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ABSTRACT
Social networks are increasingly being used to conduct polls. We
introduce a simple model of such social polling. We suppose agents
vote sequentially, but the order in which agents choose to vote is
not necessarily fixed. We also suppose that an agent’s vote is influ-
enced by the votes of their friends who have already voted. Despite
its simplicity, this model provides useful insights into a number of
areas including social polling, sequential voting, and manipulation.
We prove that the number of candidates and the network structure
affect the computational complexity of computing which candidate
necessarily or possibly can win in such a social poll. For social
networks with bounded treewidth and a bounded number of can-
didates, we provide polynomial algorithms for both problems. In
other cases, we prove that computing which candidates necessarily
or possibly win are computationally intractable.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
A fundamental issue with voting is that agents may vote strategi-

cally. Results like those of Gibbard-Satterthwaite demonstrate that,
under modest assumptions, strategic voting is likely to be possible
[7, 9]. However, such results do not tell us how to vote strategi-
cally. A large body of work in computational social choice con-
siders how we compute such strategic votes [5, 4]. Typically such
work starts from some strong assumptions. For example, it is typ-
ically assumed that the manipulators have complete information
about the other votes. The argument given for this assumption is

that computing a strategic vote will only be computationally harder
with incomplete information. In practice, of course, we often only
have partial or probabilistic information [10, 2]. It is also typically
assumed that manipulators will vote in any way that achieves their
ends. However, in practice, agents may be concerned about peer
pressure and may not want to deviate too far from either their true
vote or that of their peers [8]. Bikhhardani et al. [1] identified sev-
eral factors that limit strategic voting by an individual agent such
as sanctions on deviation, and conformity of preferences. A third
strong assumption is either that all voting happens simultaneously
or that the manipulators get to vote after all the other agents. Again,
in practice, this is often not the case.

These issues all come to a head in social polling. This is a con-
text in which voting meets social networks. Startups like Quipol
and GoPollGo use social networks to track public opinions. Such
polls are often not anonymous. We can see how our friends have
voted and this may influence how we vote. By their very nature,
such polls also happen over time. The order in which agents vote
can therefore be important. The structure of social networks is also
important. For example, a distinctive feature of social networks is
the small world property which allows members of these commu-
nities to share information in a highly efficient and low cost man-
ner. A rumor started in the Twitter network reaches about 90% of
the network in just 8 rounds of communication [3]. In a similar
way, one member of a social network can quickly create and publi-
cize a poll among a large group of agents starting from his friends.
The massive size of social networks, like Facebook, Twitter and
Google+, gives statistically significant polls.

To study social polling, we set up a general model that captures
several important features of voting within a social network. First,
our model uses the structure of the social network. How an agent
votes depends on how their friends vote. Second, our model sup-
poses agents vote sequentially and the order in which they vote is
not under their control. For example, when you vote may depend
on when one of your friends chooses to invite you to vote. Third,
our model supposes that agents are influenced by their friends. In
fact, an agent’s vote is some function of their true preferences and
of the preferences revealed by the votes of their friends that have
already voted. We can obtain different instances of our model by
choosing different functions.

To study this model, we consider a particular instance that cap-
tures some of the features of a Doodle poll. More precisely, each
agent has a set of k preferred candidates and is indifferent about
other candidates. Among these k preferred candidates, one candi-
date is her top choice. If a particular candidate among her k pre-
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ferred candidates has a majority amongst her friends that have al-
ready voted, then she mimics their choice. Otherwise, she votes for
her top choice. Note that any computational lower bounds derived
for this particular instance also hold for the general model.

Even though this instance of the model is simple and lacks some
of the subtleties of social influence in practice, it nevertheless pro-
vides some valuable insights. For example, we prove that it is com-
putationally hard to determine if a given candidate has necessarily
won a social poll, irrespective of how the remaining agents vote.
We also show that this intractability holds even if the social graph
has a simple structure like a disjoint union of paths. Of course, in
practice social influence is much more complex and subtle. In ad-
dition, social graphs often have much a richer structure than simple
paths. Finally, agents in general do not know precisely how all the
other agents will vote. However, all these issues will only increase
the computational complexity of reasoning about a social poll.

