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ABSTRACT
Unmanned aerial vehicles (UAVs) have recently become widely
available to the research community. A common vision is that such
(semi-)autonomous airborne agents can be beneficial in numerous
scenarios, e.g. urban search and rescue. However, when deploy-
ing computationally restricted UAVs in these real life scenarios,
various challenges from multiple research domains arise. These
include situational awareness, controlling, planning, and learning.

The focus of this demonstration is on situational awareness of
agents capable of 6D motion, in particular UAVs. We propose the
integration of 2D laser range finder, altitude, and attitude sensor
data to compose 3D maps of the environment. Experiments show
significant improvement in the localization and representation ac-
curacy over current 2D map methods.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation
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INTRODUCTION AND MOTIVATION
Multi-rotor Unmanned Aerial Vehicles (UAVs) are popular yet

complex systems. UAVs generate a lot of interest due to their broad
scope of applications. The autonomous exploration of large, inac-
cessible or hazardous environments are prominent examples. A
prerequisite to any such autonomous behavior is the ability of the
agent to perceive environmental elements and to localize itself.

Situational awareness of UAVs is commonly tackled by either
time of flight (e.g. laser range finder) or visual (e.g. depth cameras)
simultaneous localization and mapping (SLAM).While visual sen-
sors may provide 3D data, they are also lighting dependent, have a
lower range and less precision than time of flight sensors. Visual
SLAM also tends to be more computationally expensive than time
of flight SLAM, which can be crucial on airborne robots which typ-
ically have limited payload and processing capabilities. Therefore,
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we opt to use time of flight sensors. However, 3D time of flight
sensors are heavy, expensive and have a high power consumption.
Thus, only 2D time of flight sensors have been used on UAVs for
SLAM so far. The established practice is to down-project the laser
range data to 2D maps. This assumes that objects look the same
regardless of the observation height. On the one hand, if this as-
sumption holds, 2D map SLAM, e.g. particle filter based SLAM,
is sufficient.On the other hand, if the assumption does not hold,
using 2D maps in the UAV domain becomes impracticable. There-
fore, we develop a 2D laser range finder based SLAM algorithm
that operates on a 3D representation of the environment.

Next, we summarize our approach, called OctoSLAM, which
advances the state-of-the-art low resource requiring SLAM frame-
works for agents exhibiting 6D motion. We use the Robot Operat-
ing System to implement OctoSLAM.

PROPOSED SLAM APPROACH
For 3D map SLAM we combine and extend both Octomap [2],

an octree representation of the environment, and Hector SLAM [1],
an algorithm for fast online learning of occupancy grid maps.

The 6D pose of the agent is determined by both localization
and direct sensor input. The latter is used for roll, pitch and al-
titude. The remaining three dimensions, i.e. translation in x, y
direction and rotation around the yaw axis (γ), are tracked through
localization. At time t the position is given by Tt = (xt, yt, γt).
The algorithm iteratively computes the most recent pose change
∆T = Tt−Tt−1 = (∆x,∆y,∆γ)′. The laser range finder returns
a vector of scan endpoints D = (d0, . . . , dN ) in polar coordinates.
Via roll, pitch, attitude, and pose estimate, scan endpoints di are
transformed to the Cartesian coordinates of the map representation,
i.e. to 3D. We denote this transform by Tt⊗di. Hector SLAM uses
map gradients∇M to align the scanD with the current map repre-
sentation. OctoSLAM computes interpolated map gradients based
on occupancy probabilities of the target and surrounding nodes of
the Octomap representation. The pose change ∆T is computed by
a Gauss-Newton equation. For ease of notation we write T instead
of Tt in the following.

∆T = H−1
N∑
i=1

[
∇M(T ⊗ di)

∂(T ⊗ di)
∂T

]′
[1−M(T ⊗ di)] .

The Hessian H is computed as follows:

H =

[
∇M(T ⊗ di)

∂(T ⊗ di)
∂T

]′ [
∇M(T ⊗ di)

∂(T ⊗ di)
∂T

]
,

where∇M(di ⊗ T ) = (mvi, dyi, dxi)
′ are the bilinearly interpo-

lated map value gradients. The partial derivative ∂(T⊗di)
∂T

is com-
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Figure 1: In the first column the corridor, and in the second
column the tilted wall world is shown. The first row shows the
according world in the simulator, and the second row shows
examples for OctoSLAM generated maps.

puted as:

∂(T ⊗ di)
∂T

=

(
1 0 − sin(γ)dxi − cos(γ)dyi
0 1 cos(γ)dxi −sin(γ)dyi

)
.

Furthermore, if a scan endpoint is located in a so far unknown
part of the map, the voxel size used for determining the interpo-
lated map value and gradients is increased. Since parent nodes
in octrees aggregate the information stored in the according child
nodes, this operation neither increases memory nor computational
requirements. Using this heuristic the probability of getting stuck
in a local minima due to a insufficient scan to map fit is reduced.

RESULTS
We test OctoSLAM in both simulation and real environments.

The sensor readings of every trial are recorded and used as input
for the different SLAM approaches.

Figure 1 shows two of the simulated worlds used for evaluating
the SLAM performance. Additionally, examples for corresponding
maps generated by OctoSLAM can be seen. Figure 2 presents the
results for the simulated experiments. As error measure we use the
euclidean distance between true and localized pose. Each graph
shows the average localization root mean squared error (RMSE)
(middle line), the 95% confidence interval (inner box), the stan-
dard deviation (outer box) and the trial RMSEs (points). Threshold
mapping refers to updating the map only if the pose has changed by
a certain amount and is commonly employed when using 2D maps.
Constant mapping in contrast refers to updating the map with every
obtained sensor reading, which is necessary to build a 3D map from
2D laser range finder data. Using a 3D map for SLAM yields sig-
nificantly smaller errors in both simulated worlds. Figure 3 shows
the real robot test environment and the resulting maps for 2D map
and 3D map SLAM. To allow for easier comparison, the internally
used 2D map is not shown, but instead a separate 3D map that is
additionally recorded. The 3D map generated by 2D map SLAM is
severely less precise than that generated by 3D map SLAM.

DEMONSTRATION
We demonstrate OctoSLAM in simulation and in a real-world

setting. In simulation, OctoSLAM is performed on a manually
controlled quadrotor exploring various unknown environments. In
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Figure 2: On the left the SLAM results for the corridor world,
and on the right for the tilted wall world are shown. (A) refers
to threshold mapping, (B) to constant mapping.

Figure 3: This figure shows the real robot test environment
from two different angles in the first row. In the second row
the resulting maps are shown - for 2D map SLAM on the left,
and for 3D map SLAM on the right.

the real-world setting, our approach is demonstrated on a UAV
equipped with a Hokuyo URG laser range finder, Pololu IMU and
Parallax ultrasonic sensor. If the venue is not suited for UAV flight,
we demonstrate our approach on a handheld device instead. A
demo video is available at: http://www.goo.gl/aB3dy

CONCLUSIONS
We have summarized a new situational awareness approach for

autonomous UAV operation that can be used on any sensor wise
appropriate agent exhibiting 6D motion. The presented experimen-
tal results clearly demonstrate the effectiveness and applicability of
OctoSLAM in various unstructured environments.
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