
Smart Exploration in Reinforcement Learning using
Absolute Temporal Difference Errors

Clement Gehring
School of Computer Science

McGill University
Montreal, QC, Canada

clement.gehring@mail.mcgill.ca

Doina Precup
School of Computer Science

McGill University
Montreal, QC, Canada

dprecup@cs.mcgill.ca

ABSTRACT
Exploration is still one of the crucial problems in reinforce-
ment learning, especially for agents acting in safety-critical
situations. We propose a new directed exploration method,
based on a notion of state controlability. Intuitively, if an
agent wants to stay safe, it should seek out states where
the effects of its actions are easier to predict; we call such
states more controllable. Our main contribution is a new
notion of controlability, computed directly from temporal-
difference errors. Unlike other existing approaches of this
type, our method scales linearly with the number of state
features, and is directly applicable to function approxima-
tion. Our method converges to correct values in the policy
evaluation setting. We also demonstrate significantly faster
learning when this exploration strategy is used in large con-
trol problems.

Categories and Subject Descriptors
F.8 [Theory of computation]: Reinforcement learning

Keywords
reinforcement learning, exploration, temporal-difference er-
ror

1. INTRODUCTION
Autonomous agents are confronted with the problem of

making decisions in the face of uncertain and incomplete in-
formation. A standard framework for modelling this type of
problem is reinforcement learning [16, 18], in which agents
learn, from a stream of data, how to choose actions in or-
der to maximize their long-term return. A crucial problem
in reinforcement learning, which has spurred extensive re-
search, is the exploration-exploitation trade-off: how should
an agent act in order to balance its ability to find out new in-
formation, versus exploiting knowledge that it already has.
One of the most flexible and successful approaches is di-
rected exploration, which gives an agent bonuses in order
to encourage it to visit new states, or take new actions.
Some of these approaches are heuristic, e.g. [19, 14, 8]. For
other approaches, theoretical guarantees exist. For exam-
ple, the “optimism in the face of uncertainty” strategy [6,

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2, 15] assumes that unknown parts of the state space will
be very rewarding, and uses bonuses based on the standard
deviation of the observed value estimates. Under these con-
ditions, sample complexity bounds can be established both
for model-based and model-free algorithms. While this ap-
proach is natural to implement in small environments, where
the value function can be represented by a table, it does not
generalize easily to large problems, where function approxi-
mation is necessary. Recent work [9, 5] has extended these
ideas to continuous state spaces; however, these methods ei-
ther rely on a batch of data, so they are not incremental,
or they build a model of the environment, which leads to
quadratic complexity in terms of the number of features.
This is prohibitive in domains with high-dimensional obser-
vations, such as robot sensor data or images. Also, certain
popular approximators, such as tile coding, generate very
large feature spaces, for which quadratic complexity in the
number of features is not acceptable.

In this paper, we propose a simple way of measuring how
uncertain (or equivalently, how controllable) a state is. In-
tuitively, from the point of view of value estimation, if a par-
ticular state (or state-action pair) yields a lot of variability
in the temporal-difference error signal, it is less controllable.
We use this quantity as an added bonus in the exploration
process. Note that, depending on the tolerance to risk, one
can in principle either encourage or discourage exploration of
less controllable state-action pairs. We approach this prob-
lem from a safety perspective, so the goal of our method is
to encourage the agent to seek controllable regions of the
environment. This idea has an interesting side effect: it re-
duces as much as possible the noise in the value function
updates, which leads to faster and more stable convergence.

We use the mean absolute deviation of the temporal dif-
ference (TD) errors as a measure of controlability. As de-
scribed later on, this measure is more robust to noise than
the standard deviation [3, 20], so it is more adequate for the
reinforcement learning setup. This measure was used with
success by [12, 22] in order to construct new value function
features, as well as hierarchies of abstract behaviours. Here,
we focus instead on using it to bias the action choices.

The paper is organized as follows. Section 2 contains def-
initions and notation. In Section 3 we define our notion of
controlability, explain how it is learned from data, present
its use in exploration, and discuss the theoretical guarantees
of the algorithm. Section 4 presents a small grid-world illus-
tration, to build some intuition about the behaviour of the
algorithm. Section 5 contains a partially observable exam-
ple, illustrating the robustness of the approach to violations

1037

of usual reinforcement learning assumptions. In Section 6
we present an application to helicopter control, a complex,
high-dimensional benchmark provided as part of the RL li-
brary1. Our proposed method provides significantly faster
learning, and much better policies. Finally, Section 7 con-
tains a discussion and describes avenues for future work.

