
Exact Algorithms for Weighted and Unweighted Borda
Manipulation Problems

(Extended Abstract)

Yongjie Yang
∗

Universität des Saarlandes
Saarbrücken, Germany

yyongjie@mmci.uni-saarland.de

Jiong Guo
†

Universität des Saarlandes
Saarbrücken, Germany

jguo@mmci.uni-saarland.de

ABSTRACT
Both weighted and unweighted Borda manipulation prob-
lems have been proved NP-hard. However, there is no
exact combinatorial algorithm known for these problems.
In this paper, we initiate the study of exact combinatorial
algorithms for both weighted and unweighted Borda ma-
nipulation problems. More precisely, we propose O∗((m ·
2m)t+1) - time andO∗(t2m) - time1 combinatorial algorithms
for weighted and unweighted Borda manipulation problems,
respectively, where t is the number of manipulators and m
is the number of candidates. Thus, for t = 2 we solve one
of the open problems posted by Betzler et al. [IJCAI 2011].
As a byproduct of our results, we show that the unweighted
Borda manipulation problem admits an algorithm of running

time O∗(29m2 logm), based on an integer linear programming
technique. Finally, we study the unweighted Borda manip-
ulation problem under single-peaked elections and present
polynomial-time algorithms for the problem in the case of
two manipulators, in contrast to the NP-hardness of this
case in general settings.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.2.1 [Combinatorics]: Combi-
natorial algorithms; J.4 [Computer Applications]: Social
Choice and Behavioral Sciences

General Terms
Algorithms

Keywords
voting systems, Borda manipulation, exact combinatorial al-
gorithm, single-peaked election

∗Supported by the DFG Cluster of Excellence (MMCI) and
the China Scholarship Council (CSC).
†Supported by the DFG Cluster of Excellence (MMCI).
1O∗() is the O() notation with suppressed factors polyno-
mial in the size of the input.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. PRELIMINARIES
This paper studies combinatorial algorithms for Borda

manipulation problems.
In Weighted Borda Manipulation (WBM for short),

we are given a set C ∪ {p} of candidates, a multiset ΠV =
{πv1 , πv2 , ..., πvn} of votes casted by a corresponding set V =
{v1, v2, . . . , vn} of voters (πvi is casted by vi), a set V ′ of t
manipulators and weight functions f1 : V → N and f2 :
V ′ → N, and asked whether the manipulators can cast their
votes ΠV′ in such a way that p uniquely wins the weighted
election (C ∪ {p},ΠV ∪ Π′V′ ,V ∪ V ′, f : V ∪ V ′ → N), where
f(v) = f1(v) if v ∈ V and f(v) = f2(v) otherwise. Here, each
vote πv is defined as a bijection πv : C ∪ {p} → [|C ∪ {p}|]
and contributes f(v) · (pos(c)− 1) score to the candidate c,
where the position of c in v is defined as pos(c) = πv(c).
The unique winner is the candidate who has the most total
score.

Unweighted Borda Manipualtion (UBM for short) is
a special case of WBM where all voters and manipulators
have the same unit weight, that is, f1 : V → {1} and f2 :
V ′ → {1}.

For a candidate c and a voter v, we use SCv(c) to denote
the score of c which is contributed by v, that is, SCv(c) =
f(v) · (πv(c) − 1). Let SCV(c) denote the total score of c
contributed by voters in V, that is, SCV(c) =

∑
v∈V SCv(c).

2. ALGORITHM FOR WEIGHTED CASE
Let ((C ∪ {p},ΠV ,V, f1),V ′, f2, t) be the given instance.

It is clear that any true-instance has a solution where every
manipulator places p in the highest position, that is, a so-
lution ΠV′ with SCV∪V′(p) = SCV(p) +

∑
v′∈V′ f(v′) · |C|.

