
Benchmarking Smart Spaces
Through Autonomous Virtual Agents

(Extended Abstract)
Mario Caruso

caruso@diag.uniroma1.it
Francesco Leotta

leotta@diag.uniroma1.it

Massimo Mecella
mecella@diag.uniroma1.it

Stavros Vassos
vassos@diag.uniroma1.it

Sapienza University of Rome, DIAG, 00185 Rome (Italy)

ABSTRACT
In the recent years there has been a growing interest in the
design and implementation of smart homes. The evalua-
tion of these approaches requires massive datasets of mea-
surements from deployed sensors in real prototypes. While
datasets obtained by real smart homes are freely available,
they are not sufficient for comparing different approaches
and techniques in a variety of configurations. In this work we
propose a smart home dataset generation strategy based on
a simulated environment populated with virtual autonomous
agents, sensors and devices that allow to customize and re-
produce a smart space using series of useful parameters.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and gen-
eration

Keywords
Smart spaces; Virtual agents; Activities of daily life

1. INTRODUCTION
In this work we propose a method for generating synthetic

sensor data similar to what produced by a real smart house.
Such data are typically reported in a sensor log consisting
of records, each of which represents a sensor measurement
resulting of either a sudden event (e.g., fire detection) or a
periodic reading (e.g., temperature).

Sensor logs allow the study of activities of daily life [5] or
habits of people. A habit is a loosely specified sequence of
high-level actions aiming at a particular goal, e.g., cleaning
the house. The way a habit is performed may portray a
high degree of variability between different users or even be-
tween the same user in different time frames, which makes a
declarative approach to modeling very well suited. In partic-
ular, a habit template is defined in DECLARE [4] as a set of
tasks (depicted as boxes) and a set of temporal constraints

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Habit Interleaving

Planning

Habit 
Templates
Distraction
TemplatesInterleaved

Habits Trace

Planner Log

Sensor Log

Planning
Domain

Planning 
Problem

Post Processing

Figure 1: The sensor log generation strategy

(depicted using arrows) as in Figure 2. The semantics is
obtained through a translation to Linear Temporal Logic
(LTL) such that a habit template corresponds to the logical
conjunction of DECLARE constraints expressed in LTL.

An habit instance is a sequence of high-level actions that
is consistent with the habit template. Each of these actions
may be executed in various ways in the environment, e.g.,
getting food may require moving closer to the fridge, going
through a closed door from another room or first switching
on the light in the kitchen. In order to generate a synthetic
log of sensor events, we couple habit instances with an ac-
tion theory that represents the available low-level actions in
the smart home, e.g., moving around and using devices, and
their effects. Each of the high-level actions of a habit in-
stance then are treated as goals that are pursued through
planning on the basis of the action theory of low-level ac-
tions. In our approach we appeal to the STRIPS subset of
the Planning Domain Definition Language (PDDL) [1]).

2. DATASET GENERATION
Figure 1 depicts our dataset generation strategy that con-

sists of three stages. Our tool takes as input (i) a file with
habit templates in the DECLARE formalism, e.g., a morn-
ing routine; (ii) a file with distraction templates, e.g, talk
on the phone; and (iii) an action theory capturing the in-
teractions in the smart home as a PDDL planning domain.

In the first stage, an interleaved habit trace is produced.
Our tool randomly selects a fixed number (given as a pa-
rameter) of habit and distraction templates, and generates
an instance for the conjunction of the constraints of the se-
lected templates. An example instance for the combination
of the templates shown in Figure 2 along with the distraction
TalkOnThePhone is the following:
(1) LeaveBed (2) TurnOnRadio (3) TalkOnThePhone (4) TakeShower
(5) ReadNewspaper (6) FillCupOfMilk (7) StartOven
(8) ReadNewspaper (9-11) SittingKitchen (12) StopOven
(13) DrinkMilk (14) TurnOffRadio (15) LeaveHouse

