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ABSTRACT
We present the GOSMR architecture, a modular agent archi-
tecture designed to actuate web browsers and other network
applications, and demonstrate the importance of modeling
how users think about the past and future in accurately
modeling network traffic. The architecture separates the
hierarchical generation of goals and incentives (Behaviors)
from hierarchical implementations of their pursuit (Actions).
Cognitive aspects modeled include the hyperbolic discount-
ing of future payoffs, the chance a user forgets a task, and
the ability of the user to defer tasks for later. The system
also uses a logical grammar to allow agents to communicate
Beliefs and delegate Actions. Using records of weekend Vir-
tual Private Network traffic from over three thousand users
at a medium-scale enterprise, we provide evidence for the
importance of the forgetting, payoff discounting, and pro-
crastinating aspects of the model, showing that agent payoff
discounting and lookahead predict the observed spike in Sun-
day night traffic, while forgetfulness can explain a decline in
activity on Saturday where the utility of login should be
increasing. We then use the learned parameters from this
fitting to actuate agents visiting a social networking website
hosted on a virtual machine, and we measure the impact of
increasing or decreasing the perceived ease of login on the
hourly volume of network traffic at peak times.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; I.2.11
[Artificial Intelligence]: Intelligent Agents

General Terms
Experimentation, Human Factors, Security

Keywords
Cognitive architecture; hyperbolic discounting; network traf-
fic simulation; web actuation; software testing; virtual agents

1. INTRODUCTION
Network infrastructure and computer security have been

acknowledged recently as becoming increasingly important
to our thinking about national defense [9]. As both civilian
and military critical infrastructures have become increas-
ingly connected to personal computers and the Internet,
preparing for cyberattacks has become a national priority.
To this end, at several places in the United States, test en-
vironments such as the National Cyber Range have been
created to host large-scale experiments for testing network
defense measures [9]. These environments consist of server
racks hosting a large number of virtual machines running
real operating systems and applications, connected in con-
figurations designed to mimic critical networks as closely as
possible. These ranges provide a realistic but quarantined
vulnerability testing environment for new software as well
as a training environment for new network administrators.

Since the tests use real software and operating systems,
the processes emulating the users who drive the applica-
tions are the limiting factor in achieving realism on these
testbeds. The most common testing suite, LARIAT [17], has
modeled users as simple augmented Markov models called
“Petri Nets” [14]. These emulated users could perform some
simple tasks on the machine, such as randomly switching
between typing into word processing software and sending
emails, but their control was essentially open-loop. While
this approach does create a variety of incidental network
traffic, the predictive power of such models would be sorely
limited when attempting to model a real crisis in which user
behavior patterns were significantly disrupted. Any tests
of network defenses or training exercises conducted in such
an environment would have no way of assessing the impact
on network users attempting to achieve their normal goals
on the network, nor any way of predicting natural changes
in behavior that would result from their attempts to adapt.
Robustness in a finite state machine depends on the foresight
of the programmer, and the number of situations possible on
a network makes hand-designing every response impractical.

The GOSMR architecture is an attempt to build realis-
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tic agents that can perform goal-directed behavior in these
test environments, creating a virtual community of “ghosts
in the machine” operating the virtual machines on the net-
work. GOSMR stands for“Goal-Directed Scenario Modeling
Robots.” If the user models in these environments act to pur-
sue goals, then experiments in these environments can begin
to model how user behavior changes and adapts to disruptive
events on the network. The scenarios to model include the
spread of malicious software, active cyberattacks and defen-
sive countermeasures, events and deadlines in the physical
world causing spikes in network activity, and the simple act
of deploying new software on the network. Though no phys-
ical actuation is taking place, the agents ultimately must be
“robots” in that they must perform sensing and actuation on
their applications. This is a crucial distinction from a sim-
ulated environment in which real browsers and applications
are not used: the agent must have some way of perceiving
or knowing how to interact with webpages and applications,
and an action that could be modeled in the abstract as a
simple planning operator may actually consist of a series
of clicks, mouse movements, and typed values. Dealing with
real applications keeps the work honest in the same way that
dealing with a physical robot keeps a roboticist honest, and
new issues such as tabbed browsing, hidden text, and so on
perpetually provide corner cases to address.