2. BACKGROUND
We assume the usual reinforcement learning framework,

in which an agent interacts with its environment at discrete
time steps t = 1, 2, At each time step, the agent observes
the state of the environment, st ∈ S, and chooses an action
at ∈ A. One time step later, the agent receives a reward rt+1

and observes a new state st+1. In a Markovian environment,
both rt+1 and st+1 depend only on st and at. For every
state-action pair s ∈ S, a ∈ A, R(s, a) is the expected value
of the reward that will be received when a is taken in s, and
P (·|s, a) is the next state distribution.

A stochastic Markovian policy π : S × A → R defines a
probability distribution for actions in each state:

π(s, a) = Pr(at = a|st = s).

This choice of action is typically driven by a value function,
which estimates the expected long-term return of each state
or state-action pair. We mainly focus on the state-action
value function, Qπ : S ×A→ R, defined as:

Qπ(s, a) = Eπ [rt+1 + γrt+2 + . . . |st = s, at = a]

where γ ∈ (0, 1) is a discount factor, used to emphasize re-
wards received earlier over those received in the future. For
a Markovian problem in which the state and action spaces
are discrete and small enough, Qπ can be represented by a
table with one entry for each (s, a) pair. The values can be
learned incrementally by the following update:

Q(st, at)← Q(st, at) + αδt (1)

where Q denotes the estimate of Qπ, α ∈ (0, 1) is the learn-
ing rate, and

δt = rt+1 + γQ(st+1, at+1)−Q(st, at) (2)

is the temporal-difference (TD) error produced as a result
of the transition. Note that both at and at+1 are assumed
to be chosen according to π. It has been shown [4] that this
update process converges to correct value estimates in the
limit, under standard stochastic approximation conditions.
Hence, limt→∞Eπ(δt) = 0.

If the state space is very large or continuous, function ap-
proximation is used to represent Q. Perhaps the most com-
mon choice is to use a linear approximator of the following
form:

Q(st, at) = θTatφst (3)

where θat is a parameter vector (with one such vector being
learned for each action), and φst is a feature vector corre-
sponding to the current state. Then, equation (1) becomes
an update to the parameter vector:

θat ← θat + αδtφst (4)

where δt is still computed according to (2).
The goal of reinforcement learning is to obtain an optimal

policy, π∗, which has maximal value in all states. In order

1http://library.rl-community.org/wiki/Helicopter(Java)

to obtain such a policy incrementally from data, two main
approaches can be used. On-policy algorithms evaluate the
policy being followed; hence, the policy has to be mostly
greedy with respect to the value function estimates. For
example, the Sarsa algorithm [13, 16] uses Equations (1)
(or (3)) and (2), but at each step, the policy π is modified
according to the current Q estimates. An ε-greedy strategy
is frequently used to generate the policy used by the Sarsa
algorithm. This strategy can be defined as follows. Suppose
n actions are available in state st, and the maximal value of
Q is attained for m of them. Then:

π(st, at) =

{
(1− ε)/m if at ∈ arg maxaQ(st, a)
ε/(n−m) otherwise

Off-policy learning algorithms attempt to find the optimal
policy and value function directly, regardless of the policy
being followed. The most popular algorithm of this type,
Q-learning [21], uses the following TD error signal:

δt = rt+1 + γmax
a

Q(st+1, a)−Q(st, at)

Exploration methods aim to improve the procedure for
choosing actions. In particular, we are interested in directed
exploration, in which actions are chosen greedily with respect
to a function of the form:

Q(st, at) + ωB(st, at)

where B(st, at) is a bonus that typically encourages visiting
unknown areas. For example, the bonus could be propor-
tional to the time since a particular state-action pair was
experienced [19], or it can be proportional to the standard
deviation of the action-value function, as done in the class
of optimistic exploration methods [2, 15]. However, in ap-
plications in which safety is critical, the approach of seeking
high-variance areas may not be advisable, as it can lead to
negative consequences. Moreover, in the long run, if an area
has high randomness in the rewards or transitions, visiting
it repeatedly is wasteful, in the sense that additional data
will not improve value estimates. If anything, the noise gen-
erated in such areas may slow down the convergence of the
value function. This is the intuition behind the approach we
are about to present.

