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ABSTRACT 

Autonomous systems are usually equipped with sensors to sense 

the surrounding environment. The sensor readings are interpreted 

into beliefs upon which the robot decides how to act. 

Unfortunately, sensors are susceptible to faults. These faults might 

lead to task failure. Detecting these faults and diagnosing a fault's 

origin is an important task that should be performed quickly 

online. While other methods require a high fidelity model that 

describes the behavior of each component, we present a method 

that uses a structural model to successfully detect and diagnose 

sensor faults online. We experiment our method with a laboratory 

robot Robotican1 and a flight simulator FlightGear. We show that 

our method outperforms previous methods in terms of fault 

detection and provides an accurate diagnosis.  

Categories and Subject Descriptors 

I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles, 

Sensors. 

General Terms 

Reliability, Experimentation 

Keywords 

Fault detection, Model-Based Diagnosis, Robotics, UAV, sensors. 

1. INTRODUCTION 
The use of robots in our daily civilian and military life is 

increasing.  Robots can replace humans in certain tasks that are 

too boring or too dangerous. However, these sophisticated and 

sometimes very expensive machines are susceptible to faults. A 

fault has the potential to cause mission failure or even to endanger 

the system itself or its surrounding e.g. a UAV (unmanned aerial 

vehicle) can crash due to a fault. 

Faults are not restricted just to hardware wear and tear. Long 

before a robot tries to activate some actuator it should sense the 

ever changing dynamic environment and compute its beliefs over 

the world. It then needs to make choices of how to behave, and 

send the command to the relevant controllers to activate the 

actuators. Based on its actions, the world changes; thus the 

described operation proceeds iteratively. For example, a robot's 

laser distance sensor returns a reading. This reading derives a 

belief – the distance to a target object. The decision making 

process of the robot might decide to move towards the target 

object. This decision is translated to the execution of a set of 

commands from the robot's API. Each command activates some 

actuators, like the robot's wheels. As the robot is getting closer to 
the target the sensors react accordingly and the belief is updated.

 

At each step of this cycle a fault might occur. Either due to false 

sensing or runtime errors (in the operating system of the robot) or 

due to a hardware failure. These faults need to be detected quickly 

and diagnosed.  For example, if the code that computes the 

distance to the target crashes, then the robot might continue to 

move forever. The same can happen if the laser sensor returns a 

constant value or deviated from the target, or if the wheels are 

spinning in place.  

Steinbauer et al. [12] conducted a survey on the nature of faults of 

autonomous robot systems. The survey participants are the 

developers competing in the different leagues of the Robocup 

competition [10]. Steinbauer et al. concluded that internal 

hardware components such as batteries and motors are most 

affected by faults to connectors or communication, and are critical 

to mission success. They categorize these faults as platform faults. 

Furthermore, configuration problems greatly affect sensors, and 

sensors faults have similar frequency but a higher negative impact 

than platform faults. We propose a Model-Based approach that 

detects and diagnoses sensors faults, and relates sensors to internal 

hardware components to enable diagnosis of these platform 

related faults. 

In this paper we propose a fault detection method in which an 

autonomous system can detect that there is a failure in the system. 

In addition, we propose a diagnosis method which isolates the 

faulty component/sensor. In our fault detection method we 

combine a Data Driven approach ([7],[9],[13]) with a Model-

Based approach [6]. We recognize correlations between data 

readings online and track them to detect correlation breaks along 

time where suspicious patterns are detected. To accurately 

determine a fault has occurred, and for the diagnosis process, we 

use a structural model that indicates sensors dependency on 

hardware components, and thus enables the isolation of the faulty 

sensor or component. 

In our previous work [7] we introduced a successful model free, 

unsupervised and online approach for anomaly detection. In this 

work we use a structural model to isolate the faulty component or 

sensor and thus provide diagnosis. In addition, we address faults 

that their symptoms appear only over time.  

There are two faults in particular that are hard to detect [13]: (1) 

Stuck – the sensor returns the same reading regardless the real 

state, and (2) Drift – the sensor returns values which continually 

drift upwards (or downwards) from the real state. 

