
Industrial Process Optimisation with JIAC

(Demonstration)
Marco Lützenberger Tobias Küster Thomas Konnerth Alexander Thiele Nils Masuch
Axel Heßler Jan Keiser Michael Burkhardt Silvan Kaiser Jakob Tonn Sahin Albayrak

DAI-Labor, Technische Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
firstname.lastname@dai-labor.de

ABSTRACT
In this demonstration we present the EnEffCo project as a
showcase for the JIAC V agent framework. EnEffCo ad-
dresses the problem of optimising energy consumption in
industrial production processes. As the optimisation of the
processes is handled by JIAC V agents, the project profits
from a number of industry-grade software features of the
JIAC V framework, such as stability, reliable communica-
tion, standard compatibility and management interfaces.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Distributed Artificial
Intelligence—Multiagent systems

Keywords
agent framework; mas development; industrial adoption

1. INTRODUCTION
With the increased saturation of devices that are net-

worked and computing enabled, modern software systems
become more and more complex and distributed. The do-
mains and scenarios that are to be controlled and managed
by software systems require new and extended functionali-
ties that need to be implemented. In order to enable soft-
ware developers to implement and maintain such systems,
elaborate frameworks are necessary that feature encapsula-
tion, robustness, and reuse. Furthermore these frameworks
need to fulfil industrial quality and performance standards.

One approach to address these challenges is the concept of
Agent Oriented Software Engineering, or AOSE that dates
back as far as 1993, when Yoav Shoham published his widely
cited and influential article [8] and established an entirely
new branch of research. Today, 20 years later, there are
many agent frameworks that support the design, the imple-
mentation and the runtime monitoring of multiagent sys-
tems. Popular examples for agent frameworks are Jason [2],
3APL [4], Jadex [7], JACK [3] or JADE [1], which is fre-
quently used for proof-of-concept implementations among
the agent-research community. Nevertheless, despite the

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

many years of research in agent oriented technologies, it is
far from being audacious to say that the agent community
was as yet not able to convince industrial players to adopt
the multiagent system paradigm. JIAC V1, or JIAC, pro-
vides many features which are usually required for industrial
projects and in this demonstration we present these exact
capabilities to the agent community.

2. THE JIAC V AGENT FRAMEWORK
The JIAC V framework [6] focuses on industry-grade fea-

tures such as robustness, reliable communication, stability,
performance and reuse. The main motivation in the devel-
opment of the JIAC V framework was to create an agent
framework that fulfils the requirements of modern software
projects and thus bridges the gap between agent technology
and the software industry.

JIAC V was implemented on top of a number of stan-
dard Java technologies, such as the Spring framework, JMX
management interfaces, and JMS messaging. This provides
increased robustness and standard compatibility and simpli-
fies the usage of the framework for regular Java developers.

An important aspect of the JIAC V framework is the sup-
port for monitoring and the management of agents and ap-
plications. The central tool for this is the ASGARD runtime
monitor [9]. This monitor allows a developer or administra-
tor to observe and control arbitrary platforms, agents, and
applications at runtime. Agents can be stopped, modified
or deployed dynamically and applications can be controlled
and adapted by accessing the standardised Java JMX in-
terface. The ASGARD monitor will be instrumental in the
demonstration of the JIAC V framework and the scenario
that will be described in the next section.

3. THE ENEFFCO PROJECT
We present the EnEffCo2 optimisation software [5] as an

exemplary JIAC V application that was successfully used
in an industrial context, namely, the automotive industry.
We sketch the EnEffCo approach first and outline the im-
plementation with JIAC afterwards. Finally we discuss our
experiences in applying JIAC for the implementation of the
EnEffCo software.

1Java Intelligent Agent Componentware, version five.
2Energie-Eff izienzcontrolling am Beispiel der Automobilin-
dustrie (eng. Energy efficiency controlling in the automotive
industry)

1379



3.1 Approach
The EnEffCo software optimises production processes of

the automotive industry in terms of energy costs. The ap-
plication exploits the fact that (in Germany), the industry
is able to procure energy by means of short-term strategies
at the day-ahead energy market, where prices are highly
dynamic. It was our idea to minimise energy costs by shift-
ing energy-consuming sub-processes to time slots with low
energy costs. Yet, contemporary production processes com-
prise many co-depending sub-processes and feature a high
degree of complexity, thus, shifting parts of the overall pro-
cess is not as easy as it sounds. We decided to use Evolution
Strategy to produce reliable optimisation results in a timely
manner. An ‘optimisation server’ receives the logical struc-
ture of the production process in the form of a bipartite
graph. This graph contains architectural information, such
as the sequential arrangement of all production steps, in-
volved machinery and storages, but also meta information,
such as the duration and the energy consumption of produc-
tion steps. The optimisation server also receives a produc-
tion target, a timeframe and information on the energy price
development. Based on the input data, an initial production
plan is generated. In the next step, this initial population
is mutated inasmuch as sub-processes are randomly shifted.
Each optimisation server produces a defined number of mu-
tations. A fitness function is used to evaluate the quality
of each mutation and the most effective production plans
are selected as input for the next stage of evolution. In this
next iteration, the production plans are mutated again. The
optimisation finishes whenever the quality of the offspring
remains steady across several generations.