3. PROPOSED APPROACH
We propose to use the mean absolute temporal-difference

error as an indication of how “controllable” a state is. In
statistics, there are many ways to measure the spread of
a random variable about its mean. Most methods focus
on variance and standard deviation, because these measures
work well when data comes from a normal distribution, and
allow for convenient mathematical manipulation. However,
if the data is very noisy, e.g. containing outliers, or violates
normality assumptions, empirical estimates of the variance
are quite sensitive, and may be dominated by the noise.
Huber [3] showed that the mean absolute deviation is a lower
bound on the standard deviation, and that it is more robust
to noise and normality violations.

For reinforcement learning, it is clear that TD-errors are
very noisy, because they are based on estimates of the value
function, which are constantly changing. Moreover, in a
control problem, the policy is also changing, so one would
expect the TD-errors to be non-stationary. Hence, we adopt
the mean absolute deviation as a measure of uncertainty

1038

in this work. Note that even though the expected value of
the TD-errors converges to 0, the expected value of the ab-
solute TD-errors will not be 0, unless the environment is
deterministic. In this case, of course, one sample from each
state-action pair is sufficient, so the exploration problem be-
comes moot.

We define the controlability of a state-action pair, given a
fixed policy π, as:

Cπ(s, a) = −Eπ[|δt||st = s, at = a] (5)

Note that the higher variability of the TD-errors is in a given
state, the lower the controlability will be. Controllability can
be estimated using the TD-errors in a straightforward way.
At each time step t,

C(st, at)← C(st, at)− α′(|δt|+ C(st, at)) (6)

where α′ = βα is a learning rate, with β < 1. The reason
for this setup is that we would like the values to converge
quicker, so the estimates of the errors are not as noisy. A
similar approach is taken in [17], for computing a very sim-
ilar signal, but which is used for corrections in off-policy
learning. We note that this update uses the TD error which
has already been computed anyway, so the additional effort
per update is O(1).

If function approximation needs to be used, the controla-
bility can be estimated using a parameter vector, w, simi-
larly to the value function. The parametrization of C should
be the same as forQ, and the update to the parameter vector
w of C becomes (by analogy with (4)):

wat ← wat − α
′(|δt|+ wT

atφst)φst

If the policy π is fixed and Qπ is estimated correctly, con-
trolability as given by (5) is well-defined, and (6) provides
a consistent estimator for it (though, according to work in
statistics, the estimator is biased). However, controlability
has to be learned at the same time as the value function esti-
mate. This process (including function approximation) can
be shown to converge by a two-time scale analysis, using the
ODE method of [1]. For this approach, we rewrite the two
iterations (for Q and C) as one iteration, with a combined
parameter vector containing both the θs and the ws, then
apply Theorem 2.2 of [1]. The analysis is analogous to that
of [17], and is left out for clarity of exposition.

The exploration algorithm uses controlability as an explo-
ration bonus, picking actions greedily according to:

Q(st, at) + ωC(st, at) (7)

where ω is a parameter used to trade off between the de-
sire to obtain high returns, and the minimization of the TD
error signals. If ω = 0, the algorithm relies only on the val-
ues. If ω is high, the emphasis is on visiting areas of high
controlability. This approach can be viewed as an attempt
to “regularize” the behavior of the system, by bringing it to
trajectories of lower variability.

The idea of restricting the policy space to “safe” policies
has been explored before in [10], However, that approach is
quite different, as it involves identifying Lyapunov functions
for a given domain, and designing policies that are guar-
anteed to improve the value of such a function. Lyapunov
functions do not always exist, and this process may be dif-
ficult for a system designer. Our approach is significantly
easier to use in practice.

Note that if desired, the controlability bonus can also be
used together with a random exploration factor; for example,
an ε-greedy policy with respect to (7) can be used. This
ensures sufficient exploration of all actions.

When the policy changes during the estimation process,
obtaining theoretical guarantees requires the policy to change
smoothly and slowly compared to the estimates in (7); the
contribution of controlability would also have to decrease
over time, in order to achieve optimality according to the
value function, in the limit. This can be achieved, e.g. us-
ing Boltzmann exploration and an approach similar to [11].
However, this strategy is not practically useful, so we do not
explore it further.

