
A Learning Agent for Heat-Pump Thermostat Control

Daniel Urieli
Dept. of Computer Science

The University of Texas at Austin
Austin, TX 78712 USA

urieli@cs.utexas.edu

Peter Stone
Dept. of Computer Science

The University of Texas at Austin
Austin, TX 78712 USA

pstone@cs.utexas.edu

ABSTRACT

Heating, Ventilation and Air Conditioning (HVAC) systems
are one of the biggest energy consumers around the world.
With the efforts of moving to sustainable energy consump-
tion, heat-pump based HVAC systems have gained popu-
larity due to their high efficiency and due to the fact that
they are powered by electricity rather than by gas or oil.
One drawback of heat-pump systems is that their efficiency
sharply decreases when the outdoor temperature is around
or below freezing. Therefore, they are backed up by an aux-
iliary heating system that is effective in cold whether, but
that consumes twice as much energy. A popular way of sav-
ing energy in HVAC systems is setting back the thermostat,
meaning, relaxing the heating/cooling requirements when
occupants are not at home. While this practice leads to
significant energy savings in many systems, it could in fact
increase the energy consumption in a heat-pump based sys-
tem, using existing control strategies, as it forces an exces-
sive usage of the auxiliary heater. In this paper, we design
and implement a complete, adaptive reinforcement learning
agent which applies a new control strategy for a heat-pump
thermostat. For our experiments, we use a complex, real-
istic simulator that was developed for the US Department
of Energy. Results show that the learned control strategy
(1) leads to roughly 7.0%-14.5% energy savings in typical
homes in the New York City, Boston, and Chicago areas;
while (2) keeping the occupants’ comfort level unchanged
when compared to an existing strategy that is deployed in
practice.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Control theory, Graph and tree search
strategies

Keywords

Machine Learning; Control; Energy Savings

1. INTRODUCTION
According the United State’s Department Of Energy (US

DOE), 40% of the energy consumed in the United States is

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

consumed by residential (22%) and commercial (18%) build-
ings.1 Furthermore, heating, Ventilation and Air Condition-
ing (HVAC) systems are responsible for more than 50% of
the energy consumed by buildings. According to [3, 7], with
the efforts of moving to a sustainable energy consumption,
our homes and offices will have to be heated by efficient
ground and air source heat pumps powered by electricity
rather than existing natural gas and oil fired boilers. In
HVAC systems, the thermostat’s operation significantly af-
fects energy consumption [4]. Current interest in more effi-
cient thermostat operation is evident from the appearance of
recent start-up companies such as Nest2, and BuildingIQ3.

This paper focuses on using advanced reinforcement learn-
ing (RL) methods to design an adaptive, energy efficient
thermostat operation strategy for a heat-pump system. A
common energy-saving practice in HVAC systems, termed
setting back the thermostat, is relaxing the heating/cooling
requirements for parts of the day. However, when applied
to heat-pump systems with existing thermostat strategies,
this practice can in fact increase energy consumption, since
recovering the temperature back frequently results in ex-
cessive use of an energy expensive, electric-resistance aux-
iliary heater.4 One thing that complicates controlling of
a heat-pump system is that its heat-energy output signif-
icantly varies based on environmental conditions; Since a
heat-pump moves heat-energy from one place to another,
rather then converts other energy sources (gas, oil, electric-
ity) into heat, its heat output, or the rate it moves the heat-
energy highly depends, for instance, on the temperatures
along the heat-energy path. This causes heating or cool-
ing to have a drifting rather than approximately-constant
effects. In addition, action effects are noisy due to envi-
ronmental factors that are often not easy to measure, for
instance the temperature of the house’s walls and furniture,

1http://buildingsdatabook.eren.doe.gov/
2http://www.nest.com
3http://buildingiq.com/
4In fact, in the day of writing of this paper, the official
website of the US Department of Energy recommends to
“avoid setting back heat pump’s thermostat manually if it
causes the electric-resistance heating to come on”. Fur-
thermore, it says that “Programmable thermostats are gen-
erally not recommended for heat pumps” since they use
setback strategies. It also mentions that some compa-
nies have recently started to develop algorithms for set-
ting back while minimizing the usage of the auxiliary
heater. See http://energy.gov/energysaver/articles/
tips-heat-pumps and http://energy.gov/energysaver/
articles/thermostats-and-control-systems

1093



which serve as heat-capacitors. The presence of such heat-
capacitors results in actions that have delayed effects. Two
additional limitations are related to the class of applicable
RL methods for this problem. First, any realistic thermostat
control strategy cannot use too aggressive or too long explo-
ration. Second, while RL methods typically optimize the
expected long-term cost, customer acceptance of any control
strategy will probably depend on its worst-case behavior.