The stuck fault may indicate data that is in a range of the truthful 

readings, and the drift may change very slowly maintaining the 

correct range of the sensor. Both kinds of fault express abnormal 

behavior. On the other hand, even a healthy sensor can sometimes 

produce values that appear to be stuck or drifting as a reaction to 
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the robot's current action. Thus, these faults are challenging to 

detect. 

We evaluate our method in two domains. The first is a laboratory 

robot [11] that applied different behaviors upon which faults were 

injected to its sensor readings. The second domain is a high 

fidelity flight simulator – FlightGear [2]. This simulator presents a 

more rich and complex environment to test our method. The 

system and instrumental faults which are already built-in and 

realistically mimic faults that occur in real flights present a very 

suitable domain to test our fault detection and diagnosis methods. 

We compare our fault detection method to the algorithm presented 

in [7] and to the Local Outlier Factor (LOF) [9] and show that the 

method proposed in this paper is more accurate. In addition, we 

show the high success rates of detecting and diagnosing faults in 

both domains. 

2. RELATED WORK 
Steinbauer et al. conducted a survey on the nature of faults of 

autonomous robot systems [12]. The survey participants are 

developers competing in different leagues of the Robocup 

competition [10]. The reported faults were categorized as 

hardware, software, algorithmic and interaction related faults. The 

survey concludes that hardware faults such as sensors, actuators 

and platform related faults have a high negative impact on mission 

success. In this paper we focus on diagnosing sensor related faults 

as well as internal hardware components that sensors are 

dependent on. 

There are diverse fault detection approaches as analytical 

methods, data-driven or knowledge-based systems [6].  Analytical 

approaches use mathematical models to compare expected outputs 

with observed outputs and derive a residual that is used to 

determine whether or not a fault has occurred. The limitation of 

this approach is by its requirement to express all the behavioral 

laws of every component in mathematical equations, which is a 

very hard task [13]. 

Data-driven approaches are model-free statistical methods. These 

methods face the challenge of dimension reduction and a 

dependency in the existence of quality information that can be 

extracted from the data ([6],[13]). 

We propose the use of a structural model which depicts sensors 

dependencies on internal hardware components. As opposed to 

other analytical models, the structural model does not include a 

mathematical representation of components behavior and thus is 

easier to construct. On the other hand, the proposed approach is 

not driven by data alone, and is not dependent on the existence of 

quality information and has no need for dimension reduction. 

We put our focus on one-dimensional sensors. Faults to these 

types of sensors may appear in a variety of forms. For example, 

the Advanced Diagnostics and Prognostics Testbed (ADAPT) [1] 

depicts the following faults to sensors on an electrical circuit: 

"stuck" where all values produced by the sensor are the same, 

"drift" where the values show a movement towards higher (or 

lower) values, and "abrupt" where there is a sudden large increase 

(or decrease) in the sensor's values. This testbed uses for the 

diagnosis competition [5] industrial track (DXC). Hashimoto et al. 

[4] use kalman filters along with kinematical models to diagnose 

"stuck" and "abrupt" faults to sensors of a mobile robot, as well as 

"scale" faults, where the (gain) scale of the sensor output differs 

from the normal. Our diagnosis algorithm relies on a function that 

returns the state of the sensor (i.e. abrupt, drift, stuck, scale etc.).  

When a sensor has a state such as stuck or drift it might be the 

result of the robot's action and not a fault (e.g. a UAV climb might 

appear as an altitude drift). To conclude whether the sensor 

readings behave correctly or faulty we apply a similar technique 

to that of our previous work. [7]. Since only the robot's perception 

is available, we use correlated sensors for comparison. In our 

previous work, we determined which sensors are correlated, and 

per each correlated set of sensors we measured their current-

input's degree of being an outlier with respect to previous inputs 

using the Mahalanobis Distance [8]. The approach suggested here, 

compares the state of correlated sensors which do not share 

component dependency. The same logical assumption is applied 

in both approaches. If two sensors are correlated they should react 

in the same manner to the robot's behavior. However, if the two 

sensors show different behaviors then it might be due to a fault. 

