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ABSTRACT
We propose a model of strategic network formation in repeated
games where players adopt actions and connections simultaneously
using a simple reinforcement learning scheme. We demonstrate
that under certain plausible assumptions the dynamics of such sys-
tems can be described by so called replicator equations that char-
acterize the co-evolution of agent strategies and network topology.
Within this framework, the network structures emerging as a re-
sult of the game-dynamical interactions are described by the stable
rest points of the replicator dynamics. In particular, we show using
both simulations and analytical methods that for certain N -agent
games the stable equilibria consist of star motifs as the main build-
ing blocks of the network.
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1. INTRODUCTION
Many complex systems can be represented as networks where

nodes correspond to entities and links encode interdependencies
between them. Generally, statistical models of networks can be
classified into two different approaches. In the first approach, net-
works are modeled via active nodes with a given distribution of
links, where each node of the network represents a dynamical sys-
tem. In this setting, one usually studies problems related to epi-
demic spreading, opinion formation, signaling and synchronization
and so on. In the second approach, which is grounded mainly in a
graph-theoretical approach, nodes are treated as passive elements.
Instead, the main focus is on dynamics of link formation and net-
work growth. Specifically, one is interested in algorithmic meth-
ods to build graphs formed by passive elements (nodes) and links,
which evolve according to pre-specified, often local rules. This ap-
proach has produced important results on topological features of
social, technological and biological networks.
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More recently, however, it has been realized that modeling in-
dividual and network dynamics separately is too limited to cap-
ture realistic behavior of networks. Indeed, most real–world net-
works are inherently complex dynamical systems, where both at-
tributes of individuals (nodes) and topology of the network (links)
can have inter–coupled dynamics. For instance, it is known that
in social networks, nodes tend to divide into groups, or communi-
ties, of like-minded individuals. One can ask whether individuals
become like-minded because they are connected via the network,
or whether they form network connections because they are like-
minded. Clearly, the distinction between the two scenarios is not
clear-cut. Rather, the real world self-organizes by a combination of
the two, the network changing in response to opinion and opinion
changing in response to the network. Recent research has focused
on the interplay between attribute and link dynamics (e.g., see [2,
4, 1] for a recent survey of the literature).

Here we suggest a simple model of co–evolving network that is
based on the notion of interacting adaptive agents. Specifically, we
consider network–augmented multi–agent systems where agents
play repeated game with their neighbors, and adapt both their be-
haviors and the network ties depending on the outcome of their in-
teractions. To adapt, agents use a simple learning mechanism to re-
inforce (punish) behaviors and network links that produce favorable
(unfavorable) outcomes. Thus, the agent strategies and network
topology evolve in tandem. We show that the collective evolution
of such a system can be described by appropriately defined repli-
cator dynamics equations. Originally suggested in the context of
evolutionary game theory (e.g., see [3]), replicator equations have
been used to model collective learning and adaptation in systems
of interacting self–interested agents [5].

2. MODEL
Let us consider a set of agents that play repeated games with

each other. We differentiate agents by indices x, y, z, . . .. The
time–dependent mixed strategies of agents can be characterized by
a probability distribution over the choice of the neighbors and the
actions. For instance, pixy(t) is the probability that the agent x will
choose to play with agent y and perform action i at time t.

Furthermore, we assume that the agents adapt to their environ-
ment through a simple reinforcement mechanism. Among different
reinforcement schemes, here we focus on (stateless) Q-learning [6].
In this case, it is known that the evolution of the agent strategies is
governed by so called replicator equation [5]:
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We now make the assumption that the agents’ strategies can be fac-



torized as follows:

pixy = cxyp
i
x ,
∑

y
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Here pix is the probability for agent x to select action i, whereas
cxy characterizes the strength of the directed link x→ y. Note that
generally links are asymmetric, cxy 6= cyx.

Substituting 2 in 1, then taking summation of both sides in the
resulting equation, once over y and then over i, we obtain
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i
xp

j
ỹ
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Equations 3, 4 describe the mutual evolution of the agents’ strate-
gies and the network structure. Here we focus on the case T = 0.

