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ABSTRACT
We present a computationally feasible method for predicting
joint probability distributions over auction clearing prices,
together with a bidding heuristic that exploits these price
predictions. We demonstrate experimentally that our heuris-
tic outperforms the state-of-the-art heuristic for bidding in
simultaneous, second-price, sealed-bid (SimSPSB) auctions.
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I.2.1 [Artificial Intelligence]: Applications and Expert
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Algorithms, Economics, Experimentation, Performance
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1. INTRODUCTION
Current autonomous bidding agents in complex auctions

typically employ a two phased architecture known as a price
prediction (PP) strategy : first, the agent predicts a distribu-
tion over prices for available goods, and then, the agent at-
tempts to optimize its bids with respect to those predictions.
For computational reasons, state-of-the-art methods [6, 7,
9] assume that prices are independent across goods, and bid
based on marginal price distributions. However, prices for
goods are typically dependent, especially for complementary
and substitutable goods.

In this paper, we present techniques for prediction and op-
timization that operate in the joint price space. To predict,
we use a mixture of Gaussians to efficiently represent a joint
price distribution, which we learn repeatedly from simula-
tion data generated via a best-reply dynamic. Our approach
to optimization extends a known local-search heuristic that
bids based on marginal price distributions rather than the
joint. We evaluate our techniques in a variety of SimSPSB
auction environments and show that our approach outper-
forms the reigning champion.
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2. LEARNING JOINT PRICE PREDICTIONS
Past work on learning price predictions has been con-

cerned with learning marginal price predictions: i.e., making
predictions on a per-good basis (e.g., [5]). Often, such price
predictions are represented as histograms (e.g., [3, 9]). As-
suming m goods, each with l possible discretized prices, it
would take space O(ml) to representmmarginal histograms.
In contrast, it would take space O(lm) to represent the cor-
responding joint histogram. Consequently, it is not realistic
to attempt to accurately model a joint price probability dis-
tribution as a histogram when m is large. In this work, we
assume the price distribution is a mixture of Gaussians.

2.1 Gaussian Mixture Models
We use a Gaussian mixture model (GMM) to represent

joint price predictions. A GMM is is a model of a proba-
bility distribution of dimension D as a weighted sum of K
Gaussian components, each of dimension D. The number
of components, K, determines the complexity of the model.
Each component, k, is defined by its mean and covariance
parameters. In addition, each component is weighted by γk.
The vector θ specifies all the free parameters of a GMM.

A standard algorithm for estimating the free parameters
from data is Expectation Maximization (EM) [2], an itera-
tive approach which guarantees that the likelihood of the
data never decreases with successive iterations. However,
the number of components K must be specified in advance.

Rather than guess K, we use the Akaike Information Cri-
terion (AIC) [1] to drive model selection. That is, we learn
models for various values of K, and then select the model
that minimizes AIC score. The AIC score is a standard mea-
sure of goodness of fit, defined as the likelihood of the data
under the model discounted by the complexity of the model:

AIC (Y, θ,K) = 2(κ−lnL(Y | θ)) where κ = K
(
D + D2+D

2

)
.

2.2 Self-Confirming Price Predictions
There are many ways one might build probabilistic price

predictions from data. We employ self-confirming price pre-
dictions (SCPPs), originally introduced and evaluated in the
context of simultaneous ascending auctions [8], and further
evaluated in the present context [9]. Building on the ideas
set forth in these prior works, we propose a simple iterative
method to approximate SCPPs.

Let QQQ = 〈q1, . . . , qm〉 be a random vector with pdf fQQQ,
representing the clearing prices in an auction for m goods.

Given an auction environment Γ specifying the number
of agents, number of goods, the auction rules (e.g., Sim-
SPSB), and a prior over valuations, at iteration t, the algo-
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rithm simulates M instances of Γ, with all agents playing
price-prediction strategy PP assuming prediction f t

QQQ. These
simulations vary across sample valuation functions drawn
for each agent. Given the ensuing data set X , a new price
distribution fQQQ is learned.

KL-divergence is a standard measure of similarity between

probability distributions: KL(p, q) =
∫∞
−∞ p(x) ln

(
p(x)
q(x)

)
. A

symmetric form of KL-divergence is KLS(p, q) = KL(p, q)+
KL(q, p). The KLS distance between two GMMs can be
approximated using Monte Carlo sampling.