This paper is the first to describe the GOSMR architec-
ture, but besides being an introductory architecture paper,
the current work also evaluates a key assumption behind the
architecture: network behavior is not static, but is driven by
users attempting to remember the past and predict payoffs in
the future. With Markov Models and Hidden Markov Mod-
els providing an extremely popular, easy, and effective means
of generally modeling time series data [15], the Markov as-
sumption of memorylessness has been supremely successful
in a variety of arenas, and it was this assumption that drove
earlier approaches to actuating network traffic [17]. But
in dealing with data generated by real people carrying out
their daily tasks on the network, it becomes apparent that
they sometimes respond to events expected in the future,
and that the amount of time remaining until those events
occur can impact decisionmaking. The way in which human
beings think about payoffs in the future has had an impact
on psychology [11], economics[12], and the ACT-R cognitive
architecture [7], but to our knowledge, has never before been
used to explain activity on a computer network.

We argue that accurately modeling the ways in which hu-
man beings think about payoffs will have a large impact on
the accuracy of models predicting not only network traffic
patterns, but the likely impact and effectiveness of new se-
curity procedures. Individual users may not bear the cost
of their bad decisions, as in the case of failing to keep ma-
chines clean and allowing them to become part of a zombie
botnet [2]. Users can be overly tempted by immediate pay-
offs that bear uncertain long-term costs, such as following
promising links of uncertain trustworthinesss. Security pro-
cedures that produce too high a burden on the user, such
as preventing them from using software that is necessary for
their job, may encourage users to circumvent the procedure
altogether. It is through users’ selfish or accidental devia-
tions from expected behavior that vulnerabilities can creep
in. Modeling how users react to changing incentives then
becomes paramount.

The GOSMR architecture is designed to take parameters

learned from data to build modular models of how incentives
drive user activity, and then use these models to drive real
applications such as web browsers. Each competing incen-
tive is modeled as a Behavior that recommends a next action
to take. These Behaviors are modular and composable, so
that different software and network configurations can be
tried without retraining or gathering new experiment data.
The utilities of incentives can be trained from data in simu-
lation, but then varied to ask how user activity might change
if the incentives themselves were made more or less appeal-
ing. Action objects are hierarchical action descriptions that
make it easy for a programmer to reuse code to actuate dif-
ferent browsers or perform different tasks. While it is a long-
term goal to have action models learned by demonstration,
we have concentrated here on making it easy for develop-
ers used to scripting approaches to build intuitive and easily
testable models of actuation. We are currently focusing on
the browser as the most common effector of network activ-
ity, but the issues faced in sending and receiving messages
on a social networking site touch on many of the issues that
would be necessary to actuate Office applications and email,
as we currently plan. The architecture is also designed to
be able to send human-readable, meaningful messages on
the wire, so that human operators intercepting packets can
understand their role in the scenario; and to be able to react
gracefully to failures, by replanning around them. Neither is
the focus of the present work, but we touch on these features
because of this paper’s role as the first GOSMR paper.

The main contributions of the present work are the fol-
lowing. We present for the first time the GOSMR archi-
tecture, a cognitive architecture which bears some resem-
blance to SOAR [10] and ACT-R [1], but which has been
designed with an eye toward browser actuation and minimal
computational overhead. We demonstrate the importance
of modeling future discounting and forgetting in explaining
network activity, by performing an experiment in which we
train simulated versions of our models to produce appropri-
ate distributions of Virtual Private Network (VPN) logins
over the course of the weekend, including a spike that is best
explained as the result of users both planning ahead and dis-
counting future penalties. Finally, we demonstrate that we
can take data gathered from real network activity, infer util-
ities and parameters of the user behaviors, and use these to
drive agents that actually operate real websites, measuring
the impact of the perceived difficulty of logging in on both
real network traffic and a metric of user success in pursuing
work-related goals.

2. RELATED WORK
The goals of the system are somewhat similar to those

of the SOAR [10] and ACT-R [1] systems, two “cognitive
architectures” designed to simulate human performance in
real-world tasks. GOSMR’s action choice system bears some
similarity to these systems’ rule-based approach. GOSMR
directly borrows ACT-R’s utility discounting function for
future payoffs and its softmax choice function [7]. However,
as rule-based production systems, ACT-R and SOAR would
take significant work to deal with planning and reasoning
over uncertainty, which are present and planned features
of GOSMR, respectively. Some features of GOSMR exist
in one previous architecture but not the other. SOAR has
implemented communication, but ACT-R has not; on the
other hand, SOAR is more deterministic in its execution
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Figure 1: GOSMR is designed to capture goal-
directed, coordinated behavior on the network while
driving real websites and applications, such as this
mock social networking site. The agents can instruct
and inform each other using a recursive grammar
that maps to agent beliefs and actions.

than ACT-R, which we feared may be a problem when at-
tempting to produce diverse behavior on a network. The
idea of modular behaviors recommending actions has also
been used successfully in robotics in the DAMN architec-
ture[16].

