
Multi-Agent Planning by Plan Reuse

(Extended Abstract)
Daniel Borrajo

Departamento de Informática
Universidad Carlos III de Madrid

dborrajo@ia.uc3m.es

ABSTRACT
Generating plans for a single agent has been shown to be
a difficult task. If we generalize to a multi-agent setting,
the problem becomes exponentially harder in general. The
centralized approach where a plan is jointly generated for all
agents is only possible in some applications when agents do
not have private goals, actions or states.

We describe in this paper an alternative approach, mapr
(Multi-Agent Planning by plan Reuse), that considers both
the agents private and public information. We have been in-
spired by iterative Multi-Agent Planning (MAP) techniques
as the one presented in [3]. mapr first assigns a subset of
public goals to each agent, while each agent might have a
set of private goals also. Then, mapr calls the first agent to
provide a solution (plan) that takes into account its private
and public goals. mapr iteratively calls each agent with the
solutions provided by previous agents. Each agent receives
its own goals plus the goals of the previous agents. Thus,
each agent solves its problem, but taking into account the
previous agents solutions. Since previous solutions might
consider private data, all private information from an agent
is obfuscated for the next ones. Since each agent receives the
plan from the previous agent that implicitly considers the so-
lutions to all previous agents, instead of starting the search
from scratch, it can also reuse the previous whole plan or
only a subset of the actions. Experiments show that mapr
outperforms in several orders of magnitude state-of-the-art
techniques in the tested domains.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

Keywords
Automated planning; Multi-Agent Planning

1. MULTI-AGENT PLANNING TASK
A single-agent strips planning task can formally defined

as a tuple Π = {F,A, I,G}, where F is a set of propositions,
A is a set of instantiated actions, I ⊆ F is an initial state,
and G ⊆ F is a set of goals. Each action a ∈ A is described

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

by a set of preconditions, and a set of effects. The solution of
planning tasks are sequences of actions π = (a1, . . . , an) such
that, if applied in order, they result in a state s, where goals
are true, G ⊆ s. In a multi-agent setting, the planner gener-
ates a plan for a set of agents, Φ = {φ1, . . . , φm}. We define
the MAP task as a set of planning subtasks, one for each
agent, M = {Π1, . . . ,Πm}. Each planning subtask can be
defined as a single-agent planning task, Πi = {Ai, Fi, Ii, Gi}.
All these components have a public part, that can be shared
with the rest of agents, and a private part. In order to dif-
ferentiate those parts, we provide each agent with the list
of domain predicates and types that are private. Thus, all
actions, states and goals of each agent can have a private
and a public part.

2. MULTI-AGENT PLANNING IN MAPR
Figure 1 shows a high-level description of the algorithm.

We use @ to express obfuscated information. It takes as in-
put a MAP task (domain, problem and agents description as
explained in the previous section), a goal assignment strat-
egy, the planner to be used by the first agent, and a second
planner (it might be the same one) to be used by the fol-
lowing agents. The algorithm is composed of six main steps
shown in bold face in the algorithm.

Function mapr (M,GA,FP, SP): plan

M = {Π1, . . . ,Πm}: MAP task
GA: goal assignment strategy
FP : first planner
SP : second planner

M ← Assign public goals (GA,M)
Repeat until Termination
π1 ←First-Plan(FP,Π1)
For each remaining agent φj , 1 < j ≤ m
φj−1 Obfuscates its private information, S@

j−1:
the plan π@

j−1 and
the problem Π@

j−1 = {F@
j−1, A

@
j−1, I

@
j−1, G

@
j−1}

φj−1 Communicates S@
j−1 to agent φj

φj creates a new planning task:
Πj ← Merge(Πj , S

@
j−1)

πj ←Second-plan(SP,Πj)
If solved, return last plan

Figure 1: High level description of mapr planning
algorithm.

1141

Goal Assignment. For each goal in g ∈ G and agent
in φi ∈ Φ, mapr computes a relaxed plan from the ini-
tial state of the agent, Ii, following the relaxed plan heuris-
tic of ff. If the relaxed plan heuristic detects a dead-end,
then c(g, φ) = ∞. This will define a cost matrix, c(G,Φ).
Next, we have devised four goals assignment schemes. all-
achievable (AA): mapr assigns each goal g to all agents
φi such that c(g, φi) < ∞. rest-achievable (RA): mapr
first assigns to the first agent φ1 all goals that it can reach
(cost less than ∞). Then, it removes those goals from the
goals set, and assigns to the second agent all goals that it
can reach from the remaining set of goals. It continues un-
til the goals set is empty. best-cost (BC): mapr assigns
each goal g to the agent that can potentially achieve it with
the least cost, arg minφi∈Φ c(g, φi). load-balance (LB):
mapr first computes the average number of goals per agent,

k = |G|
m

. Then, it starts assigning goals to agents as in best
cost. When it has assigned k goals to an agent, it stops
assigning goals to that agent.

Planning. Once goals have been assigned to a subset of
agents Φ′ ⊆ Φ, planning starts by calling the first agent to
solve its planning task. The task will be composed of its
private planning task and its assigned public goals. If it
does not solve the problem, it just passes the empty plan
to the next agent. It could be either because there is no
such plan, or, most frequently, because its plan needs some
propositions to be achieved by the rest of agents plans. So,
it will wait until, eventually, it will be called again to solve
again the planning problem, but with some extra informa-
tion coming from the other agents planning episodes. The
following planning episodes can either use a planner or a
replanner. In the latter case, apart from the domain and
problem definitions, replanners take a previous solution as
input [1].

