
Specifying and reasoning about normative systems in
deontic logic programming

(Extended Abstract)
Ricardo Gonçalves

rjrg@fct.unl.pt
José Júlio Alferes

jja@fct.unl.pt

CENTRIA & Dep. Informática, Faculdade Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

ABSTRACT
In this paper we propose the usage of a framework combin-
ing standard deontic logic (SDL) and non-monotonic logic
programming – deontic logic programs (DLP) – to represent
and reason about normative systems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Languages, Theory

Keywords
Norms, Knowledge representation, Organisations and insti-
tutions, Logic-based approaches and methods, Design lan-
guages for agent systems

1. INTRODUCTION
Normative systems have been advocated as an effective

tool to regulate interaction in multi-agent systems. Essen-
tially, norms encode desirable behaviours for a population
of a natural or artificial society. In general, they are com-
monly understood as rules specifying what is expected to
follow (obligations, permissions, ...) from a specific set of
facts. Moreover, in order to encourage agents to act accord-
ing to the norms, normative systems should also be able to
specify the application of rewards/sanctions.

Deontic logic [20] deals precisely with the notions of obli-
gation and permission, and it is, therefore, a fundamental
tool for modeling normative reasoning. The modal logic KD
has emerged as the Standard Deontic Logic (SDL) [3].

Although necessary, SDL has shown not to be sufficient for
the task of representing norms [4]. For instance, it is well
known its inability to deal with some paradoxes, namely
those involving the so-called contrary-to-duty obligations.
The main difficulty of SDL is the fact that classical implica-
tion does not provide a faithful representation for the condi-
tional obligations that usually populate a normative system.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Works using dyadic modal logics [19, 9] and input-output
logic [11] are examples of approaches that model conditional
obligations in order to have a behavior more reasonable than
SDL in the face of the aforementioned paradoxes.

Another fundamental ingredient for modeling norms is the
ability to express defeasible knowledge. This is important
for representing exceptions, which are very common in nor-
mative rules. Several approaches using non-monotonic logics
where applied to the problem of representing and reasoning
about norms [16, 14, 1, 2].

For all the reasons aforementioned, the representation and
reasoning about normative systems would greatly benefit
from a framework combining deontic logic and rule based
non-monotonic reasoning. We thus propose a language for
representing and reasoning about normative systems that
combines deontic logic with non-monotonic logic program-
ming. Several features distinguish our approach from other
formalisms, viz. [13, 12, 15, 6, 7, 10], that combine deon-
tic operators with non-monotonic reasoning. First of all,
we have a rich language, which allows complex deontic logic
formulas to appear in the body and in the head of rules,
combined with the use of default negation. Moreover, at
the level of the semantics, we endow the normative sys-
tems with a purely declarative semantics, which stems from
a well-known semantics: the stable model semantics of logic
programs.

The fundamental notion in our framework is that of a de-
ontic logic program. This is composed by rules that resemble
usual logic program rules but where complex SDL formulas
can appear in the place where only atoms were allowed.

Definition 1. A deontic logic program is a set of rules
ϕ← ψ1, ..., ψn, not δ1, ..., not δm (1) where each of ϕ,ψ1, ..., ψn,
δ1, . . . , δm is an SDL formula.

As usual, the symbol ← represents rule implication, the
symbol “,” represents conjunction and the symbol not rep-
resents default negation. A rule as (1) has the usual reading
that ϕ should hold whenever ψ1, ..., ψn hold and δ1, ..., δm

are not known to hold.
Note that, contrarily to some works in the literature [6,

10, 7], deontic formulas can appear both in the head and
in the body of a rule, and they can be complex formulas
rather than just atomic formulas. This extra flexibility is
fundamental, for example, to deal with non-compliance and
application of sanctions.

A normative system is usually understood as a set of rules
that specify what obligations and permissions follow from



a given set of facts, and, moreover, that specify sanction
and/or rewards. In our approach, we use the deontic logic
programs to represent normative systems.

Definition 2. A normative system N is a deontic logic
program.

In order to allow agents and institutions to reason about a
normative system, it is very important that it has a rigorous
formal semantics which, at the same time, should be clean
and as simple as possible. We endow our rich normative
language with a declarative semantics, by defining a stable
model based semantics [21] for deontic logic programs. The
definition of such a semantics for deontic logic programs is
not straightforward due to their complex language where,
instead of atoms, we can have complex SDL formulas in the
head and body of rules. The problem is that, contrarily to
the case of atoms, these formulas are not independent. To
overcome this difficulty we need to define a notion of inter-
pretation that accounts for such interdependence between
these “complex atoms”. The key idea of taking theories of
SDL as interpretations, contrasted with the usual definition
of an interpretation as any set of atoms, allows the semantics
to cope with the interdependence between the SDL formulas
appearing in the rules. This construction of a stable model
semantics for deontic logic programs can be seen as a special
case of the general construction of [5] for parametrized logic
programs in which SDL is taken as the parameter logic.