3. PROBLEM DESCRIPTION 
We define an autonomous system with a structural model that 

represents the sensors dependency of internal hardware 

components. The most fundamental entities are the sensors and 

components. The set of the sensors is            . Each sensor 

   reports online readings – a single value that is changed over 

time as the system operates. The second set represents hardware 

components which we denote as            . The given 

structural model maps internal components to their dependent 

sensors denoted as M:  

Definition 1: [dependency set] M is a set of tuples of the 

form       
 > where                considers 

sensors that are dependent on the hardware 

component   . Given the healthy predicate      denotes 

the health of                          . 

If component    is faulty then all of its dependent sensors 

(      ) will report faulty data. However, if sensor    is faulty it 

does not imply that    is faulty;    can be faulty itself.  

To formally represent the mapping between components and 

sensors we define the sensor mapping function and its inverse 

component function: 

Definition 2: [mapping functions] Given a component 

    ,          is a function that returns the set of 

sensors that are dependent on the component   . Given a 

sensor               is a function that returns the set 

of the components that the sensor    is dependent on. 

Figure 1 illustrates our model. It presents a partial structural 

model of the cockpit panel of a Cessna 172p airplane as it 

modeled by FlightGear simulator. The dark rectangles represent 

the components and the bright rectangles represent sensors. For 

instance, to enable the speed indicator to return a correct reading 

both the pitot system and the static system need to be operating 

correctly. The altimeter is dependent only on the static system.  

The altimeter returns two data readings - altitude and pressure, 

each is considered as a one dimensional sensor that is dependent 

on the static system. The same is applied for the attitude indicator 

that returns the values of the Pitch, Roll and Yaw, which are all 

dependent on the vacuum system. The GPS is a redundant sensor 

that besides position values it also returns the speed and the 

altitude of the aircraft. Since the GPS is dependent only on the 

electrical system, it will still work in case of a static system 

failure. 
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The goal is to report, for each online reading of the sensors, 

whether the reading indicates a fault (fault detection), and upon a 

detected fault to diagnose which of the internal components or 

sensors caused the fault (diagnosis).   

4. FAULT DETECTION AND DIAGNOSIS 
We present an online and unsupervised approach for fault 

detection and diagnosis. Besides consuming the input in an online 

fashion, the approach is applicable online; meaning that (1) fault 

detection and diagnosis are returned quickly after the fault occurs, 

and that (2) all calculations are applicable on a computationally 

weak robot. Furthermore, only the online consumed data is 

available; no other past records of offline data are used. 

Supervised approaches require labeled data of both normal and 

faulty observations. These labeled observations are not always 

available and cannot hope to cover every possible scenario. Our 

unsupervised approach has no need for labeled data of any sort. 

Our approach proceeds as follow: (1) The consumed inputs of the 

sensors readings are subjected to a correlation test that determines 

which sensors are correlated to each other. (2) Each sensor is 

tested for showing predefined suspicious patterns; sensors that 

show at least one of those patterns are marked as uncertain. (3) 

The fault detection and diagnosis use the structural model to 

verify that the uncertain sensors reacted to a fault and to diagnose 

the root cause of the fault. 

Parts (1) and (2) are a data driven approach and will be described 

in the following subsection. Part (3) is a model-based approach 

and will be described in sections 4.2 and 4.3. The contribution of 

the model-based approach to the fault detection and to the 

diagnosis processes is described in the results section. 

4.1 Online Preprocess 
In our approach we propose to store the online consumed data in a 

sliding window.  

Definition 3: [sliding window] A sliding window of size 

m is an     matrix denoted as   , stores the latest   

readings of   sensors ending at time  . A cell     
  stores 

the value of sensor    at time step    .  

With each incoming input,   is updated, keeping the current data 

of the last   time steps for each sensor. The data of   is used to 

both check which sensors are correlated as well as which sensors 

display predefined suspicious patterns. 

We expect that redundant sensors that measure the same thing or 

sensors that are affected by the same action of the robot will show 

the same behavior during their last   values and return a high rate 

of correlation. Therefore, sensors that used to be correlated and 

now show a different behavior might indicate that a fault has 

happened. Since there is no external observation to compare to in 

the domain of autonomous systems but only the system’s 

perception is available, the knowledge of which sensors are 

correlated is very important. 

We divide    to two parts. The first (oldest)      
 

 
  rows and 

the second (newest)  
 

 
      ) rows. The first 

 

 
 values of 

each sensor    denoted as   
               

  are used for a 

correlation test. The last 
 

 
 values (newer) of sensor    denoted as 

  
       

 
  

        are subjected to predefined suspicious 

patterns recognition test, as will be described later. 