4. GRID-WORLD EXPERIMENTS
In this section, we aim to provide some intuition on the

behaviour of the algorithm, using a simple 18×18 grid-world
environment depicted in Figure 1. The red circle represents
a fixed goal state which the agent must reach. Furthermore,
there are several ’slippery’ rectangular patches (shaded in
the left panel) which span several states. At every state,
the agent must choose from four deterministic actions: up,
down, right, left. Each transition from a normal state causes
the agent to receive a reward of -1. If the agent transits out
of a ‘slippery’ state, the reward is uniformly distributed in
the interval [−12, 10]. If the agent attempts to move out of
the grid-world, the state stays unchanged and it receives a
reward of −10. An episode starts with the agent randomly
placed in the grid and stops when either the agent reaches
the goal, or 150 steps have been taken without success. We
used γ = 1 and ε = 0.1, and we varied the learning rate
α and the controlability parameter ω. We ran 10000 trials,
each consisting of 2400 consecutive episodes.

The right panel in Figure 1 shows a heat map of the con-
trolability values. Blue indicates high controlability (low
TD errors), while hot colors indicate large TD errors. As
can be seen, the agent identifies the problematic patches
correctly, without any problem. Figure 2 shows the average
return and standard deviation on the error bars for Sarsa
compared to the exploration approach using controlability.
Note that the use of controlability leads to faster learning,
but more importantly, it leads to tighter error bars than
using plain Sarsa. As expected, using controlability guides
the algorithm towards safer parts of the environment. This
behaviour is consistent over multiple values of the learning
rate.

Figure 3 provides a summary of the standard deviation of
the learned value function at the end of the training, as a
function of ω (x-axis) and of the learning rate α (different
curves). For all values of α, we set β = 0.1. Note that
for all values of α, intermediate values of the controlability
parameter perform best.

5. PARTIALLY OBSERVABLE DOMAIN
In this section, we evaluate the robustness of the proposed

algorithm to violations of the Markovian assumption. This
is important to study as function approximation essentially
amounts to introducing partial observability into a system.

We use the simple partially observable Markov Decision
Process depicted in Figure 4. The agent always starts in
the state labelled 1 and has to travel to the rightmost goal
state, following one of two paths. The states are aliased, and

1039

Figure 1: Grid-world environment (left) and learned
controlability heat map (right)

Figure 2: Return of usual exploration (blue) and
controlability-based exploration (red) in the grid-
world problem

the number in each state encodes the observation that the
agent will receive. At each time step, the agent receives a
reward of -1, and the actions are deterministic, and depicted
by the arrows in the Figure 4. Both paths are identical,
except that one path has a state that generates a unique
observation. The goal of the experiment was to show both
that our algorithm is stable, and that it would have a bias
toward the most observable path.

We set γ = 1 and ε = 0.1. Because of the partial observ-
ability, using just the immediate value of the controlability
is not sufficient, as the update is non-Markovian. We deal
with this problem by computing a controlability which looks
ahead to the next states:

C(st, at)← C(st, at)−α′(C(st, at) + |δt| − γ2C(st+1, at+1))

where γ2 is a second discount factor used for controlability.
We also use eligibility traces, controlled as usual by param-
eter λ, to provide faster propagation of information along
trajectories. For each pair of λ and γ2, we optimized α and
picked the best value.

Figure 5 presents the fraction of times the observable
path was taken. Note that, as expected, the versions us-
ing λ = 0.6 are better, as eligibility traces help overcome
the partial observability. However, controlability provides

Figure 3: Standard deviation at the end of learning,
for different combinations of values for parameters
α and ω. Using controlability consistently produces
more stable results, and the best value of the param-
eter ω is not influenced much by the learning rate
α

faster learning even in this case, helping the agent latch
onto the observable path faster (red curve in Figure 5). For
λ = 0, using controlability in the exploration process makes
learning significantly faster and more stable.

Figure 6 uses λ = 0.6 and γ2 = 0, and studies the effect of
ω (α has been optimized for each ω setting.) As anticipated,
using some controlability (ω = 0.5; green curve) shows im-
provement over using none. However, a very large emphasis
on controlability is problematic, and leads to slower learning,
because it prevents the agent from exploring sufficiently.

This example shows that our approach has great poten-
tial for domains like robotics, where the state information is
inaccessible and all the agent is given are noisy observations.

