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ABSTRACT
Both weighted and unweighted Borda manipulation prob-
lems have been proved NP-hard. However, there is no
exact combinatorial algorithm known for these problems.
In this paper, we initiate the study of exact combinatorial
algorithms for both weighted and unweighted Borda ma-
nipulation problems. More precisely, we propose O∗((m ·
2m)t+1) - time andO∗(t2m) - time1 combinatorial algorithms
for weighted and unweighted Borda manipulation problems,
respectively, where t is the number of manipulators and m
is the number of candidates. Thus, for t = 2 we solve one
of the open problems posted by Betzler et al. [IJCAI 2011].
As a byproduct of our results, we show that the unweighted
Borda manipulation problem admits an algorithm of running

time O∗(29m2 logm), based on an integer linear programming
technique. Finally, we study the unweighted Borda manip-
ulation problem under single-peaked elections and present
polynomial-time algorithms for the problem in the case of
two manipulators, in contrast to the NP-hardness of this
case in general settings.
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1. PRELIMINARIES
This paper studies combinatorial algorithms for Borda

manipulation problems.
In Weighted Borda Manipulation (WBM for short),

we are given a set C ∪ {p} of candidates, a multiset ΠV =
{πv1 , πv2 , ..., πvn} of votes casted by a corresponding set V =
{v1, v2, . . . , vn} of voters (πvi is casted by vi), a set V ′ of t
manipulators and weight functions f1 : V → N and f2 :
V ′ → N, and asked whether the manipulators can cast their
votes ΠV′ in such a way that p uniquely wins the weighted
election (C ∪ {p},ΠV ∪ Π′V′ ,V ∪ V ′, f : V ∪ V ′ → N), where
f(v) = f1(v) if v ∈ V and f(v) = f2(v) otherwise. Here, each
vote πv is defined as a bijection πv : C ∪ {p} → [|C ∪ {p}|]
and contributes f(v) · (pos(c)− 1) score to the candidate c,
where the position of c in v is defined as pos(c) = πv(c).
The unique winner is the candidate who has the most total
score.

Unweighted Borda Manipualtion (UBM for short) is
a special case of WBM where all voters and manipulators
have the same unit weight, that is, f1 : V → {1} and f2 :
V ′ → {1}.

For a candidate c and a voter v, we use SCv(c) to denote
the score of c which is contributed by v, that is, SCv(c) =
f(v) · (πv(c) − 1). Let SCV(c) denote the total score of c
contributed by voters in V, that is, SCV(c) =

∑
v∈V SCv(c).

2. ALGORITHM FOR WEIGHTED CASE
Let ((C ∪ {p},ΠV ,V, f1),V ′, f2, t) be the given instance.

It is clear that any true-instance has a solution where every
manipulator places p in the highest position, that is, a so-
lution ΠV′ with SCV∪V′(p) = SCV(p) +

∑
v′∈V′ f(v′) · |C|.

Therefore, to make p the winner, SCV′(c) ≤ g(c) should be
satisfied for all c ∈ C, where g(c) = SCV(p) +

∑
v′∈V′ f(v′) ·

|C| − SCV(c)− 1. The value of g(c) is called the capacity of
c. Meanwhile, if in the given instance there is a candidate
c with g(c) < 0, then the given instance must be a false-
instance. Therefore, we assume that there is no candidate c
with g(c) < 0. We reformulate WBM as follows:

Reformulation of WBM
Input: A set C of candidates associated with a capacity func-
tion g : C → N, and a multiset F = {f1, f2, ..., ft} of non-
negative integers.
Question: Is there a multiset Π = {π1, π2, ..., πt} of bijec-
tions mapping from C to [|C|] such that

∑t
i=1 fi · (πi(c)− 1) ≤ g(c)

holds for all c ∈ C?
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Our algorithm is based on a dynamic programming method
which is associated with a boolean dynamic table defined as
DT (C,Z1, Z2, ..., Zt), where C ⊆ C is a subset of candi-
dates, Zi ⊆ [|C|] and |C| = |Zi| for all i ∈ [t]. Here, each Zi
encodes the positions that are occupied by the candidates
of C in the vote casted by the i-th manipulator. The en-
try DT (C,Z1, Z2, ..., Zt) = 1 means that there is a multiset
Π = {π1, π2, ..., πt} of bijections mapping from C to [|C|] such
that for each i ∈ [t],

⋃
c∈C{πi(c)} = Zi and, for every can-

didate c ∈ C, c is “safe” under Π. Here, we say a candidate
c is safe under Π, if

∑t
i=1 fi · (πi(c)− 1) ≤ g(c). Intuitively,

DT (C,Z1, Z2, ..., Zt) = 1 means that we can place all candi-
dates of C in the positions encoded by Zi for all i ∈ [t] with-
out exceeding the capacity of any c ∈ C. Clearly, a given
instance of WBM is a true-instance if and only ifDT (C, Z1 =
[|C|], Z2 = [|C|], ..., Zt = [|C|]) = 1. We update the entries
DT (C,Z1, Z2, ..., Zt) with |C| = |Z1| = |Z2| = ... = |Zt| = l
as follows: if ∃c ∈ C and ∃zi ∈ Zi for all i ∈ [t] such
that DT (C \ {c}, Z1 \ {z1}, Z2 \ {z2}, ..., Zt \ {zt}) = 1 and
DT ({c}, {z1}, {z2}, ..., {zt}) = 1, thenDT (C,Z1, Z2, ..., Zt) =
1, otherwise, DT (C,Z1, Z2, ..., Zt) = 0.

