
Modeling Difference Rewards for Multiagent Learning

(Extended Abstract)
Scott Proper

Oregon State University
Corvallis, OR 97331, USA

proper@eecs.oregonstate.edu

Kagan Tumer
Oregon State University

Corvallis, OR 97331, USA
kagan.tumer@oregonstate.edu

ABSTRACT
Difference rewards (a particular instance of reward shaping) have
been used to allow multiagent domains to scale to large numbers of
agents, but they remain difficult to compute in many domains. We
present an approach to modeling the global reward using function
approximation that allows the quick computation of shaped differ-
ence rewards. We demonstrate how this model can result in signifi-
cant improvements in behavior for two air traffic control problems.
We show how the model of the global reward may be either learned
on- or off-line using a linear combination of neural networks.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Multiagent Coordination, Reward Shaping, Scaling, Air Traffic Con-
trol, Function Approximation, Neural Networks

1. INTRODUCTION
Reinforcement learning in large multiagent systems is particu-

larly challenging because the agents in the system provide a con-
stantly changing environment in which each agent needs to learn
its task. Difference rewards which encourage good agent behav-
ior by rewarding actions that are closely aligned with the desired
overall system behavior. Difference rewards have been shown to
perform very well in multiagent domains [1]. However it is not al-
ways possible to calculate the value of the difference reward, or
even approximate it, due to complex system dynamics.

We mitigate this problem by using function approximation tech-
niques to approximate the global reward signal, which we may then
use to calculate an approximate difference reward. We use Tabular
Linear Functions [2] to model the value of the global (system) re-
ward. This model is then be used to calculate the difference reward.
Our results show that we can greatly improve performance over
learning on the system reward directly, and in some cases even out-
perform the true model of the reward signal.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. AIR TRAFFIC SIMULATION
We developed FEATS (Fast Event-based Air Traffic Simulator)

to quickly simulate thousands of aircraft of different characteristics
taking off from airports, navigating via waypoints and airways to
their destination airport, and landing. This simulator is optimized
for speed, simulating 26,000 flights/second. Individual simulations
require a fraction of a second, allowing efficient experimentation
with machine learning techniques. As in [3] we choose to make
“meter fixes”, rather than aircraft, into learning agents. We manage
traffic by controlling aircraft separation distances – called “Miles in
Trail” (MIT) separations – at meter fixes surrounding busy airports.

We used a linear combination of terms for measured conges-
tion and delay to calculate the global (system) reward G(z) =
−(B(z) + αC(z)) where B(z) is the delay penalty for all aircraft
in the system, and C(z) is the total congestion penalty. The rela-
tive importance of these two penalties is determined by the value
α = 5. B(z) is the sum of minutes of delay suffered by all aircraft.
C(z) is given by C(z) =

∑
p∈P

∫
T

Θ(kp,t − cp)(kp,t − cp)2dt,
where P is the set of airports monitored by the simulation, kp,t
is the number of aircraft that have landed in the past 15 minutes
(a rolling time window), cp is the capacity of airport p as defined
by the FAA, and Θ(·) is an indicator function that equals 1 when
its argument is greater or equal to zero, and has a value of zero
otherwise. Thus C(z) penalizes states where airports become over-
capacity. The quadratic penalty provides strong feedback to return
the airport to FAA mandated capacities. We use an integral over
time due to the fact that our simulation occurs in real time.

3. REWARD MODELING
The learning algorithm for each agent is a simple reinforcement

learner using standard TD-update. Following [3], we use the dif-
ference reward Di(z) = G(z) − G(z − zi) to provide the re-
ward signal to each agent, where z − zi is a modified version of
the normal action vector z in which agent i takes a “default” ac-
tion (in our case, setting its “Miles in Trail” value to zero). As it
is not possible to analytically compute this value for the air traffic
domain, we learn an approximation Di(z) ≈ v(z) − v(z − zi),
where v(z) ≈ G(z). We adapt “Tabular Linear Functions” (TLFs)
from previous work [2] to approximate G(z) in this manner.

TLFs have been shown to provide a simple, flexible framework
to consider and incorporate different assumptions about the func-
tional form of an approximated function and the set of relevant fea-
tures. TLFs have previously been used for value function approxi-
mation. In this work, we use it to approximate the reward model.

A TLF is a sum over several terms. Each term is given by multi-
plying a weight and feature value, as with any linear function. Un-
like standard linear functions, the weight of each term is given by
an arbitrary function of other discretized (or “nominal”) features.