The main contribution of this paper is designing a com-
plete reinforcement learning agent that learns and applies
a new adaptive control strategy for a heat-pump thermo-
stat that (1) leads to roughly 7.0%-14.5% yearly energy
savings in a realistic simulation of different house sizes and
weather conditions, while (2) keeping the occupants’ com-
fort level unchanged when compared to an existing strategy
that is deployed in practice. Experiments are run using a
complex, realistic simulator written for the US DOE. Our
strategy simultaneously solves two related, but slightly dif-
ferent problems of heating in the winter and cooling in the
summer. Our agent is realistically deployed in a simulated,
unknown in advance house, and after 3 days of exploration
(during which occupants could be traveling out of home)
starts to save energy. Our agent makes decisions in real-
time, and keeps learning and improving performance while
acting, as it gathers more data. As a side contribution, we
extend the use of reinforcement learning to a new relevant
domain, that is of current interest.

Technically, in order to apply RL to thermostat control,
we carefully define the problem as a continuous state Markov
Decision process (MDP). After randomly exploring the ef-
fects of its actions during the first 3 days, our agent uses
a regression learning algorithm to fit a transition function
that models the house in which the agent operates. Us-
ing information like weather forecast and history of past-
measurements results in a high-dimensional MDP state, and
therefore it is impractical to plan, or compute a value func-
tion, over the whole state space. Therefore, our agent uses
an efficient online lookahead policy, based on a constrained,
specialized tree-search.

We note that while the above companies address problems
that are closely related to ours, to the best of our knowl-
edge, the details of their algorithms are kept confidential,
and therefore unpublished. We are not aware of any pub-
lished studies that use the methods we use, but there are
studies that address related problems. RL was used in an
HVAC system [1, 2], but to control the inside operation of
the system rather than the higher level actions of heating or
cooling that we control here. Adaptive thermostat controller
was designed at [8] but used mixed-integer programming in-
stead of RL, in a different simulation environment with a
different goal of minimizing the peak demand over the grid.

2. BACKGROUND AND PRELIMINARIES
In this section, we start with describing the simulation

environment and the default thermostat strategy that is
used in realistic deployments, and continue with defining
the problem setup and formalizing it as a Markov Decision
Process.

2.1 Simulation Environment
Since real-world experiments would both be costly and

take too much time, in order to achieve our goal, we rely on
a complex, realistic HVAC simulation. Specifically, we use

GridLAB-D
5, which is an open-source, smart-grid simulator

that was developed for the US DOE. Importantly for our
purposes, it has a residential building model, that includes
heat gains and losses and the effects of thermal mass, as a
function of weather (temperature and solar radiation), occu-
pant behavior (thermostat settings and internal heat gains
from appliances), and heating/cooling system efficiencies. It
models parallel heat flow paths through the envelope of the
building (walls, windows, doors, ceilings, floors, and infiltra-
tion air flows), considers the mass of the air in the interior
volume of the house. It uses meteorological data collected in
hundreds of cities across the U.S. by the National Renewable
Energy Laboratory6, recorded in a standard TMY2 (Typi-
cal Meteorological Year) file format.

Our simulation uses a heat-pump based HVAC system. At
its peak performance, a heat-pump can output heat energy
that is 4× higher than the energy it consumes. However,
when outdoor temperatures are near or below freezing, its
efficiency sharply decreases; therefore it is backed up by an
auxiliary heater, in our case a resistive heat coil. On one
hand, the auxiliary heater’s efficiency is almost unaffected by
the outdoor temperature, but on the other hand it consumes
about twice the energy consumed by the heat-pump heater.
A resistive heat coil is a popular backup system, partly due
to the expected entrance of renewable electricity sources to
the market. A heat-pump is also used for cooling, and is not
backed up by an auxiliary cooler.

Coming from an AI perspective, our focus is on the deci-
sion making module of the house’s HVAC system, namely
the thermostat. A widely deployed default thermostat strat-
egy is defined in Algorithm 1, and is illustrated in Figure 1.
While this default thermostat strategy is simple and intu-
itive, from the perspective of energy consumption it has
some drawbacks, as seen next.

Algorithm 1 DefaultThermostat(upperBound, lower-
Bound)

1: buffer ← 1, auxBuffer ← 2, Tin ← indoor temperature
2: if Tin > upperBound + buffer then

3: COOL until Tin < upperBound − buffer
4: else if Tin < lowerBound − (buffer + auxBuffer) then

5: AUX-HEAT until Tin > lowerBound + buffer
6: else if Tin < lowerBound − buffer then

7: HEAT-PUMP-HEAT until Tin > lowerBound + buffer

2.2 Problem Setup and Challenge
In our setup, we simulate a single-family residential home,

and assume that occupants are at home between 6pm and
7am of the next day, and that the house is empty between
7am and 6pm (we call it a don’t-care period). Our goal,
illustrated in Figure 2, is to minimize the total energy con-
sumed by the HVAC system, while (1) keeping a desired
temperature range of 69-75◦F whenever the occupants are
at home, and (2) being indifferent to the home temperature
during the don’t-care period.

Under this setup, a straightforward setback strategy would
be to turn the system off during the don’t-care period, and
turn it back on once occupants are at home. However, such
setback of a thermostat that uses Algorithm 1 can in fact
increase consumption by more than 7% comparing to just

5http://www.gridlabd.org
6http://www.nrel.gov

1094



Figure 1: Indoor Temperature controlled by the de-
fault thermostat, over a 24-hour period of a winter
day. Quantities of algorithm 1 are illustrated here.