3.2 Implementation
We have implemented our optimisation servers as JIAC

agents and defined an interaction protocol in which a des-
ignated agent—the optimisation client—broadcasts an op-
timisation problem. Available servers either accept the as-
signment and initiate the optimisation process or refuse as a
result to different reasons (e.g. other activities). Whenever
a server finishes, the result is sent back to the client, who
compares the different results and selects the best. Finally,
the best measured graph is presented to the operator, who
is able to configure his production line accordingly.

We used JIAC for the implementation for two main rea-
sons. To start with, JIAC allows for the execution of sev-
eral optimisation servers (JIAC agents) in parallel and thus
counters the problem of stochastic optimisation algorithms
to get stuck in local optima. The simultaneous execution
of optimisation agents with different initial populations and
random mutations increases the chance to overcome local
maxima significantly. Since JIAC agents are truely multi-
threaded, the application’s execution speed remains equal
while the quality of the optimisation increases. The second
reason for the appliance of JIAC is the reliable communi-
cation of the agent framework. It is easy to physically dis-
tribute agents among different hosts and thus to increase the
overall performance of the optimisation software at will. As
an example, for complex optimisation scenarios, additional
servers may be added. Later, when the additional calcula-
tion performance is not required any longer, those can be re-
moved. The loose coupling between JIAC agents simplifies
this process greatly and also supports maintenance issues.
Malfunctioning or out-dated optimisation agents can be re-

placed individually; it is no longer necessary to shut down
the entire optimisation software, but to remain functional
and to update selected optimisation servers one by one.

4. CONCLUSION
The purpose of this demonstration is to underline the re-

liability of JIAC V. In order to do so, we present the En-
Effco project, where the reliability of JIAC is inevitably re-
quired. We designed the EnEffCo software to run in an
industrial context. To ensure reliability, we deployed sev-
eral optimisation servers in the form of JIAC agents and
have each server processing the optimisation problem, re-
spectively. The distribution contributes to the software’s
quality in many aspects. We compensate unforeseen errors
of individual agents, and also increase the performance of
our Evolution Strategy, which demonstrably produces bet-
ter results, the more initial populations are used. Finally, we
exploit JIAC’s reliable communication to ensure that results
are correctly communicated through the computer network.

5. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A

FIPA-compliant agent framework. Technical report.

[2] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-agent Systems in AgentSpeak Using
Jason. Wiley Series in Agent Technology.
Wiley-Blackwell, October 2007.

[3] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas.
JACK — Components for Intelligent Agents in Java.
Technical report, Agent Oriented Software Pty, Ltd.,
1999.

[4] K. V. Hindriks, F. S. D. Boer, W. V. der Hoek, and
J.-J. Meyer. Agent Programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2(4):357–401, 1999.

[5] T. Küster, M. Lützenberger, and D. Freund.
Distributed optimization of energy costs in
manufacturing using multi-agent system technology. In
P. Lorenz and K. Nygard, editors, Proceedings of the
2nd International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies,
Maho Beach, St. Maarten, pages 53–59, March 2012.

[6] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele,
N. Masuch, A. Heßler, J. Keiser, M. Burkhardt,
S. Kaiser, and S. Albayrak. JIAC V — A MAS
framework for industrial applications (extended
abstract). In T. Ito, C. Jonker, M. Gini, and
O. Shehory, editors, Proceedings of the 12th

International Conference on Autonomous Agents and
Multiagent Systems, Sait Paul, Minnesota, The USA.,
2013. To appear.

[7] A. Pokahr, L. Braubach, and K. Jander. Unifying agent
and component concepts: Jadex active components. In
MATES, pages 100–112, 2010.

[8] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92, 1993.

[9] J. Tonn and S. Kaiser. ASGARD — A graphical
monitoring tool for distributed agent infrastructures. In
Y. Demazeau, F. Dignum, J. M. Corchado, and J. B.
Pérez, editors, Advances in Practical Applications of
Agents and Multiagent Systems, volume 70 of Advances
in Intelligent and Soft Computing, pages 163–175.
Springer, 2010.

1380