1229



Leave
Bed

1
Sitting
Kitchen

Take
Shower

Leave
House

0…1

1

0…1

Wash
Face
0…1

0…3
I
n
i
t

E
n
d

FillCupOf
Milk

SwitchOn
Oven

SwitchOff
Oven

Drink
Milk

(a) MorningRoutine

TurnOnTV

0…2

Read
NewsPaper

TurnOffTV

0…2

TurnOn
Radio
0…1

TurnOff
Radio

(b) NewsOfTheWorld

Figure 2: DECLARE models for two habits

This is repeated until a trace of the desired size is achieved,
consisting of high-level actions that we call h-actions.

In the second stage, our tool makes use of a PDDL plan-
ning domain that specifies a virtual smart space, and pro-
duces a planner log. For each h-action in the interleaved
habit trace, a corresponding planning problem is formulated,
and a planner is employed to generate a sequence of atomic
p-actions that satisfy the goal. These actions (when a so-
lution exists) are executed online, updating the planning
environment and triggering sensor measurements.

Let us consider, as an example, a PDDL domain specify-
ing four different types of objects: room, device, state and
sensor. The device type abstracts objects that the agent
can interact with in the smart home including doors and
windows, as well as sinks, showers, light switches, and ap-
pliances. Some of them are stateful, having a state associ-
ated through the deviceState predicate. Devices that can be
used as passages between rooms are specified by a waypoint
predicate. The arrangement of the house is specified us-
ing the predicates (adjacent ?r1 - room ?r2 - room ?d - device)
and (deviceAt ?d - device ?r - room) with the obvious mean-
ing. Finally, the smart home contains a set of sensor objects,
each attached to either a device or a room, specified using
the senses and sensesRoom predicates.

The available actions model how the agent moves in the
environment (moveToRoom* and moveToDevice*) and how it in-
teracts with devices (changeDeviceState* and useDevice*).
For each of these actions, a sensorless version exists whose
name does not contain a trailer asterisk (e.g., moveToRoom).
For example, the specification of the moveToRoom* follows:

(:action moveToRoom*
:parameters (?r1 - room ?d1 - device ?r2 - room ?w - device ?s - sensor)
:precondition (and (characterAt ?r1 ?d1) (waypoint ?w)
(adjacent ?r1 ?r2 ?w) (deviceState ?w open) (sensesRoom ?s ?r2))
:effect (and (not (characterAt ?r1 ?d1)) (characterAt ?r2 null)))

Similarly, moveToDevice* allows the character to move from
one device to another belonging to the same room.

The interaction with devices can be performed ei-
ther by changing the state of a device by means of a
changeDeviceState* action, or by a useDevice* action that
represents the execution of a task over the device without
changing its state. The effect of the latter is to change the
usedDevice predicate, which is reset after each planner exe-
cution to allow reuse of devices.

Note that for each h-action, one or more goal conditions
are specified, into the habit templates, using the predicates
of the PDDL domain (e.g., h-action LeaveHouse may be re-
alized by pursuing the goal (and (deviceState entranceDoor
closed) (characterAt outside null))).

Finally, the output of our tool is the sensor log that lists

(1) LeaveBed ⇒ GOAL: usedDevice bigBedroomBed
(2) TurnOnRadio ⇒ GOAL deviceState livingRoomRadio switchedOn
• moveToDevice* bigBedroom bigBedroomBed

bigBedroomDoor bigBedroomDoorSensor
• changeDeviceState* bigBedroom bigBedroomDoor

closed open bigBedroomDoorSensor
• moveToDevice* livingRoom null livingRoomRadio radioSensor
• changeDeviceState* livingRoom livingRoomRadio

