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ABSTRACT 

In this research, we focus on active sensing solutions to address 

challenging properties in complex environments, such as uncer-

tainty, partial observability, non-stationarity, and limited re-

sources.  We describe our ongoing contributions, focusing on 

sensing for both individual agents and cooperating teams.  We 

also outline how we are applying our research to two real-world 

applications: personal assistants and intelligent survey systems. 
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I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
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1. INTRODUCTION 
Multiagent systems (MAS) are commonly applied to many real-

world applications, such as robotics, wireless sensors networks, 

cyber-physical systems, and human-computer interactions.  One 

commonality to these applications is the complexity of the envi-

ronment, including difficult properties such as uncertainty, partial 

observability, noise, non-stationarity, real-time constraints, lim-

ited resources, and multiple actors.  Each property constrains an 

agent’s ability to gather information, make informed decisions, 

and prudently act to accomplish its goals.  Therefore, an agent 

must address these properties either implicitly or explicitly to 

operate properly and enable the entire system to achieve the de-

sired emergent behavior and achieve system-wide goals. 

In this research, we address the challenging properties of complex 

environments in the agent’s sensing activities, since without good 

information, a rational agent cannot make good decisions or act 

appropriately.  We develop solutions using active sensing, where-

by an agent makes intelligent meta-level decisions about the in-

formation gathered for its reasoning.  We focus on both single 

agent sensing, independent of other agents, as well as information 

sharing and sensing adaptation between many coordinating 

agents.  We apply these solutions to several real-world problems, 

including personal assistants and intelligent survey systems. 

2. ACTIVE SENSING 
To properly control sensing in order to address the challenging 

properties inherent in complex environments, we rely on active 

sensing (also known as active perception).  From this perspec-

tive, an agent actively reasons about its sensing behavior, select-

ing sensing actions to maximize observational value (e.g., accura-

cy, uncertainty reduction) and minimize negative impacts (e.g., 

costs, resulting environment changes, limited resource use), in-

stead of passively receiving whatever observations happen to be 

produced by the environment [13].  Using active sensing explicit-

ly balances the benefits and costs of sensing actions, causing an 

agent to proactively aim to maximize its sensing performance, and 

not only reactively rely on suboptimal observations. 

Within the context of active sensing, we have studied a novel 

complex environment property called the Observer Effect [6], 

caused by using stateful resources during agent sensing.  Specifi-

cally, some resources used by agents have an internal state that 

determines their behavior upon use (e.g., wireless network band-

width, human user frustration and cognitive load).  The mere act 

of sensing with these resources to gather information about the 

environment (e.g., monitoring the wireless network through spe-

cial transmitted packets, interrupting a user to discover her prefer-

ences) can ultimately change the state of the resource, and thus 

directly impact the quality and quantity of observations.  There-

fore, special care must be taken to not corrupt the state of the re-

source and distort the information gathered during sensing. 

To manage stateful resources and mitigate the Observer Effect, we 

model active sensing using a popular (e.g., [1, 12]) approach: the 

partially observable Markov decision process (POMDP [9]).  

Using this model, an agent can explicitly reason about the state of 

both the resources used (which impact sensing outcomes) and its 

knowledge (which is improved through sensing), as well as the 

changes to these states based on performing sensing actions.   For 

the reward maximized by the agent, we model the improvement in 

the value of the knowledge held by the agent for its particular 

tasks, which reflects both (1) the improvement in knowledge from 

high quality observations, and (2) the distortion in knowledge 

caused by bad resource states.  Since this improvement might not 

be known a priori, we use reinforcement learning (RL) to acquire 

a model of knowledge refinement to guide sensing. 

Through this work, we recognized that rewarding based on chang-

es in agent knowledge (or beliefs) is not traditional for active 

sensing POMDPs, which tend to focus instead on costs of sensing 

actions or rewards for individual (hidden) states.  After searching 

the literature, we discovered similar belief-based rewards [1], such 

as measuring the uncertainty in an agent’s belief state resulting 

from an action.  To better understand and exploit different types 

of rewards, we have been studying (1) the advantages and disad-

vantages of each type of reward for active sensing [4]: traditional 

rewards [9] (beneficial for considering sensing costs), belief-based 

rewards [1] (beneficial for considering belief improvement), and 

hybrid combinations [1], and (2) methods to combine different 

types of rewards to achieve theoretical performance guarantees.  