The correlation detection algorithm uses the Pearson Correlation 

Coefficient calculation with respect to every two sensors 

in                        
     

    , thereby determining their 

rate of correlation.  

Definition 4: [correlated sensors set] given sensor    and 

sliding window   , the set          contains the sensors 

that are correlated to    based on   :       

           (  
     

  )            1
. We define     

               . 

The knowledge of the correlated sensors will be used to determine 

whether a suspicious pattern in a sensor is due to a fault or it is a 

normal reaction to the system's behavior. A suspicious pattern for 

a single dimension sensor is an observable pattern of the sensor 

values over time, which might indicate a fault. Notice that the 

pattern may be a normal reaction to the system's behavior. 

Suspicious patterns are predefined and sensor specific. The 

appearance of a suspicious pattern in a sensor is associated with a 

sensor state. We are given a function that recognizes these 

suspicious patterns and returns the sensor state. To demonstrate it 

in this paper, we focus on three sensor states: 

Definition 5 [sensor state] a sensor    can be in one of 

the following states: 

"stuck" -            
           

"drift" – the values in   
   show a movement towards 

higher values or a movement towards lower values. 

"ok" – otherwise. 

The function                             returns 

the state of    according to its latest     values (   ). 

Since sensors are noisy, a drift is not necessarily a smooth 

movement towards higher or lower values. A simple linear 

regression can be used to indicate the slope of the drift. The 

function   returns a drift state if the slope is higher than a 

threshold value. 

The reason we focus on stuck and drift faults is that these are 

common to single dimensional sensors ([1][5][13]) and yet are 

hard to be classed as faults. For example, the altimeter gage in a 

UAV might appear to be stuck when the UAV is maintaining its 

altitude, or appear to be drifting when the UAV is gaining 

                                                                 

1 The Pearson function returns a value (-1..1), the threshold is a 

user defined value (0..1) e.g. 0.9. 

Figure 1: Partial structural model of a Cessna 172p 

airplane. 
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altitude; both are reactions to the UAV's normal behavior. 

However, if the altimeter gage appears to be drifting while the 

UAV is maintaining altitude or the altitude gage is stuck while the 

UAV is gaining altitude, then these are the expressions of a fault. 

If a sensor's state is changed to "stuck" or to "drift" we cannot 

conclude that it is due to a fault, since the values could still be 

expressing a reaction to the system's normal behavior. However, 

the sensor is considered as uncertain. 

Definition 6: [uncertain sensor] given the sensor state of 

   at time             , then if   (          ) ≠”ok” and 

                           then    is declared as an 

uncertain sensor. We use the set    to denote the set of 

uncertain sensors at time  . In addition    

⋃    
       contains all sensors that were marked as 

uncertain in the last   time steps. 

By extracting information out of the correlations between sensors 

in    and the system's structural model  , we can conclude 

whether or not the recognized suspicious pattern of a sensor is due 

to a fault. 

In the next subsection we describe how the online preprocessing 

described here is used in the fault detection and diagnosis 

procedures. 

4.2 Fault Detection 
Following the previous subsection, a detection of a suspicious 

pattern in a sensor is not sufficient to implicate the sensor as 

faulty. We should still investigate whether it reflects a normal 

behavior or a fault. We propose to use the correlated sensor set to 

indicate a failure. A high correlation rate between two sensors 

dependent on two different components in the structural model 

can be the result of: (1) Redundant sensors (dependent on 

different internal components) that measure the same thing. For 

example, the altimeter and the GPS indicated altitude. If one 

system fails the other can be used as a backup. (2) Sensors that 

react to the same action of the robot. For example the Pitch angle 

and the climb rate indicator are correlated as the UAV's elevator 

is invoked. 

In these two cases one sensor can either implicate or clear an 

uncertain correlated sensor of suspicion. If one sensor is faulty or 

displays a faulty behavior due to a dependency on a faulty 

component, then it is reasonable to assume that the other sensor 

was not affected by the fault and still reflects the robot's behavior. 

The same cannot be said about two correlated sensors that share a 

component dependency, since both sensors can be affected by the 

same fault.  