Figure 2: Temperature Requirements Specification.

leaving it always on. The main reason for this is that at
the end of the don’t-care period, the temperature is often
significantly out of range, in which case Algorithm 1 forces
extended use of the energy-expensive auxiliary heating unit.
More regular use of the heat pump throughout the don’t-care
period ends up consuming less energy, as happens when leav-
ing the thermostat always on. An additional problem with
such setback is that requirement (1) is frequently violated,
since it might take up to several hours for the HVAC system
to bring the temperature back to the desired range.

However, setting back the temperature is still desirable
for saving energy, as long as it does not cause unnecessary
use of auxiliary heating. This is due to the fact that setting-
back gets the indoor temperature closer to the outdoor tem-
perature, which in turn slows the heat dissipation, so that
less energy is needed to compensate for heat energy losses.
Therefore, an ideal strategy strategy would be able to pre-
dict whether it is possible to set back the thermostat for
some time, then start heating enough in advance using the
heat-pump whenever possible and auxiliary heating when
unavoidable, so as to reach the desired temperature by the
time the occupants are back, thus allowing the temperature
setback to effectively save energy, while leaving the occu-
pants’ comfort unchanged. In this paper, we define and test
such a strategy.

Figure 3 illustrates a challenge in designing such a strat-
egy. For a given day, let the heating slope be the (not neces-
sarily straight) line consisting of all (x, y) points, such that
if x is a time of day in the don’t-care period and y is the in-
door temperature at time x then turning on the heat-pump

at time x would bring the indoor temperature back into
the desired range, exactly at 6pm. We define the auxil-
iary slope similarly for the auxiliary heater. Note that these

Figure 3: The heating slope and the auxiliary slope

slopes are only hypothetical, and cannot exactly be com-
puted in advance, as doing so requires a complete knowledge
of the world-states throughout the uncertain future. During
a don’t care period, as long as a temperature y at time x

is above the heating-slope (resp. auxiliary-slope), an agent
can reach the desired temperature at 6pm using only the
heat-pump (resp. auxiliary heater). A good strategy should
handle the trade off of trying to setback the temperatures
to as close as possible to the (unknown) heating slope, while
keeping a safe distance above it, to avoid the need to use
the auxiliary heater in the face of possible outdoor tem-
perature drops. More generally, depending on the specific
house properties and weather conditions there exists some
path through the time-temperature space (such as the one in
Figure 3) that would lead to minimal energy consumption.
Our challenge is to design a control strategy that would be
able to approximate this path for each house our agent is
deployed in, and for any weather conditions.

Note that to this point, we have focused on winter, which
is more complicated than summer due to the two different
heating actions. In fact, our strategy works in the summer
as well, where there is only one cooling action (so no need to
avoid a more expensive action), but where there is still the
challenge of setting back the thermostat to save energy, and
start cooling in advance to bring the temperature back to
range on time. In our experiments, we run tests throughout
the year, thus testing both conditions simultaneously.

We assume that the default thermostat strategy is used
to keep the temperature in range whenever occupants are
at home, in order to keep a similar comfort level across
all tested strategies (so that only energy usage differs), and
due to the lower potential for energy savings at these times.
Therefore, we only consider changing the thermostat strat-
egy during the don’t-care period.

2.3 MDP Model
A thermostat works in the real-time cycle of sensing the

world state, for instance the temperature and the time of
day; running some computations; and acting by choosing one
of four actions: cooling, off, heat-pump heating, or auxiliary
heating. A strategy’s goal is to minimize a cost function,
which is the total energy it uses over some period, while sat-
isfying a desired comfort level. Formally, this problem can
be represented as a Markov Decision Process (MDP) [6]. An
(episodic) MDP is a tuple (S, A, P, R, T ), where S is the set
of states; A is a set of actions; P : S×A×S → [0, 1] is a state
transition probability function where P (s, a, s′) denotes the

1095



probability of transitioning to state s′ when taking action a

from state s; R : S → R is a state-based reward function;
and T ∈ S is a set of terminal states, where entering one of
which terminates an episode. Our MDP is defined as follows.

• S: {〈Tin, Tout, T ime, ea, prevAction, t0, . . . , t9,

weatherForecast〉}. Here, Tin and Tout are the indoor
and outdoor air temperatures, respectively; Time is
the time of day; ea is the energy consumed by last ac-
tion; prevAction is the previously taken action; t0, . . . , t9
is a history of the last 10 indoor temperatures, and
weatherForecast is a noisy weather forecast from the
current step until the end of an episode.

• A: {cool,off,heat,aux}. Namely, there are four
possible actions for cooling, off, (heat-pump-)heating
and auxiliary heating, respectively.

• P: a complex, initially unknown, transition model
given by the GridLAB-D simulator, based on the house
properties, and the environmental conditions.

