’s extraordinarily risky: A single stroke
of bad luck loses everything. On the other hand, risking a
small fixed amount cannot take advantage of compounding
growth.

The Kelly criteria prescribes investing f∗w dollars, where
for p > pm,

f∗ =
p− pm
1− pm

(buy order). For p < pm, you should bet against the out-
come (sell order) with

f∗ =
(1− p)− (1− pm)

1− (1− pm)
=

pm − p

pm
.

Kelly betting maximizes the expected compounding growth
rate of wealth, or equivalently the expected logarithm of
wealth [2, 4, 10].

We consider a prediction market, where participant i starts
with wealth wi, with

∑
i wi = 1. Each participant i uses

Kelly betting to determine the fraction of their wealth to
bet, depending on their prediction pi.
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We model the market as an auctioneer matching supply
and demand, taking no profit and absorbing no loss, with pm
selected to clear the market. Agents are “price takers” that
optimize according to the current price and do not reason
further about what the price might reveal about the other
agents’ information. (In the fractional Kelly setting, how-
ever, agents do consider the market price as information and
weigh it along with their own.)

Observation 1. The market prediction pm is always a
wealth-weighted average of the agents’ predictions pi,

pm =
∑
i

piwi.

Proof. The market equilibrium occurs at price pm where
the payin is equal to the payout. If the event occurs,∑

i:pi>pm

pi − pm
1− pm

wi +
∑

i:pi<pm

pm − pi
pm

wi =

1

pm

∑
i:pi>pm

pi − pm
1− pm

wi.

Simplifying, we get
∑

i piwi = pm
∑

i wi. Applying
∑

i wi =
1 finishes the proof. A similar calculation proves the obser-
vation if the event doesn’t occur.

An alternate derivation utilizes the fact that Kelly betting
is equivalent to maximizing expected log utility. This result
can be seen as a simplified derivation of that by Rubinstein
[7, 8, 9] and is also discussed by Pennock and Wellman [6,
5] and Wolfers and Zitzewitz [11].

2. LEARNING PREDICTION MARKETS
Consider a sequence of prediction markets which may have

varying true and predicted probabilities. What happens to
the wealth distribution and hence the quality of the mar-
ket prediction over time? We show that the market learns
optimally for two well understood senses of optimal.

2.1 Wealth is redistributed according to Bayes’
Law

In an individual round, if an agent’s belief is pi > pm, their
total wealth afterward depends on the outcome y according
to

If y = 1,

(
1

pm
− 1

)
pi − pm
1− pm

wi + wi =
pi
pm

wi

If y = 0, − pi − pm
1− pm

wi + wi =
1− pi
1− pm

wi



Similarly if pi < pm, we get

If y = 1, − pm − pi
pm

wi + wi =
pi
pm

wi

If y = 0,

(
1

1− pm
− 1

)
pm − pi

pm
wi + wi =

1− pi
1− pm

wi,

which is identical.
If we treat the prior probability P (i) that agent i is correct

as wi, the posterior probability of choosing agent i is

P (i | y = 1) =
P (y = 1 | i)P (i)∑
j P (y = 1 | j)P (j)

=
piwi

pm
,

which is precisely the wealth computed above for the y =
1 outcome, and similarly when y = 0. So Kelly bettors
redistribute wealth according to Bayes’ law, and the market
price reacts exactly as if updating according to Bayes’ law.

In the full version [1], we simulate a sequence of markets
where an underlying true probability exists, showing that
the market converges to the true objective frequency as if
updating a Beta distribution, as the theory predicts.

Although individual agents are not adaptive, the mar-
ket’s composite agent computes a proper Bayesian update.
Specifically, wealth is reallocated proportionally to a Beta
distribution corresponding to the observed number of suc-
cesses and trials, and price is approximately the expected
value of this Beta distribution. A kind of collective Bayesian-
ity emerges from the interactions of the group.

We also find empirically that, even if not all agents are
Kelly bettors, among those that are, wealth is still redis-
tributed according to Bayes’ rule.

2.2 Market has low regret to the best agent
The assumptions in the section above are often too strong.

The following result applies to all sequences of participant
predictions pit and all outcome sequences yt, even when
these are chosen adversarially. It states that even in this
worst-case situation, the market performs no worse than
− lnwi compared to the best individual participant i, us-
ing standard analysis from learning theory [3].

We measure the accuracy of market predictions {pt} ac-
cording to log loss as

L
.
=

T∑
t=1

I(yt = 1) log
1

pt
+ I(yt = 0) log

1

1− pt
.

Similarly, the accuracy of participant i is measured as

Li
.
=

T∑
t=1

I(yt = 1) log
1

pit
+ I(yt = 0) log

1

1− pit
.

Theorem 2. For all sequences of participant predictions
pit and all sequences of revealed outcomes yt,

L ≤ min
i

Li + ln
1

wi
.

Proof. Initially, we have
∑

i wi = 1. After T rounds,
the total wealth of any participant i is given by

wi

T∏
t=1

(
pit
pt

)yt
(

1− pit
1− pt

)1−yt

= wie
L−Li ≤ 1,

where wi is the starting wealth and the last inequality fol-
lows from wealth being conserved. Thus lnwi +L−Li ≤ 0,
yielding L ≤ Li + ln 1

wi
.

Thus self-interested agents with log wealth utility create
markets which learn to have small regret according to log
loss.

3. FRACTIONAL KELLY BETTING
In the full version of the paper [1], we consider fractional

Kelly betting, a commonly used, lower-risk variant of Kelly
betting, and show that fractional Kelly agents behave like
Kelly agents with beliefs weighted between their own and
the market’s. When a true underlying probability exists,
the market price empirically converges to a time-discounted
version of this probability [1]. We also propose a method for
agents to learn their optimal fraction over time.

4. QUESTIONS
When agents have some utility other than log wealth util-

ity, can we alter the structure of a market so that the mar-
ket dynamics make the market price have low log loss re-
gret? And similarly if we care about some other loss—such
as squared loss, 0/1 loss, or a quantile loss—can we craft a
marketplace such that log wealth utility agents achieve small
regret with respect to these other losses?
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