For instance, consider that the altimeter shows a drifting state. If it 

is the result of the UAV's climbing then the GPS indicated altitude 

(which is dependent on a different component and was determined 

as correlated to the altimeter) also changed its state to drift and the 

altimeter is cleared of suspicion (see Fig.2). However, if the drift 

was a result of a fault, and not of the UAV's behavior, then every 

other correlated sensor from another internal component 

dependency should not be affected by the fault, and therefore 

poses a different state than the altimeter. In this case, we declare a 

fault (see Fig.3). 

It is important to guarantee first that there is no possibility to clear 

the uncertain sensor of its suspicion (i.e. look for another 

correlated sensor that do not share component dependency but has 

the same state). Only then we look for an implicating sensor (i.e. a 

correlated sensor that does not share component dependency and 

has a different state) in order to verify the failure of the uncertain 

sensor. 

Consider, for instance, that a UAV is taking off the runway. 

Before it gained altitude, the altimeter which is dependent on the 

static system, and the heading indicator which is dependent on the 

 

Figure 2: both Altimeter  and GPS altitude are "drifting" 

 

Figure 3: Altimeter "drifts" while GPS is not "drifting" 

vacuum system, were both correlated (since both were idle). But 

then while taking off the altimeter appears to drift, while the 

heading indicator does not. This case would have implicated the 

altimeter unless the GPS indicated altitude was also found 

drifting, thereby clearing the altimeter of suspicion.  

Algorithm 1 presents a fault detection algorithm that determines 

whether a sensor with a suspicious pattern state is the result of a 

fault. The fault detection algorithm is invoked with each input 

reading of the sensors. The algorithm obtains as an input the 

updated sliding window   , the updated set     that contains per 

each sensor    a set of   's correlated sensors      , and the 

updated uncertain sensors set   . 

The algorithm iterates through every uncertain sensor (line 3).    

is the set of internal components that    is dependent on (line 4). 

   is extracted from the structural model   by using the mapping 

function   (Definition 2). Lines 5-8 try to find a sensor that clears 

the uncertainty of   , i.e. whether there exist a sensor    correlated 

to    that share the same state but is dependent on different 

components. We check every sensor    in   's correlated set       

(line 5).    is the set of components that    is dependent on (line 

6). If    and    share the same state (             (      )) 

and do not share dependent components (       ) then    is 

cleared of suspicion (lines 7-8). 
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If the algorithm did not return, then lines 9-14 check if an 

implicating sensor exists, i.e. whether exists a sensor    correlated 

to    that does not share the same state and is dependent on 

different components. In the same manner we iterate through each 

one of   's correlated sensors (line 10). This time we search a 

Algorithm 1: Fault Detection Algorithm 

1. Input: 

       sliding window at time   

    - the sets of correlated sensors at time   

  - the uncertain sensors set at time   

2. Output: a fault detection report 

3. For each sensor       

4.              

5.     For each sensor          

6.                  

7.         If              (      ) ⋀        

8.             Return; 

9.                     

10.     For each sensor            

11.                  

12.         If              (      ) ⋀        

13.                             

14.             Break; 

15.     If           

16.         Report "fault detected, " ,   , " is suspected" 

sensor    that shares the same state as    but does not share 

component dependency (line 12). If such a sensor is found then 

the search is stopped (line 14) and a fault is reported (lines 15,16). 

Upon fault detection, the diagnosis procedure is invoked. The 

diagnosis procedure is described next. 

4.3 Diagnosis 
In the previous subsection we described how an uncertain 

sensor    becomes suspected for a fault. The following diagnosis 

algorithm (Algorithm 2) is invoked upon fault detection. The 

algorithm is invoked with the suspected sensor    as an input. The 

fact that    is suspected and not any other    that was correlated to 

   is because    was the sensor that changed its state to drift or 

stuck while the other correlated sensors did not reflect the same 

state. Since we concluded that the change of   's state was not a 

reaction to the robot's behavior then we determine that    is 

suspected for a fault.  

When a sensor is reported of having a stuck or drift state, it can 

either be a single sensor fault, or an expression of a fault of an 

internal component that the sensor is dependent on. If an internal 

component is faulty then all of its dependent sensors should 

display a faulty behavior (Definition 1). Therefore, we check for 

each of the other sensors that are dependent on the same internal 

component if they are suspected (i.e. changed their state into drift 

or stuck). If so, we can include the internal component in the 

report. 