• R: −ea − c6pm. Here, c6pm = 100000×∆2
temp is large

quadratic cost applied when missing the temperature
spec at 6pm by ∆temp, to help enforcing the com-
fort constraint. The energy consumption proportion
is roughly 1:0:2:4 for cool:off:heat:aux respectively,
but is specific to each house/weather condition and is
unknown in advance.

• T: {s ∈ S|s.time == 23:59pm}

We discuss our choice of state representation in detail in
Section 3. In our MDP, an action is taken every 6 minutes,
as the simulator models a realistic lockout of the system,
such that every control action is applied for at least 6 min-
utes. In the context of MDPs, the goal of RL is to learn
an optimal policy, when the model (namely P and/or R) is
initially unknown. A policy is a mapping π : S → A from
states to actions, and an optimal policy is defined as one that
maximizes the long-term rewards, or equivalently minimizes
the long-term costs, from every state.

3. AGENT COMPONENTS
When the agent is deployed in a new house, in order to

perform robustly it needs to learn the characteristics of the
specific house and heating system it controls, and adapt its
control strategy to these characteristics. It does so by ex-
ploring and learning the effects of its actions in the house’s
environment for three simulated days. During this period,
the agent selects each of the four possible actions uniformly
at random and records their effects. While in practice it
might be possible to use more advanced exploration policy,
for the purpose of this work we assume that a one-time 3-
day random exploration is still a realistic setup, for instance
during a weekend where occupants are traveling. Action ef-
fects are recorded in the form of 〈s, a, s′〉 tuples where s is
a state, a is an action taken from s, and s′ is the next state
transitioned into after taking action a in s. Note that since
ea is part of the state in our definition of the MDP, the re-
ward can be computed exactly by the agent at every given
state. One advantage of fully random exploration is a quick
coverage of larger portions of the state space and of different
action sequences, which facilitates faster learning. A disad-
vantage of it is an increased energy consumption, but we will

see that this is outbalanced by the energy savings starting
the fourth day throughout the year.

Starting the end of the third day, the agent plans and
executes an energy saving set-back policy. While doing so,
the agent keeps recording the effects of its actions, fitting
a regression model to the accumulated action-effect tuples
once at every midnight. Based on the most recently learned
model, the agent keeps executing an efficient lookahead pol-
icy to choose the next action. The main routine for ac-
tion selection, called at every time step with the current
state observation, is summarized in Algorithm 2. In the
following two sections we describe two main subroutines of
this algorithm, namely the agent’s model-learning algorithm
(LearnHouseModel), and the agent’s planning and action se-
lection algorithm (TreeSearch). In the results section, we
present an ablation analysis that tests the contribution of
each of the main components of these algorithms to the fi-
nal performance.

Algorithm 2 [main routine] SelectAction(currentState)

1: dataSet.add(prevState, prevAction, currentState)
2: t← currentState.Time
3: if t ∈ firstThreeDays then

4: return randomSelect(cool,off,heat,aux)
5: else

6: if t = midnight then

7: model ← LearnHouseModel(dataSet)
8: if t ∈ don’t-care period then

9: bestAction ← TreeSearch(model)
10: return bestAction
11: else

12: return thermostatAction()

3.1 Learning the House Characteristics
The agent learns the house characteristics in a routine

named LearnHouseModel. LearnHouseModel fits regression mod-
els to the collected data-set of 〈s, a, s′〉 tuples, which are sam-
ples from the house’s state transition function. The agent
uses these tuples as labeled examples 〈s, a〉 → s′ for fitting
a regression to model the transition function, separately for
each of the four actions (a total of four regression runs).
A critical part in learning the transition function is select-
ing what features to include as the regression’s independent
variables. In turn, this implies the features included in our
state representation, based on definition 5.4.1 from [5], used
here as a main guideline:

Definition 1. A state variable is the minimally dimen-
sioned function of history that is necessary and sufficient
to compute the decision function, the transition function,
and the contribution (here the reward) function.

In what follows we describe the process by which we select
the regression, and therefore the state, features. We start
by including in our state the three features that are required
for computing the reward function: Tin, ea, and Time. For
computing the transition function, we need features that
help predicting Tin and ea (Time can be directly computed).
Here we only present the process of selecting features for
predicting Tin, but the process for selecting features for pre-
dicting ea is conceptually similar and uses a subset of the
state-variables needed for predicting Tin. For predicting Tin

at the next time-step, an obvious feature that is included,
besides Tin itself, is the outdoor temperature at the current

1096



time step, Tout, as it directly affects the heat-pump opera-
tion, and is easily measurable, similarly to Tin. We start by
testing a linear regression using only Tin and Tout for pre-
dicting Tin. Note that during regression runs we always add
a constant 1 as a “bias” (regression-only) feature, to enable
affine regression. To test the prediction’s accuracy, we gener-
ate data by simulating one year of uniformly random actions
and recording the resulting 87,600 〈s, a, s′〉 tuples, one for
each 6-minute time-step during one year. We then measure
the prediction error in a cross-validation test which repeat-
edly chooses 70% of the data as a training set and the rest
30% of the data as a validation set and averages the results of
multiple runs.7 The cross-validation’s error measure is the
mean-squared prediction error over the validation-set, but
here we report the related and more intuitive error measure
of the standard deviation of the prediction errors, measured
in ◦F (Fahrenheit).8