Obfuscation. If the first agent solves the problem, then
it cannot pass the private information directly to the rest
of agents. So, it obfuscates the private parts and outputs
an augmented obfuscated planning problem. Obfuscating is
a two steps process. First, a random substitution σ is gen-
erated for the names of all private predicates, actions and
objects. The second step consists of applying the substi-
tution to the plan. An augmented obfuscated solution S@

j

consists of the obtained plan and the set of components that
are needed by the rest of agents to regenerate that solution.

Communication. Each agent communicates S@
j to the

next agent. We assume there is no noise in the communica-
tion. The size of the messages is linear with respect to the
plan size and initial state size.

Merging. Each agent aj+1 receives S@
j and builds a new

planning problem by adding the instantiated actions to its
actions set, the goals to its own goals, the private previous
initial state to its own initial state and all new fluents to its
own fluents set.

Termination. As soon as the last agent finds a plan
achieving all goals, the whole planning process finishes. If
the last agent does not find a plan and there is still time, we
perform another iteration over all agents again, but with the
accumulation of goals. Starting in the second iteration, as
soon as an agent finds a solution, then the whole planning
task finishes, since it incorporates all goals from all agents.
The planning process will terminate with failure only if the
time or memory bounds are reached.

3. EXPERIMENTS AND RESULTS
mapr was compared with map-pop, since it represents

the state-of-the-art on MAP [4], and a centralized approach
(lama-first).1 Rovers and Satellite were used as in [4].
The four goal assignment strategies defined were also used.
lama-first (LF) was selected as the first planner, and lama-
first and lpg-adapt [1] as second planners. Time bound
was 600 seconds.2 Table 1 shows the results in the Rovers
domain. mapr is able to solve all IPC instances with almost
all configurations in up to three orders of magnitude less
time. Also LPG-Adapt improves over lama-first. Similar
results were obtained in the Satellite domain (all problems
solved with up to two orders of magnitude improvement on
time).

lf LPG-Adapt
map-pop lf AA RA BC LB AA RA BC LB

0.44 0.00 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.15
0.34 0.00 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.16
0.8 0.00 0.36 0.36 0.36 0.35 0.37 0.36 0.37 0.37
0.9 0.00 0.36 0.35 0.35 0.35 0.38 0.36 0.39 0.38

2.15 0.00 0.40 0.41 0.38 0.38 0.40 0.39 0.38 0.39
2.17 0.00 0.44 0.43 0.43 0.43 0.43 0.41 0.41 0.42
3.75 0.00 0.69 0.18 0.39 0.62 0.65 0.18 0.40 0.59

60.35 0.01 1.01 0.42 0.64 0.90 0.92 0.40 0.64 0.90
15.77 0.01 1.01 0.69 0.96 0.90 0.94 0.65 0.89 0.89

0.01 1.09 0.46 0.45 0.96 0.96 0.43 0.43 0.90
10.39 0.01 1.08 0.47 0.72 0.97 0.96 0.44 0.67 0.90
3.17 0.00 1.01 0.65 0.92 0.90 0.95 0.66 0.90 0.92

0.02 1.18 0.54 0.55 1.17 1.03 0.47 0.51 0.98
47.10 0.01 1.14 0.52 0.51 0.98 1.17 0.47 0.48 0.93
20.68 0.01 1.24 0.59 0.54 1.14 1.06 0.51 0.48

195.97 0.02 1.32 0.28 0.56 1.18 1.12 0.27 0.50 0.99
0.03 2.17 1.23 1.64 2.06 1.66 1.03 1.38 1.63
0.04 2.63 1.21 1.51 2.28 1.84 0.93 1.18 1.71
0.13 2.60 1.54 1.52 3.83 1.79 1.12 1.02 1.87
0.14 5.12 1.34 5.14 3.99 2.76 0.86 2.46

Table 1: Planning time (in seconds) in the Rovers
domain.

4. ACKNOWLEDGMENTS
We would like to thank Alejandro Torreño and Naz Ris-

sim. This work has been partially supported by MICINN
projects TIN2008-06701-C03-03 and TIN2011-27652-C03-02.

5. REFERENCES
[1] M. Fox, A. Gerevini, D. Long, and I. Serina. Plan

stability: Replanning versus plan repair. In Proceedings
of the Sixteenth International Conference on Automated
Planning and Scheduling (ICAPS’06), pages 212–221,
2006.

[2] M. Helmert. The Fast Downward planning system.
JAIR, 26:191–246, 2006.

[3] A. Jonsson and M. Rovatsos. Scaling up multiagent
planning: A best-response approach. In Proceedings of
the 21st International Conference on Automated
Planning and Scheduling (ICAPS’11), pages 114–121,
2011.

[4] A. Torreño, E. Onaind́ıa, and O. Sapena. An approach
to multi-agent planning with incomplete information.
In Proceedings of the European Conference on Artificial
Intelligence (ECAI’12), 2012.

1FastDownward code [2]. We used only one run of lazy
greedy best first search with actions costs, and FF and land-
mark count heuristic with preferred operators.
2We used a 2.6GHz Intel Core i7 with 4Gb of RAM on
MacOS X.

1142