The idea of using a planner to solve computer security
problems has been previously used in simulations of security
problems, such as solving for how a nefarious user could gain
access to an administrator’s machine [5]. However, planners
have not been used previously in large-scale network emu-
lation experiments. The LARIAT architecture [17] is the
standard for such experiments. It models users with Petri
Nets [14], Markov-like models in which tokens progress asyn-
chronously and probabilistically from one state to another,
creating side effects as they progress. The GOSMR archi-
tecture is replacing these Petri Nets in the LARIAT archi-
tecture, and otherwise relies on LARIAT for issues such as
pushing models to clients and experiment setup and tear-
down. Our partial order planner implementation closely fol-
lows [18].

The approach to sentence creation here closely resembles
the Prolog approach to classic natural language processing
[13].

A simple simulation of how user machine compromise would
impact network administrator workload was discussed in [4].
Our assumption of power-law friend connections and the
preferential attachment algorithm for producing them comes
from [3].

Psychological research suggests that human thinking tends
to be sloppy until effort is expended to make the decisions
logical; Kahneman recently wrote an excellent popular re-
view of the subject [11]. It has recently been proposed
that human fallibility and short-sightedness may play an
important role in modeling computer security problems [2].
The ability to remember planned tasks is called “prospec-
tive memory,” and its role in pilot error is discussed in [6].
ACT-R also models the way goal productions are triggered
by associative memory. Hyperbolic discounting as a psycho-
logical model is discussed in [7], while its role in explaining
irrational economic behavior is discussed in [12].

Justification
SendMessage(Bob,PlaneAt(64,20),Facebook)

Navigate(Facebook)

Inform(Bob,PlaneAt(64,20))

Knows(Bob,PlaneAt(64,20))

Stack

Figure 2: The agent uses a stack to carry out actions,
allowing high-level actions to call low-level actions
for code modularity and reusability. If an action
fails, it may have a justification attached, allowing
the partial-order planner to find a different action
sequence that achieves this goal.

3. ARCHITECTURE

3.1 Thinking Fast and Slow: the Stack and
Replanner

One goal for the architecture was to have the agents use
a minimal amount of computational power to decide what
to do next until they encountered problems, at which point
they would be allowed to use more computation. We also
wanted the agents’ reasons for acting to generally be clear
to simulation observers (and debuggers), such that someone
just starting to observe an agent in the middle of a high-level
action would still understand the reasons for its actions. Fi-
nally, we also wanted the agents to generally be very script-
able, so that programmers uncomfortable with planner -style
action descriptions would be able to nevertheless easily cre-
ate scripts at a high level. These goals drove the design
of the stack-based architecture that agents normally use to
perform actions (Figure 2).

When the agent’s stack is empty, it is considered idle, and
a Behavior module (see below) generates a new Action for
the agent to pursue. An Action is an object that theoret-
ically contains all the high-level information necessary to
carry out a task – for example, if a SendMessage action is
put on the stack, it should include the recipient and message
text, as well as the website or application that will be used
to send the message. In other words, all decisions have been
made; all the agent needs to do is carry out this task. An
Action object may put lower-level actions on the stack – for
example, an InformMany action that tells many agents some
information may put an InformAction on the stack, which
can put a SendMessageAction on the stack, which may re-
quire a NavigateAction to get to a website where a message
will be sent. Actions maintain the state information nec-
essary to remember where they left off when a lower-level
action finishes; thus, the core of the architecture is a simple
hierarchical finite state machine (HFSM).

Action objects have act() methods that are called to per-
form the action in question, but in cases where the Agent is
interacting with an external object, it may be that object’s
internal representation that informs the agent of the partic-
ulars. For example, an agent must have a SiteKnowledge
object to efficiently interact with a website. The SiteKnowl-
edge contains the map of links that leads from the website’s
homepage to a page that provides a particular functional-
ity, or “affordance” [8], as well as the classnames to search
for in the HTML to find relevant links, input fields, and
information. Without prior knowledge of a site, the agent
can hunt for relevant links and fields using a FindAffordance
subaction, but it is not nearly as efficient.