We focus here on computing the possible and necessary winners
of the social poll. A candidate is a possible winner if there exists a
voting order such that this candidate is a plurality winner over the
cast votes. Similarly, a candidate is a necessary winner if he is a
plurality winner over the cast votes for each voting order. The pos-
sible and necessary winner problems are interesting in their own
right. In addition, they provide insight into several related and in-
teresting problems. For example, they are related to the control
problem in which the chair chooses an order of participation for
the agents that favors a particular outcome. In particular, the chair
can control the result of the election in this way if and only if their
desired candidate is a possible winner.

2. PROBLEM STATEMENT
We consider a scenario where each agent votes for exactly one

candidate. We are given a social network graphG = (V,E) whose
n vertices are the agents x1, . . . , xn, a set C = {c1, . . . , cm} of m
candidates, a distinguished candidate c∗ ∈ C, and a choice function
h, which for every agent xi, every subset S ⊆ NG(xi) of its neigh-
bors in G, and every vote of an agent in S, assigns the candidate
that xi votes for. Each agent casts exactly one vote according to the
following model. For a given voting order π = (xπ(1), . . . , xπ(n)),
let Si denote the set {xj : π−1(j) < π−1(i)} ∩ NG(xi), i.e., the
neighbors of xi that vote before xi. Each agent xi votes for the
candidate that the choice function h assigns for the given candidate
xi, the subset Si and the votes of the agents in Si. The score of a
candidate c is the number of agents that vote c in the voting order π.
A candidate c ∈ C is a (co-)winner in the voting order π if no other
candidate has higher score than c. A candidate is a possible winner
if there exists a voting order where c is a winner. A candidate is a
necessary winner if for every voting order, c is a winner.

Refined model. We introduce a particular instance of the choice
function h. This is defined via two preference functions p1 : V →
C and P : V → 2C . Each agent x ∈ V has a set P (x) ⊆ C of
k preferred candidates, where k > 1 is a constant. Among the
preferred candidates, one candidate p1(x) ∈ P (x) is the top pre-
ferred candidate. Let x be an agent and S be the subset of NG(x)
that voted before x. If there exists a candidate c ∈ P (x) such that
more than half of the agents from S voted for c, then x votes for c.
Otherwise, x votes for p1(x).

The unweighted possible (necessary) winner problem is to de-
termine whether c∗ is a possible (necessary) winner. The weighted
possible (necessary) winner problems are defined similarly, except
that integer weights are associated with agents and the score of a
candidate is the sum of the weights of the agents that vote for him.

3. OVERVIEW OF RESULTS
We show that the computational complexity of the possible and

necessary winner problem depends on the structure of the under-
lying social graph and the number of candidates. In particular, we
prove that if the underlying social graph has bounded treewidth and
the number of candidates is bounded then the unweighted possible
and necessary winner problems can be solved in polynomial time.
The degree of the polynomial bounding the running time of this al-
gorithm is a function of the number of candidates and the treewidth
of the social network graph. We give evidence that this cannot be
avoided. For arbitrary social network graphs and a bounded num-
ber of candidates, the weighted possible winner problem is NP-
complete, while the weighted necessary winner problem is poly-
nomial. If we relax the restriction on the treewidth, all problems
become computationally intractable. Finally, we investigate these
problems under the assumptions that the number of candidates is
unbounded and the social graph is a disjoint union of paths. We
show that the unweighted possible winner problem is hard even if
the length of each path is at most one. By contrast, the necessary
winner problem is polynomial under the assumption that the num-
ber of candidates is unbounded and the underlying social graph has
bounded treewidth. Our results also demonstrate that the possible
winner problem is inherently computationally harder than the nec-
essary winner problem.

We refer the reader to [6] for a full version of the paper.
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