Using only Tin and Tout the prediction error is unaccept-
ably high: a standard deviation of more than 1◦F for a 6
minutes time-step. This means that over 1 hour, the stan-
dard deviation of the prediction error is 10◦F , which makes
it hard to plan actions several hours in advance. A main
source of prediction error is a hidden state of the house
and the environment, for example the temperatures of the
house’s walls and furniture, that serve as heat capacitors,
and causes actions to have delayed effect. While a realis-
tic thermostat generally cannot measure this hidden part of
the state, it could use observable quantities that affect or
correlated with the hidden part of the state. Specifically, we
add as features the previous action taken by the thermostat,
and a history of 10 measured indoor-temperatures. Adding
the previous action as a feature results in a 4x4=16 com-
binations for the recent pair of actions, and for each such
combination we run a separate regression, in a total of 16,
rather than 4, regressions.9 The 10 historic temperatures
are added directly as regression features. Figure 4 shows
the cross-validation error achieved by incrementally adding
regression features, starting from the two features of Tin and
bias, then adding Tout, adding the previous action, and then
adding 10 historic temperatures one-by-one, from the most
recent to the least recent, to a total of 14 features. Using
all the features, the average standard deviation of the errors
is less than 0.1◦F per 6-minute time-step, or less than 1◦F

per hour. As each feature contributes to error reduction,
the LearnHouseModel is chosen to fit a linear regression using
the above 14 features.10 Based on Definition 1, we include
all these features (except the bias feature) in our state rep-
resentation. Note that cross-validation test were run on a
typical, 2500 square feet with weather conditions recorded
at New-York City. In the results section we test the agent

7While random action data is not a representative sample of
the actual resulting behavior, it still gives a good estimation
of the prediction’s accuracy using a specific set of features.
Indeed, when testing our model on online data resulting from
the actual agent’s policy predictions, accuracy was similar.
8Due to the large sample size, the difference between the
standard deviation and the root-mean-squared error is neg-
ligible.
9While the previous-action could be approximately treated
as an “ordinal” continuous feature that receives 4 possible
values, the accuracy was better when using it as a feature
that separates to different regression runs.

10Adding polynomial features did not significantly improve
the prediction accuracy.

under a range of house sizes and different weather conditions
recorded in US cities.

0 5 10 15
0

0.5

1

1.5

Number of Features

C
ro

s
s
−

V
a
li
d

a
ti

o
n

 E
rr

o
r

5 10 15

0.094

0.096

0.098

0.1

0.102

0.104

Number of Features

C
ro

s
s
−

V
a
li
d

a
ti

o
n

 E
rr

o
r

Figure 4: Cross-validation error (standard devia-
tion, in ◦F ) vs. number of features. The right figure
is a zoom-in of the left figure using 5-14 features.

Adding features to the state representation helps us in pre-
dicting Tin as a part of the transition function. But, being
part of the state, these state features now need to be pre-
dicted as a part of the transition function. All but one of the
added features are just forward recordings of past measure-
ments, and can be directly computed from 〈s, a〉 without the
need to predict them. The only one needs to be predicted is
Tout. However, Tout is different than Tin in that it is inde-
pendent of the agent’s actions and can be considered as an
information state [5], a term that refers to the part of the
state describing random processes external to the agent. The
approach we take for predicting Tout is using a weather fore-
cast that is assumed to be given by an external source. For
instance, the agent can connect to a weather forecast agency
using the internet infrastructure in a realistic deployment.
As the weather forecast is needed for predicting Tout which
is already part of our state, based on Definition 1 we add the
weather forecast to our state representation as (multidimen-
sional) state feature. As the weather forecast is given from
an external source, it does not need to be predicted by itself
from 〈s, a〉, so no further features are needed in our state
representation and the resulting state representation is the
one defined in Section 2.3. For the purpose of simulation,
we generate a noisy weather forecast from the actual future
weather data, given in the TMY2 file, using the following
rule. At a specific hour h, the forecast for i hours into the
future, denoted as fh+i is defined (recursively) as:

fh+i =

(

Tout(h) if i = 0

fh+i−1 + N(0, 0.5) if i > 0

where N(0, 0.5) is a normal random variable with µ = 0 and
σ = 0.5. Note that the noisy forecast is computed at every
time step until the end of the day, and therefore changes as
time progresses. A histogram of the resulting forecast errors
over one year, summarized together for forecast ranges of
6-17 hours into the future (these are the forecasts ranges
needed during the don’t-care period) is shown in Figure 5.

