
AUML Protocols: From Specification to Detailed Design

(Extended Abstract)
Yoosef Abushark ∗and John Thangarajah

RMIT University, Melbourne, Australia
{yoosef.abushark,john.thangarajah}@rmit.edu.au

ABSTRACT
In this work, we show how AUML protocol specifications in
the Prometheus methodology can be automatically propa-
gated to the detailed design of the methodology by creating
appropriate artefacts. The approach is general to all design
methodologies that follow the BDI model of agents.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

Keywords
AOSE Methodology;Inter-Agent Interaction Protocols;

1. INTRODUCTION
In multi-agent systems inter-agent interaction plays a sig-

nificant role. For example, in an agent-based trading system,
the buyer and seller agents need to communicate with each
other in order to complete a sale transaction. Current BDI
agent design methodologies allow designers to capture these
interactions in the form of interaction protocols. A common
representation of interaction protocols is AUML (Agent Uni-
fied Modelling Language) sequence diagrams [2]. An AUML
sequence diagram captures all the possible legal exchange of
messages between agents including the temporal aspects.

Although most AOSE methodologies consider agent in-
teraction protocols an essential part of the methodology [1],
they provide little (if any) support for ensuring that the
protocols are faithfully translated from specification to the
detailed design artefacts. It is up to the designer to ensure
that the protocols are indeed followed by the system, which
can be a tedious and error-prone task that often result in a
mismatch between the specification and implementation. In
this work we present an approach to address the above. In
most of the AOSE methodologies, the detailed design (the
lowest level) is the closest to implementation and often can
be auto-generated to skeleton code. In this work, we pro-
vide a mechanism for automatically creating these detailed
design structures from the AUML protocol specification. We
base our approach on the Prometheus methodology.

∗Aknowledges King Abdulaziz University for scholarship

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. PROPAGATION MECHANISM
The three factors that influence the protocol propagation

to the detailed design: (i) protocol participants, (ii) protocol
trigger, and (iii) protocol sequence flow.
Protocol Participants: The messages in a protocol are
between two participants (internal agents or actors that are
external to the system) and there can be many participants
in a single protocol. In a protocol an agent can play two
roles: Sender or Receiver for a particular message. The
sender agent needs to be able to send the message and the
receiver agent needs to be able to receive and handle (act
upon) the received message. The message therefore needs to
be propagated into both the agents together with a plan in
the sender agent that sends the message and a plan in the
receiver agent to handle the message.
Protocol Trigger: The protocol trigger is the event (possi-
bly external) that triggers the posting of the first message of
the protocol, thus initiating the execution of the protocol. It
is important to factor this into the protocol propagation. It
is often the case that the protocol trigger is captured by the
agent that sends the first message of the protocol. However,
in some cases it may be captured by more than one agent.

For example, in Figure 1 the first message (‘M1’) is sent
by ‘Agent-A’, hence, the protocol trigger would be captured
only by ‘Agent-A’. However, the first message of the proto-
col in Figure 2 might be ‘M1’ from ‘Agent-A’ or ‘M2’ from
‘Agent-B’ depending on the construct’s guards. Hence, both
agents need to capture the protocol’s trigger with the guards
propagated to the respective plans as context conditions that
handles the trigger of each agent.
Protocol Sequence Flow: The sequence flow of an inter-
action protocol is the execution order of the communication
between the participants. Thus, the propagation of the in-
teraction protocols must ensure this sequence flow. When
there are multiple messages, there are 3 distinct cases that
influence the propagation mechanism: (1)Multiple messages
sent in sequence from one agent, (2)Participants exchange
messages and (3)Protocol contains constructs (e.g. ALT).

(1) The first case is where an agent sends multiple messages
to other agents continuously, for example, ‘M3’ and ‘M4’
in Figure 1. The significant point here is to ensure that
‘Agent-A’ posts these messages in the same order specified,
in other words, ‘Agent-A’ must not post ‘M4’ before posting
‘M3’. Note that, even if the messages were posted by dif-
ferent plans, we show the ordering of messages via dashed-
arrows between messages rather than between the plans, as
the protocol only specifies ordering of messages, not plans.