When an action succeeds or fails, it pops off the stack
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and informs the agent of this status. If an action failed, the
agent checks whether it had a “justification” –a goal Belief
that a Behavior or Action can optionally add when placing
an action on the stack that explains why it is necessary. If
it did, then the agent can attempt to achieve the same goal
some other way. For example, the Inform action has the
justification of Knows(A,B), where A is the recipient and B
is the Belief being communicated, and this could be achieved
using a different website from the original site specified in
the action. When attempting to repair an action, the agent
calls a partial order planner [18], which generates a plan
to achieve the action’s justification. The new plan is then
placed on the stack, with the justification attached to the
action lowest on the stack.

When an action was not provided with a justification,
actions are popped from the stack until a justification is
reached. If no actions in the stack have a justification, the
agent has no idea why it was doing what it was doing, it can-
not repair the plan, and its Behaviors choose another action
to pursue.

We use a dependency injection framework, Google Guice1,
to separate abstract representations of actions from the con-
crete Selenium calls that actuate the browser. A dependency
injection framework allows the specific implementation of a
class or method to be easily swapped out for another by
changing a configuration module. Because experiments on
a cyber range may involve a variety of different software
configurations, separation of the details of actuation from
the higher level description becomes important, especially
for robust unit testing. Despite being very hierarchical, ac-
tions can be tested individually by using Guice to substitute
dummy actions, SiteKnowledges, and other classes.

The combined architecture allows the agents’ behavior to
simultaneously adhere to externally imposed requirements
on what specific actions to take, such as following a script for
normal behavior or obeying a distribution gleaned from data
through machine learning, while still performing rationally
in completely novel circumstances.

3.2 Behaviors, Utilities, and Lookahead
A Behavior is an object that, when queried, produces a

suggested action, a utility payoff for taking that action, and
an expected time for the payoff. Some implemented ex-
amples include a SleepBehavior that recommends sleep but
only produces a positive utility if it is past an agent’s simu-
lated bedtime; a NewsBloggingBehavior, which recommends
going to a news website to find a news story, or posting a
blog post about it if it already has one; and a CheckMes-
sagesBehavior, which recommends checking one’s messages
on a website with utility proportional to the time since the
last check. Because these behaviors provide their sugges-
tions and utilities independently, Behaviors can be added
or subtracted from an experiment independently. Behav-
iors may also be composed hierarchically – for example, a
TimeDependentBehavior could recommend the output from
one Behavior in the morning and the output from a different
behavior after noon.

Some actions may have negative payoffs if they are not
taken – for example, an agent may get in trouble on Monday
if it has failed to check its email all weekend, as we model in
Section 4. To preserve the independence of the Behaviors,
we simply treat this as a positive utility for taking the action.

1http://code.google.com/p/google-guice/
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Figure 3: (above) Behaviors each provide a recom-
mended action and a utility, and a softmax function
decides which is chosen. (below) The behaviors are
queried twice to create a two-step plan, with future
costs and payoffs discounted, and then resampled to
create an alternate plan. Costs seem more palatable
as a second step while payoffs in the far future are
unaffected, resulting in procrastination.

When an agent needs to know what to do next, the agent
queries its Behaviors, and they recommend a two-step plan
in the following manner. First, an action is selected from the
Behaviors’ recommendations according to a softmax func-
tion, p(action) ∝ ec∗utility(action), where c is a constant that
determines how often the agent chooses suboptimally. Then,
the agent selects the next high-level action that will be per-
formed after that action, using the same softmax function,
but discounting the payoffs and costs because it is occurring
in the future (see below), given the estimated time it would
take to perform the first action. (Subactions of the first ac-
tion, such as navigating to a website in order to use it, are
used to estimate the time of the first action, and do not
count as the second action.) The agent then makes a second
two-step plan using the same process. Having sampled two
possible plans, the agent then uses a softmax function to
choose between the two plans. It will only perform the first
action of the chosen plan before resampling another two-step
plan. Because of the way discounting makes both positive
and negative payoffs in the future appear smaller, this leads
to a tendency for the agents to create plans in which the bad
payoff is performed second, and possibly perpetually defer
that action. We chose to sample twice instead of comparing
all possible two-step plans for efficiency. Figure 3 illustrates
the process of choosing the next high-level action.

