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ABSTRACT

This paper explores a multi-robot coverage approach called
StiCo (for “Stigmergic Coverage”) by deriving a probabilistic
macroscopic model. The proposed model makes it possible
to quickly and efficiently study the swarm-type behavior of
StiCo, and also allows for making predictions about its long
term behavior. The model is validated in a twofold way:
through computer simulations, and with real robots.
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1. INTRODUCTION

StiCo is specifically designed for robots equipped with
low-range sensors that operate in environments where di-
rect robot-robot communication is limited or not possible
at all [1]. The basic notion underlying this approach is to
partition the environment into equal circular regions (also
called territories) where each robot takes responsibility to
guard one of these regions. Therefore, StiCo answers the
core question “How should robots move in order to decrease
the intersections of their territories”.

In StiCo, each robot starts to move with a constant for-
ward linear velocity, and a constant angular velocity, which
results in a circular motion on the borders of the robot’s ter-
ritory. The forward linear velocity remains constant during
the whole mission. However, when the robot sensor detects
a pheromone (i.e. an evaporable robot trail), it indicates
to the robot that it is about entering another territory, and
therefore the robot changes its circling direction immedi-
ately. In this way, the robot establishes its territory in a
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new region without any intersection with the previous ter-
ritory. The effective coverage behavior of StiCo is shown
in [2] by means of various simulation scenarios for robotic
swarms of different sizes. This behavior is also validated
with experiments on real robotic swarms®.

2. MACROSCOPIC MODEL DESIGN

Consider the number of singular territories (i.e., the terri-
tories, which does not have intersection with any other one)
as the performance criterion for StiCo. In order to be able
to capture this criterion formally, the following three simpli-
fying (but not unrealistic) assumptions are made:

ASSUMPTION 1. In each iteration, just one territory leaves
its x-tuple group (xr > 1), where an n-tuple group is a cluster
of n territories which can not be separated into two disjoint
clusters.

ASSUMPTION 2. Any n-tuple group (n > 1) of territo-
ries have a configuration similar to a hexagon tessellation
in which territories are inscribed in hexagons.

ASSUMPTION 3. The free area required for a robot to es-
tablish its new singular territory after leaving its current
group 1is called landing region and is approrimated as Sp =
0.5m(2R)*.

Let’s define the state C™,n = 1,2, ..., M, for the case that
there are n singular territories in the environment. Then, we
need a mathematical expression to compute the probability
of transition from state C™' to state C™2, in one iteration
(Assumption 1). This probability is denoted by Pp1,n2.

The first step for computing probability P12, is to par-
tition a general state C" to all of its possible configurations
(the word partition, refers to a concept of number theory).
The configuration C7, | r.,,.. 1, denotes a configuration in
state C™, in which Ty,; denotes existence of one ai-tuple in
the configuration. If we define Q"(K) as the probability
that a swarm of territories be in state C™ in K-th iteration,
then the discrete state transition model can be written as
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For computing P, ,—1, which is the transition from C" to
C™ !, the chance that a singular territory becomes a mem-
ber of a double group should be computed. Let L(M,n) be

"Mttp://swarmlab.unimaas.nl/stico/



a function that computes number of possible configurations
of M territories, in which exactly n of them are singular.
Then, consider the ¢t-th configuration of C™ as

C’%1,T1,...,Tl,TQ,TQ,...,TQ,Talt,T (2)
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The probability for a transition from the ¢-th configuration

of C™ to one of the configurations of C"~' is computed by

calculating the probability that one of the non-singular ter-

ritories leave their group and intersect with one of the n
St

singular territories:
n—1
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where A, denotes the region occupied by non-singular ter-
ritories: A, = (M — n)Su, and Sy denotes the area of a
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hexagon circumscribed by a territory: Sp = %ﬁRQ (As-
sumption 2). Sy, is the area of landing region approximated
in Assumption 3.

Therefore, the overall probability function P, ,—1 is de-
fined as

(M,n)

t
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For computing the chance of transition from C™ to C™*!
which is for the case that number of singular territories in-
creases by one, consider the same ¢-th configuration provided
in (2). we can calculate p, ,, . as
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and overall probability function P, ,+41 is defined as
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For Py, n42 there is just one configuration in which a tran-
sition from C™ to C"*2 happens: A territory leaves a double
group, and instead becomes a singular territory. In this way,
two new singular territories will be added to the previous
configuration. For the ¢t-th configuration provided in (2), we
have
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and overall probability function P, n+2 is defined as
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Finally, if we ignore the probability for transition from C"
state to the states C*, in which i <n —1 or i > n + 2, then
the probability for remaining in the same state is

Pn,n =1- Pn,n+1 - -Pn,n+2 - P’n,nfl (9)

In order to check the conditions of fundamental Ergodic
Theorem for Markov chains on P matrix, these conditions
are simply explained as: (1) P should be stochastic: The
values of P must be within the range [0, 1] and each column
(or row) sums to 1. (2) P should be irreducible: From each
state of our system, it must be possible to get to any other
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state. (3) P should be aperiodic: The graph represented by
P should not be bipartite. The first condition holds based
on the fact that each probability is in the range of [0, 1], and
Eq. (9) which shows each column sums to 1. The two other
conditions can be easily checked with constructing the graph
represented by P. Therefore, P is a Markov chain which can
denote a stationary configuration IT = Zl;rgo P%.Q(0), where

Q(0) can be any initial probability distribution for initial
configuration.

3. RESULTS

Three groups of 4, 8, and 20 robots are initialized at
the center of environment. For each group, the probabil-
ity of being in the final stationary configuration, Q(.), is
first computed using the macroscopic model. Then com-
puted by using computer simulations, and finally by using
real robot experiments. The results of computing the con-
vergence probability are illustrated in Fig. 1a. The presented
results show that the macroscopic model can estimate the
behavior of StiCo for robotic swarms of various sizes. As
shown in Fig. 1b, the convergence speed of StiCo increases
linearly with growth of the swarm population.
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Figure 1: Model verification (a) Convergence prob-
ability in different iterations (MM: Macroscopic
Model, CS: Computer Simulations, RE: Real Exper-
iments). (b) Effects of swarm size on convergence
time.
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