If the new learned distribution is sufficiently close to the
old as determined by the KLS, then the new distribution is
returned and the procedure terminates. Otherwise, a new
price distribution is formed by combining the new and the
old (in some parametric way), and the process repeats. As
this procedure is not guaranteed to converge, it automati-
cally terminates after L iterations.

3. LOCAL SEARCH BIDDING HEURISTICS
Once an agent has derived price predictions, it must de-

cide how to bid given those predictions. Although this prob-
lem has been studied for over a decade [7, 6], a new method
was recently proven very successful in SimSPSB auctions [9].
The LocalBid heuristic iteratively updates its bids for each
good j in turn, by computing the bid for good j that maxi-
mizes its expected utility, holding all other bids are fixed,
and computing the expectation with respect to marginal
price distributions. This heuristic is guaranteed to con-
verge to a bid vector that locally maximizes expected utility,
assuming prices are truly independent across goods. Un-
der this price-independence assumption, the optimal bid for
good j can be efficiently computed as j’s expected marginal
value, meaning the difference between the expected valua-
tion of winning j and losing j.

We define JointLocal to be a heuristic that, like Local-
Bid, bids expected marginal value, but computes that ex-
pectation using the full joint, rather than the marginals.
Specifically, the expectation is computed using Monte Carlo
sampling, where samples are drawn from a price prediction
represented as a GMM. In general, JointLocal does not con-
verge to a bid vector that locally maximizes expected utility.
Nonetheless, JointLocal is an effective bidder when prices are
correlated, as our experiments will now demonstrate.

4. EXPERIMENTS
We explore the effects of assuming price independence in a

class of SimSBSP auctions where agents’ valuations take the
form of scheduling valuations [4]. Each agent i requires λi ∈
{1, . . . ,m} total time slots (goods) to complete its task. If
agent i procures λi time slots by time t, it receives valuation
vi(t). S[m,n] represents the scheduling environment where
n agents are bidding for m time slots, and λi ∼ U [1,m]
and vi(t) ∼ U [1, 50]. In these environments, goods exhibit
complementarities. L[m,n] represents a similar environment
except λi is fixed at 1. Here, goods are perfect substitutes.

We computed a GMM-SCPP fQQQ for each scheduling envi-
ronment listed in Table 1. Let fQQQ′be the independent distri-
bution derived from the resulting fQQQ. The amount of price
correlation in each environment was quantified by approx-
imating KL(fQQQ,fQQQ′) via Monte Carlo estimation. For each
environment, 1000 random valuations were drawn, along
with 1000 initial bids. For each valuation-initial bid pair,

LocalBid and JointLocal both used the same set of 10000 sam-
ples from the environment’s GMM-SCPP to produce bids.
The expected utility of each bid was estimated with a sec-
ond set of 10000 samples drawn from the GMM-SCPP. The
average estimated expected utility for each heuristic, and
KL(fQQQ,fQQQ′) for each environment, are reported in Table 1.

Table 1 shows that for a fixed m, a low KL value correlates
with no discernible difference in the performance of LocalBid
and JointLocal. We see this in S[5,8] and L[10,5], where KL
is small, and the difference in performance is less than 0.2%.
However, when KL is large, as in S[5,2] and S[10,5], indi-
cating that fQQQis highly correlated, JointLocal outperforms
LocalBid, increasing expected utility by about 8% and 2%,
respectively. These results suggest that the KL value might
be predictive of the loss experienced by heuristics that as-
sume price independence.

Environment KL(fQQQ,fQQQ′ ) LocalBid JointLocal %Diff

S[5,2] 4.477 8.983 9.698 8.0
S[5,8] 1.381 4.022 4.014 -0.2

L[10,5] 0.6593 6.023 6.01 -0.2
S[10,5] 5.969 6.557 6.676 8.0

Table 1: Average of Expected Utility Estimates

5. CONCLUSION
We exhibited a novel two-tiered strategy for bidding in

SimSPSB auctions, which includes a method of deriving
joint price predictions based on GMMs and SCPPs; and a
bidding heuristic, JointLocal, that exploits those predictions.
We showed that the current state-of-the-art heuristic, Local-
Bid, is outdone by JointLocal in environments with strong
price correlations. When correlations are small, the perfor-
mance of LocalBid and JointLocal is similar. Future work
will compare JointLocal to generic local-search optimizers,
analyze worst-case bounds for bidding with marginal price
predictions, and replace the AIC criteria with a nonpara-
metric Bayesian method for learning GMMs.
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