3.3 Time discounting
Human beings value future rewards and fear future penal-

ties less than rewards and penalties in the present. Though
exponential discounting is a more common means of dis-
counting future rewards in artificial intelligence [18], human
psychological research suggests that a hyperbolic discount-
ing curve is more realistic for human behavior [7]. This is a
curve described by the equation:

u(t) =
u

1 + kt
(1)
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u(t) is the perceived utility of a payoff of u that is t units
of time in the future, and k is a constant (that depends on
the units of t). Hyperbolic discounting is different from ex-
ponential discounting in that an agent may have a different
optimal choice at time t in the immediate future than at
time t′ in the distant future; the reward curves for two dif-
ferent sizes of rewards cross, resulting in a “smaller-sooner,
larger-later” policy for agents deciding what to do. We be-
lieve this will be important in modeling security and net-
work scenarios, in which short-term thinking can often lead
to large losses later, but users know on some level what they
ought to do for the long term (e.g., patch installation and
anti-virus updates).

3.4 Forgetting
A user may not remember a task at the time a decision is

being made. If a task is forgettable, we assume the proba-
bility that a user does not recall it is linearly proportional
to the time between the present and either the time of the
last reminder of the task, tr, or the time remaining until the
deadline, td: p(forget) ∝ min(t − tr, td − t). The curve of
the probability of remembering is therefore a V shape with
endpoints at the last reminder and the deadline. The con-
stant of proportionality that determines the slope of the V
can be learned from data. Forgetting tasks is the only way to
completely prohibit a Behavior from putting forward a task,
since even actions of zero or negative utility otherwise have
a small chance of being performed according to the softmax
function. A forgotten task is not permanently forgotten – a
Behavior rechecks for remembering the next time the stack
is empty. Our assumption of linearity is for simplicity, and
is not theoretically motivated.

3.5 Language
We chose to use grammars instead of n-gram models for

language because the system is designed for measuring the
impact of network disruption on normal user activity, and to
do that, the messages need to convey real information that
can be propagated through the network and affect agent
actions. Moreover, we chose to make the messages human
readable and purely in-band so that intercepted packet con-
tents will be interpretable when the system is used in train-
ing exercises.

GOSMR agents use a simple recursive grammar that can
parse or produce sentences that describe beliefs and com-
mands. During production, agents use the grammar to write
a string representation of a Belief or Action object (where
Action strings are commands). During comprehension, the
same grammar is used to extract the relevant fields from the
sentence, and build the appropriate object. The grammar
can be recursive – for example, a DelegateAction contains
an Action as one of its fields, which is the action that should
be delegated to another agent. The grammar indicates the
meaningful strings to be extracted from the sentence and
their types. Lookup tables convert these strings to Objects
representing the things referred to, such as a SiteKnowledge
object in the case of a named website. Java reflection is then
invoked to construct the relevant Action or Belief with these
arguments. Figure 1 shows an example sentence.

To speed up parsing, a prefix property is enforced on the
grammar so that agents can simply look up which rule to
use in constant time.

3.6 Offline behavior
User behavior offline can sometimes affect user behavior

online; for example, if a user is asleep, the user cannot con-
nect to the network. This means that we must in some
instances model user behavior offline to accurately model
online traffic levels. Luckily, the converse is also true: net-
work behavior reflects user behavior offline, at least to the
extent that it impacts the network. Fitting behavior models
to network data, including offline behavior, is the subject of
section 4.

4. EXPERIMENT 1: UTILITY DISCOUNT-
ING AND FITTING TO NETWORK DATA

Evaluating the architecture in its entirety is beyond the
scope of this paper; it is large, complex, and designed to
be flexible to modeling needs. We instead report here an
experiment designed to test the hypothesis that discounting
future rewards has visible effects on network behavior. Our
larger hypothesis is that many security-related behaviors,
ranging from laziness in changing passwords to clicking on
suspicious linkfs, can be informed by a general model that
assumes people undervalue payoffs and penalties that occur
in the future, and this is a first step toward that larger vision.

4.1 Methodology
As a natural network behavior dataset that reflects the

way people trade off future payoffs and penalties versus
present rewards, we used logs of Virtual Private Network
logins over the weekend for an enterprise of 3121 users over
the course of 59 weekends. We assumed that this behavior
could be well-modeled by a combination of three behaviors:
a behavior that provided a payoff for going to sleep after a
particular time of night; a payoff for performing arbitrary
offline actions over the weekend of exponentially distributed
duration; and a payoff for VPNing in. In the network envi-
ronment from which we get our data, VPN is normally used
to check email, but it is rendered inconvenient by the secu-
rity procedures surrounding login; thus we assume there is
an immediate utility cost for logging in, but a greater cost at
the beginning of the workday on Monday for not handling
the messages.