-60

-50

-40

-30

-20

-10

 0

 0 100 200 300 400 500 600 700 800 900 1000

P
e
rf

o
rm

a
n
c
e
 (

G
(z

))

Episodes

Global reward
Local reward

Difference reward estimated via neural network
Global reward estimated via neural network

Figure 1: NAS simulation results: The approximatedD reward
outperforms other approaches, while the approximated global
reward show that the approximation used is very accurate.

More formally, a tabular linear function is represented by Equa-
tion 1, which is a sum of n terms. Each term is a product of a linear
feature φi and a weight θi. The features φi need not be distinct
from each other. Each weight θi is a function of mi nominal fea-
tures fi,1, . . . , fi,mi .

v(z) =

n∑
i=1

θi(fi,1(z), . . . , fi,mi(z))φi(z) (1)

A TLF using tables to store the value of θ reduces to a linear func-
tion when there are no nominal features, i.e. when θ1, . . . , θn are
scalar values. However, this is effective only when each table is in-
dexed by just a few nominal features. If this is not the case, we must
also approximate the tables themselves. We thus applied TLFs with
neural networks to approximate the reward model G(z) for the air
traffic simulation, using backpropogation to learn the model:

v(z) =
∑
p∈P

(θpB(zp) + θpC(zp)) (2)

where zp are the actions for the agents surrounding airport p, θpB(·)
is a neural network approximating Bp(z) =

∑
a∈Ap

Ba(z), the
sum of delays over all aircraft approaching p, and θpC(·) is a neural
network approximating Cp(z), the congestion penalty for a single
airport. Each network has an input node for each action taken by
the np agents (meter fixes) surrounding that airport, np + 1 hid-
den units, and 1 output. Given access to the above terms of G(z),
we can train each network separately, allowing a more accurate ap-
proximation. Note that a meter fix may control incoming traffic to
multiple airports.

4. EXPERIMENTAL RESULTS
We performed experiments testing global and difference rewards,

as well as a local reward based only on information available to in-
dividual agents. Each episode simulated a single traffic “rush” from
start to finish. The actions taken by the meter fixes controlled the
delay each aircraft suffered as it was routed through that fix. We
used TLFs with neural networks approximating each term to es-
timate G(z) and thus Di(z). We train each network offline using
10,000 randomly-generated examples.

Figure 1 shows that the estimatedD(z) significantly outperforms
both local and global rewards. Learning using the estimated G(z)
compared to the trueG(z) shows that the estimate is very accurate.

In addition, we scaled up our experiments to 400 airports and
14,295 flights using a generic air traffic domain in a space about

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 100 200 300 400 500 600 700 800 900 1000

P
e
rf

o
rm

a
n
c
e
 (

G
(z

))

Episodes

Global reward
Local reward

Difference reward estimated via neural network
Global reward estimated via neural network

Figure 2: Results for 400 airports and 395 agents in the generic
air traffic domain show that D does even better at larger scales
(four times the size of the NAS).
four times the size of the NAS. Figure 2 shows that the performance
of the estimated difference reward greatly outperforms the other
methods, particularly at this huge scale. Local reward performs
very poorly: it does not allow for coordination between agents,
which is critical in this domain. The estimated global reward does
well in comparison to the true global reward, but performance does
degrade slightly at this large scale. Difference rewards handle the
increase in scale far better than any other method, despite the fact
that it is using a learned model rather than the “true” difference
reward.

5. DISCUSSION
We have shown that although calculating the difference reward

for some multiagent domains may be impractical or impossible, it
may still be possible to estimate D by learning a reward model of
G(z) using function approximation. We found that a sufficiently
accurate model of G(z) does in fact allow us to estimate D well
enough to obtain improved behavior over learning on either the
local or global rewards. In the case of air traffic control, a vast
database of states and actions already exists, or may be generated
via sufficiently sophisticated simulations. This makes learning a
model of the reward function offline a practical approach for many
domains. Future work includes continued experiments with model
learning and the addition of states to our air traffic simulation, al-
lowing agents to learn how to manage and route traffic by dynami-
cally adapting to changing conditions.

Acknowledgements
This work was partially supported by NSF Grant CNS-0931591.

6. REFERENCES
[1] A. K. Agogino and K. Tumer. Analyzing and visualizing

multiagent rewards in dynamic and stochastic environments.
Journal of Autonomous Agents and Multi Agent Systems,
17(2):320–338, 2008.

[2] S. Proper and P. Tadepalli. Scaling model-based
average-reward reinforcement learning for product delivery. In
ECML ’06: Proceedings of the 17th European Conference on
Machine Learning, pages 735–742, 2006.

[3] K. Tumer and A. Agogino. Distributed agent-based air traffic
flow management. In Proceedings of the Sixth International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 330–337, Honolulu,HI, May 2007.