3.2 Planning and Acting
Recall that our agent uses the default thermostat strat-

egy to keep the temperature in range outside the don’t-care
period, whenever occupants are at home. During the don’t-
care period, the agent plans and selects actions using the
nightly learned model, with the goal of executing an effective
set-back strategy that both saves energy and minimizes vi-
olations of the temperature comfort requirements. In MDP

1097



−10 −5 0 5 10
0

1

2

3
x 10

4

Noise in 6−17 hours Forecasts (
o
F)

F
re

q
u

e
n

c
y
 (

#
)

Figure 5: Histogram of the added noise in all
weather forecasts generated over a period of 1 sim-
ulated year, where forecasts predict 6-17 hours into
the future. Here, the resulting range of noise values
is [−7.6, 8].

terms, the agent’s goal is finding a policy that maximizes
the long-term reward. In general, once the approximate
transition (and/or reward) functions are learned, the agent
can use them to approximate the optimal policy using ei-
ther one of the following three methods, or a combination
of them: value-function approximation, policy function ap-
proximation, or lookahead methods [5].

Due to the dimensionality of our state representation, it
might be computationally intensive, or even impractical to
plan or approximate a value function over the whole state
space. Assuming the agent has limited on-site computa-
tional resources, it needs an efficient way to plan its actions.
Therefore, our agent uses an efficient tree-search lookahead
that is limited to a specific class of policies. A lookahead
search starts at some point during the don’t-care period,
and ends at the end of an episode, namely at midnight. As
a result, the agent makes plans for time-ranges of 6-17 hours,
using actions of 6-minute length. As predicted values at time
t are used to estimate values at time t + 1, predictions that
are further into the future accumulates uncertainty and be-
come more noisy. Therefore, we take an approach similar
to Model-Predictive Control, where our agent runs a looka-
head search at a given time-step step, uses the results of the
search to determine only the next action to take, then runs
a new search at the next time-step, and so on.

Algorithm 3 implements this lookahead search, selecting
the next action to be the first action of the most promising
path. Specifically, it initializes a priority queue (step1) and
retrieves the current weather forecast (step 2). Next, it it-
erates over every time-step i starting the current time until
the end of the don’t-care period (step 5). The simulate()
function (steps 7, 9, 12) uses the model and the weather
forecast to simulate a specific set-back policy, which applies
one action from the current time-step until time-step i, and
another action from time-step i until the end of the don’t-
care period. For instance, step 7 simulates applying off

and then heat. Simulation continues from 6pm until the
end of episode at midnight, at this point simulating the de-
fault thermostat actions. Each simulation outputs the total
accumulated reward along the simulated path, and the first
action taken in this path (steps 7, 9, 12) which are then
inserted into the priority queue as a key-value pair, where
the total reward is the key and the returned action is the
value (steps 8, 10, 13). Note that the first action could be
either of the two simulated actions as initially i = m. The
first action of the path that resulted in the highest reward is
then selected for execution (step 15). The intuition behind

the algorithm is to maximize the set-back time while still re-
turning the temperature back to range by 6pm, through an
efficient search within a policy class that does exactly that.
The reason we add step 9, in which we simulate heat and
then aux is to account for cold days in which the heat-pump
is not able to bring the temperature to the desired range.

Algorithm 3 TreeSearch(model)

1: Q← priorityQueue()
2: f ← currentWeatherForecast()
3: m← getT imeOfDayInMinutes(now)
4: end← getT imeOfDayInMinutes(6pm)
5: for i← m, m + 6, . . . , end do

6: if heatingNeeded then

7: [reward, action] = simulate(off, i,heat, f, model)
8: Q.add(reward, action)
9: [reward, action] = simulate(heat, i, aux, f, model)
10: Q.add(reward, action)
11: else if coolingNeeded then

12: [reward, action] = simulate(off, i, cool, f, model)
13: Q.add(reward, action)
14: [bestReward, bestAction] = Q.top()
15: Return bestAction

An important part of the simulate() function is handling
the uncertainty in the long-term predictions of Tin. In gen-
eral, regression models predict the expected transition for a
specific 〈s, a〉 pair. However, actual values can be higher
or lower, so that relying on expected transitions can result
in overly optimistic behavior that applies a strong set-back,
from which the heat-pump is eventually not able to recover
the temperature back to range by 6pm, thus violating the
comfort requirements. To hedge against that, we augment
each prediction with a dynamic safety buffer that encourages
risk-taking in safer situations and discourages risk-taking in
less safe situations. Specifically, we augment each prediction
as follows. Let σ be the standard deviation of the regression
model measured on the training-set. Let Tin

′ be the ex-
pected temperature predicted by the regression model. Let
∆temp be the difference between the current temperature
and the required temperature range at 6pm, and let ∆time

be the number of minutes until 6pm. Then simulate() uses
an augmented prediction p defined as:

p =

(

Tin
′ − c ·

∆temp

∆time
· σ if currentTemperature < 69

Tin
′ + c ·

∆temp

∆time
· σ if currentTemperature > 75

where c is a constant and where ∆temp and ∆time are nor-
malized by dividing ∆temp by 15 (◦F ) and ∆time by 11·60 =
660 (minutes), and trimming their quotient to a [0, 1] range.
The constant c determines the maximum number of stan-
dard deviations that could possibly augment a prediction,
and was determined to be 1, by running a grid search to
find the best performing parameter, over a 2500 ft2 house
using NYC weather data. The importance of using this dy-
namic safety buffer is demonstrated in the ablation analysis
in Section 4.2.