We made the following simplifying assumptions in mod-
eling the VPN decision task. We assumed there was some
constant rate of incoming mail or other messages that a user
would need to deal with over the weekend, each with some
probability of having a bad payoff on 9AM the next work
day if a VPN session did not occur. From the user’s per-
spective, this leads to a constant expected negative payoff at
that time. VPNing in can reduce this payoff by an amount
proportional to the amount of time that had passed since
the last login, modeling handling all the messages that have
arrived since leaving work on Friday. If no utility discount-
ing is occurring, we would expect the login rate to increase
linearly over time during waking hours. If discounting is oc-
curring, we would expect a spike in traffic just before the
users go to bed on Sunday night.

We assume that users’ exact bedtimes and the rate of in-
coming tasks are normally distributed, while the length of
weekend activities is exponentially distributed. We also as-
sume users sleep eight hours; any parameters varying this
would presumably not be worth the complexity. This leads
to the following model parameters: payoffs for sleep and
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weekend activities; mean and variance for rate of VPN pay-
off; mean and variance for bedtime; expected duration of
weekend activities; discount factor for future payoffs; noise
factor for the softmax decision function; and the constant de-
termining the linear relationship between time-from-reminder
and probability of forgetting the task.

We adjusted for two other factors in the data set. First,
three-day weekends shift when the negative payoff would
occur for failing to handle tasks, so we shift the data on these
weekends to be relative to the 9AM deadline, ignoring the
first day of the three-day weekend and treating the other two
days as the relevant data. Second, the users were scattered
over 20 time zones, so we correct for this by looking up a
user’s latitude and longitude from their IP address of login,
and correct their login trace to be relative to their own time
zone’s beginning and end of the weekend, so that we fit all
user data according to user-local, deadline-relative time.

For each run of a set of agent parameters, we sampled 1
million runs of an agent from 8PM Friday to 7AM Monday
to get the curve of expected logins by hour for the week-
end. (We chose to avoid times around when users would
travel to and from work, which would introduce additional
parameters to model the reduced likelihood of login during
travel.) Training was not actuated and occurred offline. For
each condition, we sampled 100 random parameter sets, took
the set with the lowest root mean square error compared to
the training data as a starting point for hill climbing, and
then performed hill climbing until convergence. Because the
parameters had very different magnitudes, making gradient
descent somewhat infeasible, our hill-climbing process con-
sisted of choosing a random parameter and adjusting it up
or down by a factor of ten percent. Convergence occurred
within 200 runs in all cases.

4.2 Results
As Figure 4 shows, there is a spike in the logins on Sun-

day night, and this is the key place where the models differ
in their predictions. Only a model with both hyperbolic
discounting and modeled lookahead predicts the suddenness
of the spike, resulting in the best fit to the weekend data
(R2 = 0.92). Exponential discounting predicts less traffic
overall on Saturday (R2 = 0.81), omitting lookahead from
the model results in a failure to predict the full magnitude
of the Sunday night spike (R2 = 0.71), and omitting forget-
ting from the model results in a spike on Saturday night in-
stead of an overall decrease in traffic (R2 = 0.68). Omitting
utility discounting altogether from the model (not shown)
also results in a failure to predict the Sunday night spike
(R2 = 0.76).

Table 1 summarizes the results of Experiment 1, validat-
ing the importance of (a) modeling the way users can put
off tasks by looking to the future, (b) modeling how users
discount rewards and penalties in the future, resulting in an
increased tendency to put things off until the last minute; (c)
the importance of modeling forgetting, without which, the
model cannot predict the sag in traffic over the weekend.

5. EXPERIMENT 2: IMPACT OF EASE OF
LOGIN ON PEAK WEBSITE TRAFFIC

Having trained a model of how users value performing
work-related communication over the weekend relative to
other weekend activities, we can now answer some inter-
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Figure 4: Fitting behavior parameters and utilities
to the distribution of Virtual Private Network lo-
gins over a weekend. As utility discounting would
predict, there is a spike in network traffic on Sunday
night.