Therefore, to make p the winner, SCV′(c) ≤ g(c) should be
satisfied for all c ∈ C, where g(c) = SCV(p) +

∑
v′∈V′ f(v′) ·

|C| − SCV(c)− 1. The value of g(c) is called the capacity of
c. Meanwhile, if in the given instance there is a candidate
c with g(c) < 0, then the given instance must be a false-
instance. Therefore, we assume that there is no candidate c
with g(c) < 0. We reformulate WBM as follows:

Reformulation of WBM
Input: A set C of candidates associated with a capacity func-
tion g : C → N, and a multiset F = {f1, f2, ..., ft} of non-
negative integers.
Question: Is there a multiset Π = {π1, π2, ..., πt} of bijec-
tions mapping from C to [|C|] such that

∑t
i=1 fi · (πi(c)− 1) ≤ g(c)

holds for all c ∈ C?

1327

Our algorithm is based on a dynamic programming method
which is associated with a boolean dynamic table defined as
DT (C,Z1, Z2, ..., Zt), where C ⊆ C is a subset of candi-
dates, Zi ⊆ [|C|] and |C| = |Zi| for all i ∈ [t]. Here, each Zi
encodes the positions that are occupied by the candidates
of C in the vote casted by the i-th manipulator. The en-
try DT (C,Z1, Z2, ..., Zt) = 1 means that there is a multiset
Π = {π1, π2, ..., πt} of bijections mapping from C to [|C|] such
that for each i ∈ [t],

⋃
c∈C{πi(c)} = Zi and, for every can-

didate c ∈ C, c is “safe” under Π. Here, we say a candidate
c is safe under Π, if

∑t
i=1 fi · (πi(c)− 1) ≤ g(c). Intuitively,

DT (C,Z1, Z2, ..., Zt) = 1 means that we can place all candi-
dates of C in the positions encoded by Zi for all i ∈ [t] with-
out exceeding the capacity of any c ∈ C. Clearly, a given
instance of WBM is a true-instance if and only ifDT (C, Z1 =
[|C|], Z2 = [|C|], ..., Zt = [|C|]) = 1. We update the entries
DT (C,Z1, Z2, ..., Zt) with |C| = |Z1| = |Z2| = ... = |Zt| = l
as follows: if ∃c ∈ C and ∃zi ∈ Zi for all i ∈ [t] such
that DT (C \ {c}, Z1 \ {z1}, Z2 \ {z2}, ..., Zt \ {zt}) = 1 and
DT ({c}, {z1}, {z2}, ..., {zt}) = 1, thenDT (C,Z1, Z2, ..., Zt) =
1, otherwise, DT (C,Z1, Z2, ..., Zt) = 0.

Theorem 1. WBM is solvable in O∗((|C| ·2|C|)t+1) time.

In [1], Betzler et al. posed as an open question whether
UBM in the case of two manipulators can be solved in less
than O∗(|C|!) time. By Theorem 1, we can answer this ques-
tion affirmatively.

Corollary 2. WBM (UBM is a special case of WBM)

in the case of two manipulators can be solved in O∗(8|C|)
time.

3. ALGORITHM FOR UNWEIGHTED CASE
Recall that UBM is a special case of WBM where all vot-

ers have the same unit weight. However, compared to the
weighted version, when we compute SCV′(c) for a candidate
c, it is irrelevant which manipulators placed c in the j-th po-
sitions. The decisive factor is the number of manipulators
placing c in the j-th positions. This leads to the following
approach where we firstly reduce UBM to a matrix problem
and then solve this matrix problem by a dynamic program-
ming technique, resulting in a better running time than in
Corollary 2.

Filling Magic Matrix (FMM)
Input: A multiset g = {g1 , g2 , ..., gm} of non-negative inte-
gers and an integer t > 0.
Question: Is there an m ×m matrix M with non-negative
integers such that ∀i ∈ [m],

∑m
j=1 (j − 1) ·M [i][j] ≤ gi and∑m

j=1M [i][j] = t, and ∀j ∈ [m],
∑m
i=1M [i][j] = t?