4. RESULTS
We start with testing the agent’s performance in a range

of different house-sizes and weathers, and continue with ab-
lation analysis, analyzing the contributions of the different
agent components to the overall performance.

1098



4.1 Agent’s Performance in Different Houses
and Weathers

To test the agent’s performance we use GridLAB-D to sim-
ulate different homes at different weather conditions over a
period of 1-year, where the the heat-pump system is con-
trolled by our agent. More specifically, we simulate 21 typi-
cal residential homes, of sizes ranging from 1000 square feet
(ft2) to 4000 ft2. We simulate these homes under differ-
ent weather conditions using typical weather data that was
recorded in different cities in the United States by the US
National Renewable Energy Laboratory, given in a TMY2

format. The comfort requirements are as described earlier,
requiring an indoor temperature of 69-75◦F from 6pm to
7am, with a don’t-care period of 7am-6pm. We compare
our learned strategies with the default thermostat strategy
(Algorithm 1) that is used in real deployments, where the
thermostat is always on (recall that setting the thermostat
back during the don’t-care period when using the default
strategy actually increases energy consumption).

Figure 6 shows the energy saved by our agent with respect
to the default thermostat strategy, both as a percentage, and
in actual savings. We compare the energy savings both when
including the exploration period (days 1-365) and when ex-
cluding it (days 4-365). Excluding it is reasonable to do
given that the increased consumption during days 1-3 is a
one-time cost, while the savings starting day 4 could con-
tinue for several years. We see that even when including
the exploration period, our agent still saves 628-1327 kWh
over the course of a year, or 5.7%-12.4%, depending on the
house size and weather conditions. When excluding the ex-
ploration period the savings are 734-1572 kWh, or about
7.0%-14.5% per year. Figure 7 shows how our agent min-
imizes violations of the temperature comfort requirements;
in each of the above simulations, we recorded the indoor-
temperature at 6pm, which is the end of the don’t care pe-
riod. The figure shows a histogram of the 6pm temperatures
at more than 22,000 simulated days. In Figure 8 we demon-
strate how the RL agent controls the temperature in mild
and extreme winter/summer days.

1000 2000 3000 4000
500

1000

1500

House Size (sq Ft.)

E
n

e
rg

y
 s

a
v
in

g
s
 (

k
W

h
)

Including Exploration Days

 

 
NYC

Boston

Chicago

1000 2000 3000 4000
5

10

15

House Size (sq Ft.)

E
n

e
rg

y
 s

a
v
in

g
s
 (

%
)

Including Exploration Days

 

 
NYC

Boston

Chicago

1000 2000 3000 4000
500

1000

1500

2000

House Size (sq Ft.)

E
n

e
rg

y
 s

a
v
in

g
s
 (

k
W

h
)

Excluding Exploration Days

 

 
NYC

Boston

Chicago

1000 2000 3000 4000
5

10

15

House Size (sq Ft.)

E
n

e
rg

y
 s

a
v
in

g
s
 (

%
)

Excluding Exploration Days

 

 
NYC

Boston

Chicago

Figure 6: Energy savings of our agent, in 21 dif-
ferent house sizes, using typical weather conditions
recorded in NYC, Boston and Chicago, when includ-
ing and excluding the 3 exploration days.

4.2 Ablation Analysis
Table 1 shows an ablation analysis that tests the contri-

bution of each of the agent’s main components to its overall
performance. All simulations are done on a single, typical
2500 ft2 home using weather files recorded at New York
City. Performance is summarized with respect to both en-
ergy consumption and satisfying comfort requirements. The
“Comfort Violations” column displays the number of days
in which the temperature was outside 69-75◦F by 6pm, and
the “Range of 6pm Temp.” column displays the range of
temperatures measured at 6pm throughout the year.

The bottom line of the table summarizes the final agent’s
performance. The upper part of the table summarizes the
performance of the agent when one or more components are
removed. Components are named as follows: ‘prevAct’ is the
previous-action regression feature used by LearnHouseModel;
‘hist’ is the history of ten indoor temperatures that are used
by LearnHouseModel; ‘conf’ is the dynamic confidence bound,
or safety buffer, used inside TreeSearch. We see that remov-
ing each of these components by itself does not significantly
increase the energy consumption, but removing ‘conf’ and
‘hist’ does result in a slightly reduced comfort. When remov-
ing the ‘prevAct’ and ‘hist’ together, energy consumption
increases by 5.4% an comfort is violated more significantly
due to the prediction errors in the transition function result-
ing from the absence of these features which are correlated
with the hidden state of the house (Section 3.1). When
removing all three features altogether, energy consumption
increases by 9.5%, and comfort violations increase to a level
in which the agent misses the specification by up to 10◦F .
The bottom part of the table shows the how performance
deteriorates when changing the dynamic safety buffer’s con-
stant to a value of 2, or making the buffer a fixed value of
2 standard deviations, both results in a good comfort per-
formance, but too conservative behavior that leads to an
increased energy consumption.