Model R2

Full model 0.92
Exponential discounting 0.81
No discounting 0.76
No next action lookahead 0.71
No forgetting 0.68

Table 1: Goodness-of-fit for login rates over the
weekend using variations of the full model.

esting questions about how actual network traffic would be
impacted by changing the ease of use of a website. The sce-
nario we wish to test is a proposed website internal to the
organization’s network that would become the new preferred
way of users communicating over the weekend. We can as-
sume that the parameters involved in the user activity are
basically the same – we have not changed the value of sleep,
nor how forgetful people are – except the cost of logging in,
which will depend on how extensive the security procedures
are surrounding the site. Making it available via the web,
requiring only a login, would make the page more conve-
nient than VPN, which requires using a security token. For
more extensive security, the website could require both VPN
and a login on the page. The convenience may impact how
people procrastinate, which will impact both the severity of
the Sunday night traffic spike and whether people complete
their tasks at all. We examine the qualitative effects of mak-
ing login easier or harder by examining the traffic patterns
for half the login cost, the same login cost, and double the
login cost of VPN.

Though Experiment 1 was performed in simulation, we
demonstrate here using the Action and Behavior system de-
scribed earlier to drive Chrome browsers visiting a real social
networking website (Figure 1), powered by the Elgg social
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network framework and hosted on a virtual machine running
Linux. By using tcpdump on the virtual machine’s ether-
net interface, we measured the hourly traffic, in packets and
bytes, that would be generated by a small user group using
the site over the course of the weekend. Thus, in addition to
studying the effects of utility change, we also demonstrate
that we can actually drive the site traffic, such that by run-
ning agents on many machines (we here just use one), we
could perform realistic stress testing.

5.1 Methodology
Using the full model trained in Experiment 1 (lookahead,

hyperbolic discounting, and forgetting), 25 GOSMR agents
were deployed on Windows 7 desktop with a 2.4 GHz Xeon
quadcore processor and 6GB of RAM. This machine also
hosted a virtual machine running Ubuntu Linux, which hosted
the website. The agents’ behaviors and actions were the
same as in the simulation except in the VPN or messaging
behavior; instead of simulating login to a VPN server by
waiting, the agents here navigated to the Elgg social net-
working website, logged in, navigated to the subpage where
their messages were kept, read all unread messages by click-
ing on them one at a time, and if a message was read, the
agents sent a message as well. Agents’ message recipients
were chosen randomly from among their contacts on the site;
the contact network was created ahead of time according to
a power law distribution, P (X = x) ∝ x−2, with a minimum
value of 3. The agents all used the Selenium framework to
actuate the sites, and used the Chrome web browser to per-
form their navigation. When an agent had run out of things
to do on the site for a given session, it did not log out, but
did close the browser – this was a simplification designed to
enhance scaling, since copies of the Chrome browser itself
were the limiting factor in consuming system resources.

The experiment was run at a 60x speedup, actuating the
64 hour full weekend from 5PM to 9AM in about an hour.
The experiment began with agents possessing SendMessage-
Actions on their stack before the weekend began with a fixed
probability of 0.75, since we assume all message sending on
the weekend would largely be triggered by messages left over
from the work week; these messages were sent before the
simulation began.

We measured the total hour-by-hour traffic in kilobytes
for three conditions: a login that was exactly as inconve-
nient as the VPN, a login half as inconvenient, and a lo-
gin twice as inconvenient. The experiment was repeated 10
times for each condition to assess whether differences were
statistically significant.

5.2 Results
Table 2 shows the average and peak hourly bandwidth

consumed by our 25 agents, as measured by tcpdump. In-
creasing the perceived cost of login significantly decreased
the mean and peak traffic (p = 0.0005 and p = 0.03 by two-
tailed t-test). While average traffic was more than halved,
peak traffic decreased by only about a quarter, suggesting
that much of the reduced traffic was simply deferred until
the last moment. Otherwise, these results show that it is
simply not worth the bother for many of our agents to log
in to check their messages once the cost becomes high, and
they simply choose to do weekend activities instead.