6. HELICOPTER TASK
In this section, we tackle the complex, high-dimensional

problem of controlling a helicopter. The domain was con-
tributed by Pieter Abeel to the Reinforcement Learning Li-
brary, and some previous versions were used in reinforcement
learning competitions.

The Task
The problem consists of controlling a helicopter so that it
hovers over a point of interest. The state information con-
sists of a 12 dimensional vector containing the position (x, y, z),
the velocity (u, v, w), the angular velocity (p, q, r) and the
orientation (i, j, k) of the helicopter. In order to fly, the
agent needs to decide the power level for both the main ro-
tor and the tail rotor, and the orientation of the main rotor.
Hence, the action space is 4-dimensional, and all action val-
ues are between -1 and 1. We discretized the action space
into 256 actions, allowing us to map each dimension to val-
ues in the set {−0.25,−0.05, 0.05, 0.25}. To make the task
harder, random winds perturb the helicopter while it is fly-

1040

Figure 4: A simple POMDP domain. The arrows
represent actions and the states are labelled with
the observation received. Note that several states
generate the same observation

Figure 5: Fraction of time the most observable path
was taken, as a function of learning episodes. Lower
curves are for λ = 0, higher ones for λ = 0.6. The
observable state is 4th on the path.

ing. A negative reward proportional to how early the trial is
terminated is awarded when the helicopter crashes, or when
it drifts away from the hovering area. In addition to that, a
penalty proportional to the distance from the hover point is
given at each time-step, to encourage the correct behaviour.

We used standard tile coding as the function approxima-
tor. Each dimension of the state space was tiled with 96
grids of size 4, resulting in a feature vector of 4608 entries.
This configuration was optimized to obtain as good a solu-
tion as possible. The reinforcement learning algorithm was
Sarsa. We optimized the learning rate for the algorithm
which uses no controlability (ω = 0). We then fixed these
parameters for the other versions of the algorithm (ω > 0).
We performed 50 independent runs for each algorithm.

Results
Figure 7 presents the duration of the episodes, as a func-
tion of the number of learning trials. The main challenge

Figure 6: Effect of ω on the success of controlability-
based exploration in the POMDP domain. This
graph was generated from a POMDP with the fully
observable state second on the path.

in the helicopter task is that bad actions are very difficult
to identify. The agent could behave perfectly until the last
time-step, when a bad action can lead to penalizing oth-
erwise perfect behaviour; or, conversely, the agent could be
choosing poor actions, bringing the helicopter in an unstable
state, then perform the best possible action to recover, but
still crash, penalizing the last good action. As can be seen
in Figure 7, controlability is very successful in guiding the
agent towards states that are easier to learn. Both versions
with ω > 0 are significantly better than ω = 0.

However, modifying the behaviour in this way is not with-
out cost. Preferring ‘easy’ states might push the agent away
from the optimal solution. This is why in Figure 7 we no-
tice a drastic improvement in the learning phase when using
controlability very aggressively (ω = 50) but this leads to
behavior which is too cautious, does not explore enough,
and the final solution ends up being sub-optimal. In future
work, it would be worth decreasing ω slowly over time, to
allow the behaviour to shift towards the optimal solution.

Reasons of improvement
Intuitively, we would think that risk-taking is a good heuris-
tic for exploring an unknown environment (as evidenced by
the sample complexity results for optimistic exploration).
This is not the case, however, for the helicopter task. In
this domain, taking risk can be very detrimental, since the
gaps between good and bad actions are big. It only takes
one bad action to crash, but many good ones to fly.

Another interesting aspect in this domain is that states are
not isolated - there are typically many sequences of actions
that can lead to the same state. This means that the agent
can afford to wait and not take a risky or unknown action
right away, because it can come back to the same situation
a different time, without too much difficulty.

Controllability reflects the variance in the returns due to
environment stochasticity, but also the variance caused by

1041

Figure 7: Average time of flight versus the number
of episodes. For all three plots, α1 = 0.02, α′ = 0.002,
γ = 1 and ε = 0.05. These values were optimized for
ω = 0

agent’s poorly learned values. As the agent learns better es-
timates of Q(s, a), the controlability increases, until it only
reflects the variance in the return. This causes the agent to
explore first actions that lead to stable or learnt states. Cau-
tious behaviour could slow down learning, but in a unforgiv-
ing domain such as the helicopter task, cautious behaviour
allows for better survival, which provides more opportunities
to explore and learn.