5. CONCLUSIONS
Heat-pump systems are gaining increased popularity as a

part of the efforts to move society to a sustainable energy
consumption. While setting back the temperature is an ef-
fective energy saving strategy in other HVAC systems, the
common practice is to avoid setting back heat-pump sys-
tems, as when used with existing control strategies it actu-
ally increases energy consumption. In this paper, we have
designed and implemented a complete reinforcement learn-
ing agent that learns an effective set-back strategy, which
lead to roughly 7.0%-14.5% of yearly energy savings in
a realistic simulation of different house sizes and weather
conditions. Our agent is adaptive, in the sense that when
deployed in a new house, it learns the house properties and
efficiently plans and executes a set-back strategy, which both
saves energy starting the fourth day, and minimizes viola-
tions of the temperature comfort constraints. We see at
least two possible directions for future work. The first one
is taking our agent from simulation to reality, deploying it in
a real heat-pump system. The second one is extending this
strategy in simulation, to optimize more complex objectives,
for instance minimizing price-based energy costs, which is a
part of the smart-grid vision, in which energy price should
encapsulate information such as the availability of renewable
energy resources. As a part of this direction, it is possible

1099



Table 1: Ablation Analysis
Analysis Type Energy Consumption (kWh) Comfort Violations (#) Range of 6pm Temp.

Removed Feature

prevAct+hist+ conf 1112(+9.5%) 232 60.1-84.4
prevAct+hist 1070(+5.4%) 193 60.8-80.9

conf 1024(+0.8%) 138 67.5-78.3
hist 1016(+0.0%) 133 67.1-77.7

prevAct 1015(+0.0%) 65 67.8-76.5

Other conf. bounds
2σ 1090(+7.3%) 29 69.0-78.5

c = 2 1039(+2.3%) 27 69.0-77.8

Final Agent 1015 23 68.8-76.6

to further extend our strategy, and test it in a multi-agent
smart grid environment in which many agents optimize costs
and by doing that affect the resulting energy prices.

6. ACKNOWLEDGMENTS
We would like to thank Shivaram Kalyanakrishnan, Sam

Barrett, Todd Hester and the rest of the members in the
LARG group at The University of Texas at Austin, for use-
ful discussions and feedback. We would like to thank Ron
Eyal and Gil Gelber for fruitful discussions. We would like
to thank Jason Fuller and Matt Hauer from the GridLAB-D

team for their excellent support. Our numerical computa-
tions were done using the Armadillo [9] library.

This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is
supported in part by NSF (IIS-0917122), ONR (N00014-09-
1-0658), and the FHWA (DTFH61-07-H-00030).

7. REFERENCES
[1] R. Hafner and M. Riedmiller. Reinforcement learning in

feedback control. Machine Learning, 84:137–169, 2011.
10.1007/s10994-011-5235-x.

[2] R. M. Kretchmar. A Synthesis Of Reinforcement
Learning And Robust Control Theory. PhD thesis, 2000.

[3] D. J. C. Mackay. Sustainable Energy – without the hot
air. UIT, Cambridge, MA, 2009.

[4] T. Peffer, M. Pritoni, A. Meier, C. Aragon, and
D. Perry. How people use thermostats in homes: A
review. Building and Environment, 46(12):2529–2541,
2011.

[5] W. B. Powell. Approximate Dynamic Programming:
Solving the Curses of Dimensionality, 2nd Edition.
Wiley, 2011.

[6] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1994.

[7] S. Ramchurn, P. Vytelingum, A. Rogers, and N. R.
Jennings. Putting the ”smarts” into the smart grid: A
grand challenge for artificial intelligence.
Communications of the ACM, 55(4):86–97, 2012.

[8] A. Rogers, S. Maleki, S. Ghosh, and J. Nicholas R.
Adaptive home heating control through gaussian
process prediction and mathematical programming. In
Second International Workshop on Agent Technology
for Energy Systems (ATES 2011), pages 71–78, May
2011.

[9] C. Sanderson. Armadillo: An open source c++ linear
algebra library for fast prototyping and
computationally intensive experiments. Technical
report, NICTA, 2010.

65 70 75 80
0

500

1000

1500
Temperatures at 6PM

Temperature (
o
F)

F
re

q
u

e
n

c
y
 (

#
)

Figure 7: Histogram showing how the agent mini-
mizes violations of the temperature comfort require-
ments (69 − 75◦F , vertical lines). The histogram
shows the temperatures at the end of the don’t-care
period, namely 6pm, in more then 22,000 simulated
days, using 21 different house sizes, using weather
conditions recorded at the cities from Figure 6.

Figure 8: Our agent controlling the temperature in
a house in New York City area, in mild and hot sum-
mer days (top-left and top right, respectively), and
mild and cold winter days (bottom-left and bottom-
right, respectively). In all figures, x-axis is the time
of day, y-axis is the temperature, the don’t care pe-
riod is between the two vertical lines, and the de-
sired temperature range is between the red and the
green lines. Note how in the top left, the agent waits
until temperature drops back instead of starting to
cool earlier.

1100