The work-related utility achieved by the agents, scored
whenever they reacted to messages, was also significantly

Login cost Mean Hourly kB Peak Hour kB
Normal 240.7 1237.8
Half 211.2 1289.6
Double 104.0 975.7

Table 2: Peak hourly traffic to the website result-
ing from 25 agents who have the same, doubled, or
halved utility cost of login compared to VPN, as
measured by tcpdump, averaged over 10 runs. In-
creasing the perceived difficulty of login significantly
reduces average and peak traffic.

lower (5.7 vs. 1.1, p = 0.03). In fact, the work-related util-
ity achieved was reduced by a greater amount proportionally
than the overall traffic was reduced, since users were more
likely to log in to find no messages, making the traffic use-
less. Hypothesizing a login process that was half as cumber-
some produced no significant difference in mean (p = 0.43)
or peak (p = 0.69) traffic. In the case of the doubled lo-
gin cost, we interpret the large decrease in utility (which is
more than halved) as the result of communication depend-
ing on both agents’ cooperation, so the absence of either
causes communication to fail. This is an example of an ef-
fect that can be explained in retrospect, but may have been
difficult to anticipate, highlighting a need for simulation and
experimentation.

6. DISCUSSION AND FUTURE WORK
Network traffic is driven by human users, and predictions

of network traffic under unusual circumstances will only be
as good as the models of the people driving the traffic. While
training models to replicate observed action probabilities di-
rectly may be easier, there are good reasons in modeling net-
work and security scenarios to prefer an explanatory model
that seeks to get at the underlying utilities of actions. First,
it allows us to more effectively ask “what if” questions about
policy and procedures, modeling the way in which certain
user activities will become more or less common if they are
made easier or harder. Second, it provides us with a metric
of the impact of disruptions to user activity – this metric be-
ing the lost utility compared to the normal baseline. Once
we have trained a model to learn what is important and not
important to the users, this weighted utility can now become
a measure under different conditions of how important the
disrupted activities were. When deciding to adopt one pol-
icy or another, or estimating whether a piece of software is
negatively impacting user work performance, the estimated
utility achieved by the users could be a better benchmark
than sheer amount of traffic produced or sessions achieved
because utility can vary by user and circumstance. In train-
ing scenarios for human operators, such metrics could be
regarded as a rough “score” indicating how intrusive or ef-
fective their actions were.

The work here is a first step toward a more sophisticated
model of how information travels through an enterprise net-
work, largely because we are limited by the data we have
available. We expect this to be a recurring problem in
modeling network activity meaningfully; it is easy to in-
stall packet capture and get a rough idea of the volume of
traffic passing between two machines, and rather more dif-
ficult to understand what purpose is being achieved with
that activity, how important it is to the user, and how the
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user might have reacted if the connection were severed. De-
spite the difficulty of answering these questions, that is our
mandate; and thus, we are forced to find a way to make rule-
based, expert-system-like, high-level descriptions of user ac-
tivity meet in the middle with machine learning methods
that can match the total volume over time that is observed.
We would ideally like as much of the behavior to be driven
from data as possible, but sometimes, the data is simply
unavailable, and often, the probabilistic methods that are
currently popular in machine learning do not produce be-
havior that makes sense. Our philosophy is to start with
behavior that is meaningful; there will always be enough
parameters to fit the data, and when the data cannot be
fit, that is when something useful can be learned about the
model.

The problem of realistic, scalable Web actuation is an ex-
cellent opportunity to integrate all kinds of methods that are
rarely combined into whole agents. Dealing with real web-
sites to actuate forces the agent designer to confront prob-
lems of attention, hierarchical organization, perception, and
robustness that might be glossed over in a pure simulation.
The problems we face of sensing, actuation, and robustness
are therefore somewhat similar to the problems facing the
roboticist; but the Web is a much more hospitable home
for an artificial agent, since it operates at a more abstract
level and in formats already conducive to machine process-
ing. We therefore hope to make progress on the“whole agent
problem” at a faster rate than the roboticist, who is usu-
ally mired in problems of vision and mechanics. Our fu-
ture plans for the system include reinforcement learning, to
learn the Action models for interacting with websites and
applications automatically; probabilistic reasoning, so that
the agents can mistrust the messages they receive and false
claims coming from network intruders; and user topic mod-
eling to model distributions of search engine queries and
external Web traffic. We have also begun work on allow-
ing the agents to interact with a simulation of the physical
world so that we can model the ways in which information
about events transpiring in one location can quickly spread
to other locations.

Given the way in which user activity spikes before a dead-
line, accurately modeling user behavior is essential to un-
derstanding the stresses that will face the network in a real
crisis. We have shown that discounting of future payoffs
and the users’ ability to defer tasks combine to form a last-
minute spike, and changing the payoffs facing a user can
reduce or increase the intensity of that spike. We hope in
future work to also show that the manipulation of payoffs
can have an impact on security-related scenarios as well.
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