1173



Figure 1: AUML Protocol

With No Constructs

Figure 2: Protocol trig-

gered by multiple agents.

Figure 3: Agent Overview diagrams for the protocol in

Figure 1

Further, ordering the plans is too strict, unnecessary and
possibly undesirable as the plans may contain steps other
than the posting of the message and are often executed con-
currently.

(2) The second situation is when the protocol participants
exchange messages between each other. For example, see
the order of messages ‘M1’, ‘M2’ and ‘M3’ in Figure 1. In
this case, it is important to ensure that ‘Agent-A’ sends ‘M3’
after receiving ‘M2’ and that ‘Agent-B’ sends ‘M2’ after re-
ceiving ‘M1’. We enforce this ordering when messages are
exchanged by having the plan that handles the incoming
message post the outgoing message. For example, for the
protocol in Figure 1, ‘Agent-A’ will have ‘M1’ posted by the
protocol trigger handler plan as it is the first message of the
protocol, and ‘M3’, ‘M4’ posted by the ‘M2 Handler’ plan.
Similarly ‘Agent-B’ has a plan that handles ‘M1’ and posts
‘M2’, ensuring that ordering (see Figure 3).

(3) The third situation arises when an interaction protocol
contains a construct. In addition to enforcing the control
specified in the construct, having messages before and/or
after a construct also affects the propagation mechanisms.
Before: If there are messages before the construct, then the
last message before the construct is treated as the trigger
for the construct which is created as an internal event.
After: In the cases where there are messages after a con-
struct, the propagation mechanism needs to consider the
fact that the construct in some instances may not occur.
For example, in the protocol specified in Figure 4, if the
guards ‘X1’ and ‘X2’ both evaluate to false, the ALT con-
struct will not execute and the message flow should continue
on past the construct.

Considering the direction of the first and last message
of a construct’s regions, the occurrence of messages before
and after a construct and the direction of those messages,
provides many combinations of unique cases to be considered
when propagating protocols.

Figure 4: AUML Protocol (ALT Example)

Figure 5: Agent Overview Diagrams (ALT Example)

In developing the propagation techniques we discovered
nineteen unique cases for a protocol with just an ALT con-
struct, and twelve unique cases for the OPT construct. For
a full list of all the different cases including cases where
a protocol contains multiple constructs we refer the reader
to a detailed appendix which we have placed online (anony-
mously) at http://tinyurl.com/propagation-cases. Sim-
ilarly, the algorithms in the form of flow-chart can be found
at http://tinyurl.com/propagation-algorithms.

3. EVALUATION
We developed a prototype ‘eTrading-System’ as a multi-

agent system with three agents; ‘Seller Agent’, ‘Buyer Agent’
and ‘Bank Agent’. We specified one interaction protocol,
‘Sale Transaction’ where the agents communicate with each
other. The system was designed by using the PDT tool
that follows the Prometheus methodology [3]. The evalua-
tion that we conducted showed that the manual propagation
of that simple protocol took even a well experienced devel-
oper 75 minutes. Testing the system, implemented by the
same developer, revealed 6 errors with respect to the proto-
col whilst the proposed approach resulted in a system that
followed the protocol with no errors. Thus, by automating
this process, the development time is significantly reduced
and the resulting system is more reliable than the manual
process. Whilst the evaluation was not comprehensive in
terms of the number of participants and variation of proto-
col specifications, it provided a good indication of the kind
of benefits that our automated approach provides and the
difficulty of the manual propagation.

4. REFERENCES
[1] S. DeLoach, L. Padgham, A. Perini, Susi, and

J. Thangarajah. Using three AOSE toolkits to develop a
sample design. IJAOSE, 3(4):416–476, 2009.

[2] J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing
agent interaction protocols in UML. In Agent-Oriented
Software Engineering, pages 201–218. Springer, 2001.

[3] L. Padgham, J. Thangarajah, and M. Winikoff. Prometheus
design tool. In Proceedings of the 23rd AAAI Conference on
AI, pages 1882–1883, 2008.

1174