We should note that generally, the replicator dynamics (and Nash
equilibria) in matrix games are invariant with respect to adding any
column vector to the payoff matrix. However, this invariance does
not hold in the present networked game. The reason for this is the
following: if an agent does not have any incoming links (i.e., no
other agent plays with him/her), then he always gets a zero reward.
This poses a certain problem. For instance, consider the game of
Prisoner’s Dilemma where the payoff for mutual defection is P :
In general, the outcome of the game should not depend on P as
long as the structural properties of the payoff matrix is the same.
However, in our case the situation is different. Indeed, if P < 0,
an agent might decide to avoid the game by isolating himself (i.e.,
linking to agents that do not reciprocate), whereas for P > 0 the
agent might be better of participating in a game.

To resolve this issue, we assume that every time a partner of
agent x refuses to play, x receives a negative payoff −cp < 0,
which can be viewed as a cost of isolation. The introduction of
this cost merely means adding a constant to the reward matrix. The
adjusted reward matrix elements aij are given by aij = bij + cp,
where B is the game reward matrix and similar for all agents.

3. REST-POINTS AND LOCAL STABILITY
To examine the emergent network structures, we need to study

the stable rest points of the replicator equations. Those rest points
can be found by nullifying the right hand sides of Equations 3 and
4. Furthermore, the stability of those rest points are characterized
by the eigenvalues of the corresponding Jacobian matrix

J =


∂ċij
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For two-action games, the diagonal blocks J11 and J22 are L × L
and N ×N square matrices, respectively, where L = N(N − 2).
Similarly, J12 and J21 are L×N and N×L matrices, respectively.

We have performed thorough analytical characterization of the
above system for three-player two-action games, which is the min-
imal system that exhibits non-trivial structural dynamics. In partic-
ular, we have demonstrated that for this class of games it is possible
to characterize all the rest-points of the learning dynamics and ex-
amine their stability properties analytically.

We have also examined the behavior of the co-evolving system
for large number of agents using both simulations and analytical
techniques. We found that in the asymptotic limit, the networks
formed by the reciprocated links (i.e., cxycyx 6= 0) consists of star
motifs. A star graph Sn is a graph with n nodes and n − 1 links,
connecting one central node with the other n−1 nodes. We further
observed that the basin of attraction of motifs shrinks as the motif
size grows, so that smaller motifs are more prevalent.

As an example, we performed simulations for 100 agents inter-
acting via the following Prisoner’s Dilemma (PD) reward matrix:

B =

(
(3, 3) (0, 5)
(5, 0) (1, 1)

)
We run the simulation for 5000 different random initializations.
When the cost of isolation is sufficiently large, cp ≥ −b22, then
the network breaks down into isolated star motifs. We observed
that 91.26% of the motifs are S2, 8.41% are S3, 0.32% S4, and
0.02% of S5 star motifs. Within those stable networks, all the
players choose the second action (defect). Furthermore, we have
shown analytically that in a system with N -agents the star network
SN is in fact a stable rest point of the learning dynamics. Finally,
when cp < −b22, the network structure is such that links are not
reciprocated, so that the agents effectively do not interact.

4. DISCUSSION
In conclusion, we have presented a replicator–dynamics based

framework for studying mutual evolution of network topology and
agent behavior in a network–augmented system of interacting adap-
tive agents. By assuming that the agents’ strategies allow appropri-
ate factorization, we derived a system of a coupled replicator equa-
tions that describe the mutual evolution of agent behavior and net-
work link structure. For N-player games, we reported both simula-
tion and analytical results, which suggests that star-like structures
are the most prevalent motifs emerging in our game-dynamical net-
work formation. As future work, we plan to perform a more thor-
ough analysis of the N-agent systems. Finally, we note that the
main premise behind our model is that the strategies can be factor-
ized according to Equations 2. While this assumption seems to be
justified for certain games, its limitations need to be studied further.
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