The thus obtained normative language is quite expressive,
and can be shown to embed extant approaches such as an
important fragment of input-output logic [10]. The fact that
our language has a purely declarative semantics also allows
us to have several interesting properties. First of all, the
agents (the ones that are subject to the normative system),
the modeler (the one that writes down the norms) and the
electronic institution (the one responsible for monitoring the
agents and applying the sanctions/rewards) can all reason
about the normative system in a simple and clear way. More-
over, in this semantics we can define the fundamental notion
of equivalence between normative systems, and, what is the
more, we are able to define a logic in which we can verify
equivalence of normative systems using logical equivalence.

The results achieved open very interesting paths for fu-
ture research. An example is the use of abductive reasoning
over our stable model semantics to allow agents to plan their
interaction with the normative system, in order, for exam-
ple, to avoid sanctions. Being declarative, our normative
framework could easily be integrated in normative multi-
agent system that use declarative languages for modeling
norms [17, 8], allowing an important increasing of expres-
sivity of these norm languages. Although this is not the
main focus of such systems, it was realized, viz. [18], the
need for more expressive declarative norm languages.

Other interesting topics for future work include the study
of how tools for updating logic programs could be used for
the fundamental problem of updating normative systems,
and how to define a well-founded based semantics for DLP,
that is a sound skeptical approximation of the stable model
semantics with more favorable computational complexity.

2. ACKNOWLEDGMENTS
This work was partially supported by FCT Project ERRO

PTDC/EIA-CCO/121823/2010. R. Gonçalves was partially
supported by FCT Grant SFRH/ BPD/ 47245/ 2008.

3. REFERENCES
[1] G. Boella, G. Governatori, A. Rotolo, and L. van der

Torre. A logical understanding of legal interpretation.
In F. Lin, U. Sattler, and M. Truszczynski, editors,
KR. AAAI Press, 2010.

[2] G. Brewka. Well-founded semantics for extended logic
programs with dynamic preferences. J. Artif. Intell.
Res. (JAIR), 4:19–36, 1996.

[3] B. Chellas. Modal Logic: An Introduction. Cambridge
University Press, 1980.

[4] R. Chisholm. Contrary-to-duty imperatives and
deontic logic. Analysis, 24(2):33–36, 1963.

[5] R. Gonçalves and J. Alferes. Parametrized logic
programming. In T. Janhunen and I. Niemelä, editors,
Logics in AI – JELIA, volume 6341 of LNCS, pages
182–194. Springer, 2010.

[6] G. Governatori and A. Rotolo. Bio logical agents:
Norms, beliefs, intentions in defeasible logic.
Autonomous Agents and Multi-Agent Systems,
17(1):36–69, 2008.

[7] J. F. Horty. Deontic logic as founded on nonmonotonic
logic. Ann. Math. Artif. Intell., 9(1-2):69–91, 1993.

[8] J. Hubner, J. Sichman, and O. Boissier. Developing
organised multiagent systems using the moise+ model:
programming issues at the system and agent levels.
Int. J. Agent-Oriented Softw. Eng., 1:370–395, 2007.

[9] D. Lewis. Semantic analyses for dyadic deontic logic.
Cambridge University Press, 1999.

[10] D. Makinson, Leendert, and V. D. Torre. Input-output
logics. Journal of Philosophical Logic, 29:2000, 2000.

[11] D. Makinson and L. van der Torre. Constraints for
input/output logics. Journal of Philosophical Logic,
30:155–185, 2001.

[12] L. T. McCarty. Defeasible deontic reasoning. Fundam.
Inform., 21(1/2):125–148, 1994.

[13] D. Nute. Defeasible deontic logic. Springer, 1997.

[14] H. Prakken and G. Sartor. Argument-based extended
logic programming with defeasible priorities. Journal
of Applied Non-Classical Logics, 7(1), 1997.

[15] Y. U. Ryu and R. M. Lee. Defeasible deontic
reasoning: a logic programming model, pages 225–241.
John Wiley and Sons Ltd., Chichester, UK, 1993.

[16] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek,
P. Hammond, and H. T. Cory. The british nationality
act as a logic program. Com. ACM, 29:370–386, 1986.

[17] N. A. M. Tinnemeier, M. Dastani, and J.-J. C. Meyer.
Roles and norms for programming agent
organizations. In C. Sierra, C. Castelfranchi, K. S.
Decker, and J. S. Sichman, editors, AAMAS (1), pages
121–128. IFAAMAS, 2009.

[18] N. A. M. Tinnemeier, M. Dastani, J.-J. C. Meyer, and
L. W. N. van der Torre. Programming normative
artifacts with declarative obligations and prohibitions.
In IAT, pages 145–152. IEEE, 2009.

[19] L. W. N. van der Torre. Contextual deontic logic:
Normative agents, violations and independence. Ann.
Math. Artif. Intell., 37(1-2):33–63, 2003.

[20] G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

[21] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. pages 1070–1080.
MIT Press, 1988.


