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ABSTRACT
An important subclass of reinforcement learning problems
are those that exhibit only discrete uncertainty: the agent’s
environment is known to be sampled from a finite set of pos-
sible worlds. In contrast to generic reinforcement learning
problems, it is possible to efficiently compute the Bayes-
optimal policy for many discrete uncertainty RL domains.
We demonstrate empirically that the Bayes-optimal policy
can result in substantially and significantly improved perfor-
mance relative to a state of the art probably approximately
correct RL algorithm. Our second contribution is to bound
the error of using slightly noisy estimates of the discrete
set of possible Markov decision process parameters during
learning. We suggest that this is an important and prob-
able situation, given such models will often be constructed
from finite sets of noisy, real-world data. We demonstrate
good empirical performance on a simulated machine repair
problem when using noisy parameter estimates.
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1. INTRODUCTION
Reinforcement learning (RL) is a critical challenge in ar-

tificial intelligence, because it seeks to address how an agent
can autonomously learn to act well given uncertainty over
how the world works. Model-based RL explicitly estimates
parameters about the world dynamics and reward. Uncer-
tainty over these parameters is typically allowed to be a
continuous distribution. In contrast, there are many scenar-
ios which are commonly represented by discrete uncertainty:

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the specific world is initially unknown, but there are only a
finite set of possible worlds (which we represent by Markov
decision processes). Such problems can be represented ex-
actly as a finite-state partially observable MDP, where the
discrete hidden state represents the true world (and asso-
ciated parameters). While a related observation was made
in passing by Poupart et al. [7] who noted that a discrete
representation could be used to approximate continuous un-
certainty, here we argue that many problems naturally ex-
hibit finite uncertainty. For example, in customer relation-
ship management, there may be several different types of
customers, and the parameters of such customers can be
estimated, but the type of a new customer is unknown.

Due to the finite nature of the uncertainty of these RL
problems, we can use existing POMDP solvers to exactly
compute a Bayes-optimal (or ε-optimal) policy. A Bayes-
optimal RL policy is one that maximizes the expected dis-
counted sum of future rewards over the specified time hori-
zon, given an initial distribution of possible MDP model
parameters. This is a different objective than Probably Ap-
proximately Correct (PAC) RL algorithms (e.g. [5, 2, 9])
which guarantee, with high probability, to select actions
whose value is close to the value of the action that would
be taken in the optimal policy if the MDP parameters were
known, on all but a finite set of time steps. Though el-
egant, the number of time steps on which the algorithm
may be far from optimal is often prohibitively large. To
address this, practical instantiations of PAC RL algorithms
typically involve a tuning parameter, resulting in good em-
pirical performance, but eliminating theoretical guarantees.
If we could solve for the Bayes-optimal policy by treating
the problem as a POMDP [4], that would be appealing.
However, in generic RL the model parameter values can be
drawn from a real-valued set, this results in a continuous-
state POMDP which are very challenging to solve, and prior
Bayesian RL algorithms typically struggle to scale to large
problems, and/or do not provide bounds on the computed
policy’s performance(e.g. [7, 8]).

However, it may often be possible to efficiently solve for
an ε-Bayes-optimal policy in finite uncertainty domains. We
first demonstrate the benefit of Bayes-optimal RL on an ex-
isting domain that naturally exhibits finite uncertainty. In
the Wumpus grid world, an agent seeks to kill a wumpus
without being first killed by the wumpus or falling into a
pit. Our domain is almost identical to that described in [9],
except that there are only 8 possible pit locations instead of
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(b) Erroneous parameters
Figure 1: The agent is placed in one of the two
worlds, but it does not know which.

15. There are 3840 possible worlds, each with an associated
wumpus location and set of pits; however the agent origi-
nally does not know which world it is in. We used the freely
available APPL POMDP toolkit1 to compute an e-Bayes-
optimal policy (we set e = 0.001).

We compared to our approach to a PAC RL algorithm that
computes a policy by adding a reward bonus to state-action
pairs. This bonus is based on the variance of the possible
hidden model parameters [9]. We focus our comparison to
this variance-based bonus approach as the authors’ approach
outperformed a number of other approaches, including [1, 6].

In the Wumpus problem our Bayes-optimal policy has for-
mal bounds on the performance, and empirically outper-
formed (mean=0.656, t-test p < 0.001) the variance bonus
PAC RL approach without formal bounds (mean=0.478,
tuning parameter=0.25), highlighting the benefit of Bayes-
optimal RL. This, and many other, PAC RL approaches
provide a fixed bonus for exploration, independent of the re-
sulting possible benefit of such exploration, or the cost that
may be incurred to perform this exploration, in contrast to
Bayesian RL approaches.

2. IMPERFECT MODELS
We are interested in discrete uncertainty RL problems

that capture real-world domains. In such environments, the
possible models will generally be constructed from data. The
model parameters estimated from the data will likely have
a some error compared to the true generating parameters,
due to limited data or local-optima finding fitting methods
such as EM. For example, the true state of the world may
be that the agent is acting in one of the two MDPs shown
in Figure 1(a). However, the parameters of these two MDPs
may have been estimated with some error, and the agent
may think it is acting in one of the two MDPs shown in
Figure 1(b). We can bound the error in the value function
resulting from computing the value in a discrete uncertainty
RL problem which has parameters that have some error rel-
ative to the true parameters:

Theorem 1. Let P denote a discrete uncertainty rein-
forcement learning problem 〈S,A,R, γ, T1, . . . , TM , b0〉. In

each transition model define p(s′|s, a,m) = θsas′m. Let P̂ be
a second discrete uncertainty reinforcement learning prob-
lem 〈S,A,R, γ, T̂1, . . . , T̂M , b̂0〉. θ̂sas′m′ = p(s′|s, a,m′) =
p(s′|s, a,m) + εsas′m, where

P
s′ εsas′m = 1. Q(b, s, a) is

1http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

the optimal expected discounted sum of future reward from
starting in belief state b and state s, and taking action a in
RL problem P . Q̂(b̂, s, a) is the same quantity for the RL

problem P̂ for in belief state b̂. Let

∆Q ≡ max
b,b̂,s,a

|Q(b, s, a)− Q̂(b̂, s, a)|.

Then

∆Q≤
γVmax max

b,b̂,s,a

P
s′

˛̨̨P
i−εsas′ib(i)+(θsas′i+εsas′i)(b(i)−b̂(i))

˛̨̨
1− γ .

Given space limitations we omit the proof. In the worst case
the bound provides little limitations. However, the bound is
tight when no error is present: if εsas′i = 0 ∀i, then b(i) =

b̂(i) at all time steps, and ∆Q = 0, as expected.
We are interested in the empirical performance of a Bayes-

optimal algorithm computed for a discrete uncertainty RL
problem when the parameters provided are slightly different
than the true domain MDPs’ parameters. We have con-
ducted preliminary experiments on a machine maintenance
problem similar to that in [3]. These initial results suggest
that a Bayes-optimal RL approach performs as well or better
than the PAC RL variance bonus approach [9].

Our work is the first to examine Bayes-optimal RL in do-
mains which inherently exhibit finite uncertainty. We have
demonstrated that it is computationally tractable to com-
pute Bayes-optimal policies in some such domains, and that
such policies can perform significantly better than PAC RL
approaches. We also provided a bound on the error of us-
ing slightly erroneous model parameters, which may be an
important and common scenario in real-world situations.
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