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ABSTRACT 
Episodic memory endows autonomous agents with useful 
cognitive capabilities. However, for long-lived agents, there are 
numerous unexplored computational challenges in supporting 
useful episodic-memory functions while maintaining real-time 
reactivity. This paper presents and summarizes the evaluation of 
an algorithmic variant to the task-independent episodic memory of 
Soar that expands the class of tasks and cues the mechanism can 
support while remaining reactive over long agent lifetimes. 
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1. INTRODUCTION 
Prior research has shown that autonomous agents with episodic 
memory, a task-independent, autobiographical store of prior 
experience [11], are more capable in problem solving, both 
individually [5][10] and with other agents [3][9]; better account 
for human psychological phenomena, such as those relating to 
memory blending [1] and emotional appraisal [4]; and are more 
believable as virtual characters [4] and long-term companions [8]. 

However, little work examines the computational challenges 
associated with maintaining effective and efficient access to 
experience over long periods of time. Most approaches to storing 
and retrieving episodic knowledge are task-specific (e.g. [9]) or 
apply to temporally limited problems (e.g. [5]). 

By contrast, the episodic memory that is part of Soar [6] is 
task-independent and has been applied to complex, temporally 
extended tasks, such as action games [2] and mobile robotics [7]. 
To support effective and efficient episodic operation, the current 
mechanism makes specific design decisions within a space of 
algorithmic options. This paper presents and summarizes the 
evaluation of an algorithmic variant that expands the tasks and 
cues the mechanism can support while remaining reactive over 
long time periods, without adversely affecting performance. 

2. EPISODIC MEMORY IN SOAR 
Soar’s episodic memory [10] comprises three phases: (1) 
automatically encoding agent state; (2) storing this information as 
episodic knowledge; and (3) supporting retrieval at a later time. 

The state of a Soar agent is represented as a connected di-
graph. Episodic memory automatically encodes and permanently 
stores changes to this graph. Agents can later retrieve an episode 
by constructing a cue: a directed, connected, acyclic graph that 
specifies task-relevant relations and features. The cue-matching 
process identifies the “best” matching episode: the most recent 
episode that has the greatest number of structures in common with 
cue leaf nodes. Episodic memory then reconstructs this episode 
within a pre-specified region of the agent-state graph. 

The cue-matching process (a) returns an episode if one exists 
that contains at least one feature in common with a cue leaf and 
(b) returns the “best” episode with respect to cue structure, cue 
leaves, and temporal recency. In the worst case, the encoding, 
storage, and retrieval operations scale at least linearly with state 
changes. However, exploiting regularities in state representation 
and dynamics may improve expected performance. 

The current episodic-memory mechanism [2] exploits two 
regularities of agent state, both of which have been applied in the 
rule-matching literature. The first is temporal contiguity: agent-
state changes between episodes will be few relative to agent-state 
size. The second is structural regularity: agent knowledge will 
reuse representational structure, and so over time, the number of 
distinct structures will be much smaller than the total experienced. 
Soar’s episodic memory exploits these assumptions. Episodic 
knowledge is captured in a dynamic-graph index, composed of (1) 
a global structure, termed the Working-Memory Graph (WMG), 
which captures all distinct graph edges that have been encoded, 
and (2) a set of temporal intervals that capture when each edge of 
the WMG was added to/removed from agent state. The cue-
matching algorithm uses a subset of the WMG as a discrimination 
network (termed the DNF Graph), through which it streams 
relevant changes, such as to evaluate episodes relative to the cue. 

3. NOVEL ALGORITHMIC VARIANT 
Our algorithmic variant exploits a stronger form of the structural-
regularity assumption: over long agent lifetimes, the number of 
distinct structures represented within a single episode is likely to 
be much smaller than the total number of distinct structures. The 
algorithm exploits this assumption by building the DNF Graph 
incrementally, adding edges when they are relevant and removing 
them as they become obsolete. We hypothesized that over long 
agent lifetimes, this algorithm would improve retrieval time, 
especially for cues that match relatively recent episodes; however, 
tradeoffs exist. First, extra computation is required to dynamically 
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maintain the DNF Graph, which may exceed any performance 
gains, especially for simple cues. Second, the storage process 
must encode additional information: the most recent episode 
during which each WMG edge was represented in agent state. 

4. EVALUATION 
We implemented our algorithmic variant in Soar v9.3.1 and 
evaluated agents that use episodic memory for hours to days of 
real time. We applied over 100 cues in numerous tasks, spanning 
word-sense disambiguation, 44 instances of 12 planning domains 
(e.g. Grid and Logistics), 3 video games, and mobile robotics.  

To evaluate scaling, we measured the time to perform 
episodic operations. For cue matching, we instrumented Soar to 
perform this operation 100 times for each cue at regular intervals. 
All experiments were performed on a Xeon L5520 2.26GHz CPU 
with 48GB RAM running 64-bit Ubuntu v10.10. 

Our algorithm did not greatly impact performance in most 
tasks; however, it did enable a new, general capability for long-
running agents using episodic memory: the management of long-
term goals. This capability is best illustrated in the mobile-
robotics domain, which has been used in prior work both in 
simulation and on physical hardware [7]. The agent perceives both 
physical perception data and symbolic representations of objects, 
rooms, and doorways. The agent’s task is to explore a building, 
consisting of 100 offices, and then execute a fixed patrol pattern. 
While performing these tasks, the agent builds an internal map, 
which it uses for path planning and navigation. One cue in this 
domain asks, “When was my desired destination doorway #5?” 
The agent could examine episodes that followed this retrieval to 
recall progress made towards that goal. We ran the agent for 12 
hours of real-time operation and measured performance every 
300K episodes (~10 min.). 

Figure 1 shows timing data to evaluate this cue, comparing 
maximum cue-matching time (in msec.) between Soar’s current 
algorithm (“baseline”) and our algorithmic “variant.” Both 
algorithms exhibit growth in cue-matching time because some 
features in the cue are relevant with each new goal the agent 
encodes, but the goal of interest is increasingly distant in time. 
The first difference between the data sets is the number of 
episodes encoded over the 12-hour period: whereas the baseline 
algorithm encoded over 58 million, our variant encoded nearly 
109 million. This difference has to do with optimizations we 
implemented in the incremental episodic-encoding algorithm, 
which resulted in an average of more than 50% improvement in 
encoding/storage speed in this task. However, both algorithms 
exhibit a common shift in behavior when the agent has finished 
exploring the building and proceeds to execute a patrol (~8M 

episodes for baseline, ~12M for variant). Before this point, the 
agent encodes new navigation goals much more frequently than 
after, and so the maximum search time grows more slowly after 
this point. Before the shift, our variant grows 3.6x slower than the 
baseline, and after it grows 4.9x slower. Furthermore, in fewer 
than 12 hours, the maximum computation time for the baseline 
algorithm grows above 50 msec., a level of reactivity that has 
been established in numerous domains, including video games, 
robotics, and HCI. By contrast, given the rate of growth in this 
task, our variant algorithm can continue to provide reactive real-
time cue-matching performance for nearly 694M episodes (> 3 
days of real time). The goal-management cue in the mobile-
robotics domain is just one instance in a class of episodic cues and 
tasks in which there is a growth of distinct structures over the 
agent’s lifetime. This data provides evidence that our algorithmic 
variant expands the problems in which Soar’s episodic memory 
can support useful operation while agents remain reactive in 
dynamic environments over long time periods. 
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Figure 1. Timing comparison for goal-management cue in the 
mobile-robotics evaluation task. 