7. DISCUSSION
In this paper, we proposed to use the mean absolute TD

error in order to measure the controlability of state-action
pairs. This approach proved very useful in speeding up
learning, and generating policies that are more robust to
detrimental environment effects. We note that controlabil-
ity could also prove useful in creating a good function ap-
proximation representation, by suggesting new features that
seek to make the environment more predictable. The results
described in Section 5 suggest that this approach could be
very useful. The work of [22] is a step in this direction as
well.

A similar goal of improving the safety of policies is shared
by work on robust MDPs, and mean-variance optimization
in MDPs (see e.g., [7]). We note, however, that their ap-
proach proposes a joint criterion involving both the mean
and the variance of the value function, which is significantly
more expensive to optimize. Moreover, in that work, the
value function is not learned separately, so optimal values
and policies cannot be recovered, even if desired at a later
time. We sought to maintain the accuracy of the value func-
tion; the controlability only affects the action choices, but
the optimal values are not polluted by controlability values.

In our experiments, we kept the parameter ω at a fixed
value. However, in general this parameter could be ad-
justed during learning. In particular, if the application is

not safety-critical, one could decrease ω over time, in order
to better emphasize the value function.

Future work will focus on gaining more practical expe-
rience with this approach, especially in robotics and other
safety-critical domains. We are interested in establishing
bounds on the sample complexity of the proposed approach.
We are also exploring the use of controlability in creating
variable resolution tile coding approximators.

Acknowledgements
This research was funded by the NSERC USRA and NSERC
Discovery programs. The authors thank Rich Sutton and
the anonymous reviewers for useful comments on this work.

8. REFERENCES
[1] V. S. Borkar and S. P. Meyn. The ODE method for

convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control And
Optimization, 38(2):447–469, 2000.

[2] R. I. Brafman and M. Tennenholtz. R-max, a general
polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, pages 213–231, 2002.

[3] P. J. Huber. Robust statistics. Wiley, 1981.

[4] T. Jaakkola, M. Jordan, and S. Singh. On the
convergence of stochastic iterative dynamic
programming algorithms. Neural Computation,
6(6):1185–1201, 1994.

[5] N. K. Jong and P. Stone. Model-based function
approximation for reinforcement learning. In AAMAS,
2007.

[6] M. J. Kearns and S. Singh. Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49:209–232, 2002.

[7] S. Mannor and J. Tsitsiklis. Mean-variance
optimization in Markov Decision Processes. In ICML,
2011.

[8] N. Meuleau and P. Bourgine. Exploration of
multi-state environments: Local measures and
back-propagation of uncertainty. Machine Learning,
35(2):117–154, 1999.

[9] A. Nouri and M. L. Littman. Multi-resolution
exploration in continuous spaces. In NIPS, 2009.

[10] T. J. Perkins and A. G. Barto. Lyapunov design for
safe reinforcement learning. Journal of Machine
Learning Research, 3:803–832, 2002.

[11] T. J. Perkins and D. Precup. A convergent form of
approximate policy iteration. In NIPS, 2003.

[12] M. Ring and T. Schaul. Q-error as a selection
mechanism in modular reinforcement-learning
systems. In IJCAI, 2011.

[13] G. A. Rummery and M. Niranjan. On-line Q-learning
using connectionist systems. Technical report,
Cambridge University, 1994.

[14] J. Schmidhuber. Adaptive confidence and adaptive
curiosity. Technical Report FKI-149-91, Technische
Universitat Munchen, 1991.

[15] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and
M. L. Littman. PAC model-free reinforcement
learning. In ICML, 2006.

[16] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

1042

[17] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar,
D. Silver, C. Szepesvari, and E. Wiewiora. Fast
gradient-descent methods for temporal-difference
learning with linear function approximation. In ICML,
2009.

[18] C. Szepesvari. Algorithms for Reinforcement Learning.
Morgan & Claypool, 2010.

[19] S. Thrun. Efficient exploration in reinforcement
learning. Technical Report CMU-CS-92-102, School of
Computer Science, Carnegie Mellon University, 1992.

[20] J. W. Tukey. A survey of sampling from contaminated
distributions. In Contributions to Probability and
Statistics, pages 448–485. Stanford University Press,
1960.

[21] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

[22] S. Yi, F. Gomez, M. Ring, and J. Schmidhuber.
Incremental basis construction from temporal
difference error. In ICML, 2011.

1043