switchedOff switchedOn radioSensor
(3) TalkOnThePhone ⇒ GOAL usedDevice telephone
(4) TakeShower ⇒ GOAL usedDevice bathroomShower
• moveToDevice* corridor null bathroomDoor bathroomDoorSensor
• changeDeviceState* corridor bathroomDoor closed open bathroomDoorSensor
(5) ReadNewspaper ⇒ GOAL usedDevice livingRoomNewspaper
(6) FillCupOfMilk ⇒ GOAL devicestate cupOfMilk filled
• moveToDevice* corridor null kitchenDoor kitchenDoorSensor
• changeDeviceState* corridor kitchenDoor closed open kitchenDoorSensor
(7) StartOven ⇒ GOAL deviceState kitchenOven switchedOn
• moveToDevice* kitchen cupOfMilk kitchenOven kitchenOvenSensor
• changeDeviceState* kitchen kitchenOven switchedOff

switchedOn kitchenOvenSensor
(8) ReadNewspaper ⇒ GOAL usedDevice livingRoomNewspaper
(9) SittingKitchen ⇒ GOAL usedDevice kitchenTable
(10) SittingKitchen ⇒ GOAL usedDevice kitchenTable
(11) SittingKitchen ⇒ GOAL usedDevice kitchenTable
(12) StopOven ⇒ GOAL deviceState kitchenOven switchedOff
• moveToDevice* kitchen kitchenTable kitchenOven kitchenOvenSensor
• changeDeviceState* kitchen kitchenOven switchedOn

switchedOff kitchenOvenSensor
(13) DrinkMilk ⇒ GOAL deviceState cupOfMilk empty
(14) TurnOffRadio⇒ GOAL deviceState livingRoomRadio switchedOff
• moveToDevice* livingRoom null livingRoomRadio radioSensor
• changeDeviceState* livingRoom livingRoomRadio

switchedOn switchedOff radioSensor
(15) LeaveHouse ⇒ GOAL (and (deviceState entranceDoor closed)

(characterAt outside null))
• moveToDevice* corridor null entranceDoor entranceDoorSensor
• changeDeviceState* corridor entranceDoor closed open entranceDoorSensor
• moveToDevice* outside null entranceDoor entranceDoorSensor
• changeDeviceState* outside entranceDoor open closed entranceDoorSensor

Figure 3: A concrete example of sensor log

only the generated p-actions; Figure 3 shows the one corre-
sponding to the trace we saw earlier.

3. FUTURE AND RELATED WORK
By customizing the input to our tool one can tweak

parameters in the high-level layer of behavior expressed
through habit templates, in the low-level layer of planner
actions (which specify how habits may be realized in the
smart space), as well as in the configuration of the available
sensors. Data generated in this way can be used as a way to
experiment, test, and validate the effectiveness of different
techniques related to smart spaces.

Generic tools for generating datasets of agents moving into
pervasive environments are presented in [2] and [3]. The
former tool works only at habit level not reaching the level
of detail needed to generate a sensor log. The latter tool
shows a suitable degree of detail but lacks of an evaluation
over whatsoever algorithm for smart spaces; on the other
hand, this work introduces the concept of daily schedule
that we will incorporate in future versions of our tool.

4. REFERENCES
[1] M. Fox and D. Long. Pddl2.1: An extension to pddl for

expressing temporal planning domains. Journal of Artificial
Intelligence Research, 20, 2003.

[2] A. Helal, A. Mendez-Vazquez, and S. Hossain. Specification
and synthesis of sensory datasets in pervasive spaces. In
Symp. on Computers and Communications, 2009.

[3] D. Merico and R. Bisiani. An agent-based data-generation
tool for situation-aware systems. In Intl. Conf. on Intelligent
Environments, 2011.

[4] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst.
Declare: Full support for loosely-structured processes. In
Intl. Conf. on Ent. Distributed Object Comp., 2007.

[5] J. Ye, S. Dobson, and S. McKeever. Situation identification
techniques in pervasive computing: A review. Pervasive and
Mobile Computing, 8(1), 2012.

1230


	Introduction
	Dataset generation
	Future and Related Work
	References