To achieve such theoretical guarantees, we were inspired by a 

related solution in RL: potential-based reward shaping (PBRS) 

[2, 10].  PBRS shapes an agent’s traditional reward function to 

include additional information describing the value to an agent of 

transitioning from one state to another (in terms of likely earning 

large future rewards).  Thus, PBRS combines two (or more) types 

of information in a shaped reward function and has the additional 
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advantage of still optimizing the agent’s traditional rewards in 

spite of this addition.  We have produced the first extension of 

PBRS to online POMDP planning [7] in order to both (1) combine 

multiple perspectives in the agent’s rewards (e.g., action costs and 

belief-state improvement), as well as (2) improve short horizon 

planning by implicitly guiding the agent towards large future re-

wards beyond its planning horizon.  It can be shown that this ex-

tension retains the theoretical guarantees from its use in RL (e.g., 

[2, 10]), and thus is an appropriate way to combine multiple types 

of rewards.  Furthermore, this work is beneficial for POMDPs in 

general (even beyond active sensing) as it can better maximize the 

agent’s cumulative rewards by including information (e.g., belief 

certainty) not traditionally considered in POMDPs.  We are cur-

rently studying how to better select which types of rewards to 

combine using PBRS, based on complex environment properties. 

We have also recently begun investigating the application of ac-

tive sensing to cooperating agents in MAS.   Specifically, we 

have focused on the large team information sharing problem 

(LTIS, e.g., [8, 11]).  In this problem, a large team of agents (e.g., 

1000 agents) work together to form consistent, accurate beliefs 

about some environment phenomenon, but only a small subset 

(e.g., 5% of the agents) can directly observe the environment, 

whilst all other agents must rely on shared information to form 

beliefs.  Our main contribution to this area thus far is studying 

non-stationary phenomenon that change values over time [5] 

(e.g., time-varying user preferences in large systems of human-

agent interactions).  We established that non-stationarity greatly 

complicates the problem due to an institutional memory emergent 

behavior, where the team cannot overcome initial beliefs in spite 

of the weight placed on new information during Bayesian belief 

updating (an important focus with stationary phenomenon, e.g. [8, 

11]).  We are developing new solutions to this problem, such as 

(1) change detection and response within local neighborhoods, 

and (2) forgetting outdated information using belief decay.  We 

are also interested in further contributing to this area by consider-

ing additional complex environment properties, such as the costs 

of performing sensor observations and communication between 

agents, real-time constraints on belief convergence throughout the 

team, and the Observer Effect from multiple agents directly moni-

toring the phenomenon using shared stateful resources. 

3. APPLICATIONS 
We are currently working to apply our research on active sensing 

(both individual agent and multiagent) to two real-world applica-

tions: (1) personal assistant agents and (2) intelligent survey sys-

tems.  First, within our Adaptive Knowledge Assistants frame-

work [3], personal agents assist human knowledge workers to 

produce new knowledge from information in domains such as 

scientific research, citizen science, and education.  These agents 

use active sensing to both (1) discover their users’ preferences and 

goals while mitigating the Observer Effect caused by distracting 

the user during her tasks, and (2) autonomously manage the users’ 

informational needs, such as finding novel sources of information, 

matchmaking users to share information, and automating routine 

tasks used to gather information for the users.  We are applying 

this framework to an intelligent wiki system (the Written Agora) 

used for computer supported, collaborative learning in a number 

of settings:  from topic-based articles and discussions in computer 

science courses to an online repository for a student-produced 

journal documenting group-based biology experiments. 

Second, we are also working to apply active sensing to intelligent 

survey systems.  Here, we are interested in developing agents 

responsible for controlling and adapting surveys online as they are 

presented to human users in order to improve the end-user’s expe-

rience and the quality and quantity of information collected from 

users. This work is being applied to both web-based personal 

surveys, as well as computer-assisted time diary interviews. 

Beyond these two applications in human-computer (and human-

agent) interactions, this research has potential broader impacts in 

domains such as robotics (e.g., search and rescue robots exploring 

unknown spaces), wireless sensor networks (e.g., limited network 

bandwidth monitoring and control), and cyber-physical systems 

(e.g., controlling limited numbers of sensors to form consistent 

beliefs across many devices) 
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