The algorithm for FMM is based on a dynamic program-
ming method associated with a boolean dynamic tableDT (l, T),
where l ∈ [m] and T = {Tj ∈ N | j ∈ [m], Tj ≤ t} is a
multiset. The entry DT (l, T) = 1 means that there is an
m × m matrix M such that: (1)

∑m
j=1M [i][j] = t for al-

l i ∈ [l]; (2)
∑l
i=1M [i][j] = Tj for all j ∈ [m]; and (3)∑m

j=1(j − 1) · M [i][j] ≤ gi for all i ∈ [l]. It is clear that
a given instance of FMM is a true-instance if and only if
DT (m,T[m]) = 1, where T[m] is the multiset containing m
copies of t. We update DT (l, T) for 2 ≤ l ≤ t and all

possible multiset T = {Tj ∈ N | j ∈ [m], Tj ≤ t} as fol-
lows: if there is a multiset T ′ = {T ′j ∈ N | j ∈ [m], T ′j ≤
Tj} such that DT (l − 1, T ′) = 1,

∑m
j=1 (Tj − T ′j) = t and∑m

j=1 (j − 1) · (Tj − T ′j) ≤ gl , then set DT (l, T) = 1; other-

wise, set DT (l, T) = 0.

Lemma 3. FMM is solvable in O∗(t2m) time.

Lemma 4. UBM can be reduced to FMM in polynomial
time.

Theorem 5. UBM can be solved in O∗(t2|C|) time.

Next we show that FMM can be solved by an integer linear
programming (ILP) based algorithm. The ILP contains m2

variables xij for i, j ∈ [m] and, subject to the following

four kinds of restrictions: (1)
m∑
i=1

xij = t for all j ∈ [m]; (2)

m∑
j=1

xij = t for all i ∈ [m]; (3)
m∑
j=1

(j − 1) · xij ≤ gi for all i ∈

[m]; (4) xij ≥ 0 for all i, j ∈ [m]; where t ∈ N and g =
{g1 , g2 , . . . , gm} with gi ∈ N for all i ∈ [m] are input.

Lemma 6. [4] An ILP problem with ζ variables can be
solved in O∗(ζ4.5ζ) time.

Due to Lemmas 4 and 6, we have the following theorem.

Theorem 7. UBM admits an algorithm with running time

O∗(29|C|2 log |C|).

4. SINGLE-PEAKED ELECTIONS
It is known that Unweighted Borda Manipulation is

polynomial-time solvable with one manipulator [3] but be-
comesNP-hard with two manipulators [1, 2]. Here, we show
that this problem with two manipulators can be solved in
polynomial time in single-peaked elections.

Let L be a linear order over the candidates C. We say
that a vote πv : C → [|C|] is coincident with L if and only if
for any three distinct candidates a, b, c ∈ C with a L b L c or
c L b L a, πv(c) > πv(b) implies πv(b) > πv(a). An election
is a single-peaked election if there exists a linear order L
over the candidates such that all votes of the election are
coincident with L.

Theorem 8. Unweighted Borda Manipulation with
two manipulators under single-peaked elections is polynomial-
time solvable.

5. REFERENCES
[1] N. Betzler, R. Niedermeier, and G. J. Woeginger.

Unweighted coalitional manipulation under the Borda
rule is NP-hard. In IJCAI, pages 55–60, 2011.

[2] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh.
Complexity of and algorithms for Borda manipulation.
In AAAI, pages 657–662, 2011.

[3] J. J. Bartholdi III, C.A. Tovey, and M. Trick. The
computational difficulty of manipulating an election.
Social Choice and Welfare, 6(3):227–241, 1989.

[4] R. Kannan. Minkowski’s convex body theory and
integer programming. Mathematics of Operations
Research, 12:415–440, 1987.

1328