For example, when the heading indicator was reported as 

suspected for a fault, we check if the attitude indicator's pitch, roll 

and yaw changed their state as well (see figure 1). If so, then we 

also report the vacuum system as suspected of having a fault. 

Algorithm 2: Diagnosis Algorithm 

1. Input: 

   – the suspected sensor 

  - the state of     
   – the set of all uncertain sensors from the last   time 

steps 

2. Output: a diagnosis report 

3. Report    is a candidate with a fault state     

4.          

5. For each       

6.              

7.       
|     |

    
 

8.     Report    is a candidate with probability   

9. Return; 

The diagnosis process reports    as a faulty sensor (line 3). Then, 

it extracts from the structural model the internal components that 

   is dependent on (line 4). For each of those internal components 

(line 5) the diagnosis process determines their probability of being 

faulty according to the number of their dependent sensors that are 

uncertain (are in the suspect set   ).    is a set containing the 

component   's dependent sensors (line 6). We report    as 

having the probability of being faulty as the ratio between the 

number of its dependent sensors that are suspected         and 

the total number of   's  dependent sensors      (line 7). 

Since an internal component fault might be expressed by its 

dependent sensors in different time intervals, we use the suspected 

set   , and return a probability of being fault. If we were to use    

rather than   , then only sensors that changed their state during 

this particular time frame could have implicate the component   . 

However, some of the sensors might have already changed their 

state and hence are not suspected during this particular time 

frame. This would result in a low probability of    faultiness. 

Therefore, we use    where suspected sensors remain for several 

time frames.  

For example, a static system failure causes the altimeter to be 

stuck immediately and the vertical speed indicator to drift 

downwards a few seconds later. Since both sensors are in   , the 

static system is reported at a probability of 1. If we were to use   , 

the static system would have a probability of 0.5 for being faulty. 

The reason for returning a probability rather than determine    

faultiness only if all its dependent sensors are suspected is due to 

the fact that some sensors might take very long time to react to 

  's failure while all others are already suspected. In this case we 

wish to report    and give an indication about the degree of its 

faultiness.  

For example, when the electrical system fails, some instruments 

such as the GPS fail immediately, but the turn indicator in 

particular, will take 30-60 seconds to start drifting downwards. 

This is due to the fact that the unpowered gyro still spins, though 

slowly loosing speed. Hence the turn indicator's drift effect is yet 
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to show. In this case we would not like to clear the electrical 

system from all suspicion just because one instrument is yet to 

show suspicion. Therefore, we return the probability, which in this 

particular example is above 0.9. 

5. EVALUATION 

5.1 Experimental Setup 
To evaluate our fault detection and diagnosis algorithms we use 

two domains.  The first domain is a laboratory robot called 

Robotican1 (see Figure 4) [11]. The robotican1 has two wheels, 3 

sonar range detectors in the front, and 3 infrared range detectors 

which are located right above the sonars, making the sonars and 

infrareds redundant systems to one another.  

This redundancy reflects real world domains such as unmanned 

vehicles (aerials, ground underwater etc.) in which fault tolerance 

is very important for mission successful completion.  When a 

sensor is damaged then another sensor can be used to fulfill the 

perception. Such is the case with UAVs where a set of different 

sensors measure the UAV's 3D location. If the GPS fails, other 

altitude gages, accelerometers and attitude gages can be used.  

Robotican1 also has 5 degrees 

of freedom arm. Each joint is 

held by two electrical engines. 

These engines provide a sensed 

reading of the voltage applied 

by their action. To mimic some 

internal component depths we 

defined 3 abstract internal 

components: 1) sonar power 

supplier, 2) infrared power 

supplier, 3) arm power supplier. 

We devised 17 different 

scenarios, which included a 

scenario without injected faults 

and scenarios that included different injected faults while the 

robot performed different tasks. Faults were injected to each type 

of sensor (motor voltage, infrared and sonar). The injected faults 

to the sensors were of type stuck or drift. These faults were 

injected to one or more sensors in different time intervals. We 

covered cases of faults to sensors that are dependent on the same 

components and on different internal components. Failing one of 

the three power suppliers described above causes each of the 

dependent sensors to fail. The robot's behavior was either to 

move, to stand still, or to move its arm to a given position.  