Theorem 1. WBM is solvable in O∗((|C| ·2|C|)t+1) time.

In [1], Betzler et al. posed as an open question whether
UBM in the case of two manipulators can be solved in less
than O∗(|C|!) time. By Theorem 1, we can answer this ques-
tion affirmatively.

Corollary 2. WBM (UBM is a special case of WBM)

in the case of two manipulators can be solved in O∗(8|C|)
time.

3. ALGORITHM FOR UNWEIGHTED CASE
Recall that UBM is a special case of WBM where all vot-

ers have the same unit weight. However, compared to the
weighted version, when we compute SCV′(c) for a candidate
c, it is irrelevant which manipulators placed c in the j-th po-
sitions. The decisive factor is the number of manipulators
placing c in the j-th positions. This leads to the following
approach where we firstly reduce UBM to a matrix problem
and then solve this matrix problem by a dynamic program-
ming technique, resulting in a better running time than in
Corollary 2.

Filling Magic Matrix (FMM)
Input: A multiset g = {g1 , g2 , ..., gm} of non-negative inte-
gers and an integer t > 0.
Question: Is there an m ×m matrix M with non-negative
integers such that ∀i ∈ [m],

∑m
j=1 (j − 1) ·M [i][j] ≤ gi and∑m

j=1M [i][j] = t, and ∀j ∈ [m],
∑m
i=1M [i][j] = t?

The algorithm for FMM is based on a dynamic program-
ming method associated with a boolean dynamic tableDT (l, T ),
where l ∈ [m] and T = {Tj ∈ N | j ∈ [m], Tj ≤ t} is a
multiset. The entry DT (l, T ) = 1 means that there is an
m × m matrix M such that: (1)

∑m
j=1M [i][j] = t for al-

l i ∈ [l]; (2)
∑l
i=1M [i][j] = Tj for all j ∈ [m]; and (3)∑m

j=1(j − 1) · M [i][j] ≤ gi for all i ∈ [l]. It is clear that
a given instance of FMM is a true-instance if and only if
DT (m,T[m]) = 1, where T[m] is the multiset containing m
copies of t. We update DT (l, T ) for 2 ≤ l ≤ t and all

possible multiset T = {Tj ∈ N | j ∈ [m], Tj ≤ t} as fol-
lows: if there is a multiset T ′ = {T ′j ∈ N | j ∈ [m], T ′j ≤
Tj} such that DT (l − 1, T ′) = 1,

∑m
j=1 (Tj − T ′j) = t and∑m

j=1 (j − 1) · (Tj − T ′j) ≤ gl , then set DT (l, T ) = 1; other-

wise, set DT (l, T ) = 0.

Lemma 3. FMM is solvable in O∗(t2m) time.

Lemma 4. UBM can be reduced to FMM in polynomial
time.

Theorem 5. UBM can be solved in O∗(t2|C|) time.

Next we show that FMM can be solved by an integer linear
programming (ILP) based algorithm. The ILP contains m2

variables xij for i, j ∈ [m] and, subject to the following

four kinds of restrictions: (1)
m∑
i=1

xij = t for all j ∈ [m]; (2)

m∑
j=1

xij = t for all i ∈ [m]; (3)
m∑
j=1

(j − 1) · xij ≤ gi for all i ∈

[m]; (4) xij ≥ 0 for all i, j ∈ [m]; where t ∈ N and g =
{g1 , g2 , . . . , gm} with gi ∈ N for all i ∈ [m] are input.

Lemma 6. [4] An ILP problem with ζ variables can be
solved in O∗(ζ4.5ζ) time.

Due to Lemmas 4 and 6, we have the following theorem.

Theorem 7. UBM admits an algorithm with running time

O∗(29|C|2 log |C|).

4. SINGLE-PEAKED ELECTIONS
It is known that Unweighted Borda Manipulation is

polynomial-time solvable with one manipulator [3] but be-
comesNP-hard with two manipulators [1, 2]. Here, we show
that this problem with two manipulators can be solved in
polynomial time in single-peaked elections.

Let L be a linear order over the candidates C. We say
that a vote πv : C → [|C|] is coincident with L if and only if
for any three distinct candidates a, b, c ∈ C with a L b L c or
c L b L a, πv(c) > πv(b) implies πv(b) > πv(a). An election
is a single-peaked election if there exists a linear order L
over the candidates such that all votes of the election are
coincident with L.

Theorem 8. Unweighted Borda Manipulation with
two manipulators under single-peaked elections is polynomial-
time solvable.
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