The second domain is the FlightGear [2] high fidelity flight 

simulator (see Fig.5). This open source simulator is built for and 

used in academic research [3]. Furthermore, it realistically 

simulates flight instrumental faults such as an altimeter stuck, or 

system faults. For example, if the vacuum system fails, then the 

gyros responsible for the attitude indicator and the heading 

indicator slowly lose their spin speed, causing the indicators to 

drift slowly and deviate from the readings of the turn indicator 

and compass. These features make the FlightGear simulator to be 

very suitable to test our method.  

We implemented an autopilot, which flies the aircraft according to 

its sensor readings. We used 16 flights that included 4 to 6 

instrumental failures at different times while the UAV takes off 

and makes a few turns. We failed the altimeter, airspeed indicator 

and compass.  

  

 

Figure 5: FlightGear Simulator Screenshot 

On this data set of flights we evaluated (1) the contribution of 

using the structural model as an addition to the suspicious pattern 

recognition for fault detection (2) the accuracy of our algorithm 

comparing to similar competing fault detection approaches.  

(1) As described in section 4, our fault detection technique 

consists of two parts, the Data Driven part which reports 

suspicious patterns in sensors, and the Model-Based part which 

uses a structural model to determine whether a suspicious pattern 

is a fault. We compared our fault detection algorithm to the same 

algorithm without the Model-Based part (i.e fault is reported 

whenever a suspicious pattern was recognized).  

(2) We compared our approach to our previous fault detection 

approach presented in [7] (denoted here m.distance) and to 

another competing method for fault detection Local Outlier Factor 

(LOF) algorithm [9].   m.distance approach also utilizes a sliding 

window technique and Pearson correlation. However, to detect 

faults it uses Mahalanobis Distance [8] to compare the online 

input to the current data in the sliding window.   The LOF 

algorithm is also an online density based outlier detection 

algorithm which uses the K-nearest neighbor to compare local 

density to the expected density and calculate the data instance 

measure of being an outlier accordingly. 

To evaluate each approach, we calculated the detection rate and 

the false alarm rate.  The best possible result for the detection rate 

is 1 indicating that all faults were detected. The best possible 

result for the false alarm rate is 0 indicating that no false alarms 

were raised. 

In addition, we tested two scenarios for diagnosis – a takeoff and 

a free flight. For each scenario we tested every possible 

instrumental or system failure, and a combination of multiple 

faults. There are 8 types of instruments and 4 types of systems 

that can be failed. In total, we examined 16 flights for each 

scenario. We used these two data sets to test the diagnosis 

accuracy of our current approach. 

5.2 Results 
The evaluation of the fault detection over the 16 flights produced 

the following results: (1) without the use of the structural model in 

our fault detection algorithm the false alarm rate is very close to 1 

whereas with the use of the structural model the false alarm rate is 

very close to 0, indicating the contribution of using the structural 

model. (2) All competing algorithms had a detection rate of 1 – all 

faults were detected. (3) Our proposed approach also diagnosed 

the failing sensor correctly. (4) The false alarm rates of the 

competing approaches are shown in Figure 6. 

The proposed approach has a false alarm rate of 0.028. This rate is 

less than half of the false alarm rate of the m.distance approach. 

Moreover, most of the false reports of our proposed approach 

were produced by the same sensor. When this sensor is 

suppressed there are virtually no false alarms. The lower false 

Figure 4: Robotican1 
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alarm rate is explained by the fact that the proposed approach uses 

the additional knowledge of component dependency to clear or 

implicate an uncertain sensor.  

 

Figure 6: The False Alarm Rates for the approaches 

The LOF algorithm returns the degree of a data instance being an 

outlier. Thus, a threshold is needed to label a data instance as 

faulty or healthy. Since the LOF algorithm does not have a policy 

to set these thresholds, we chose these thresholds in such a way 

that the results of the LOF algorithm will be optimized. Offline, 

considering the reports of an entire flight, we set the threshold as 

high as possible such that all faults are detected and thus false 

positives are minimized. The false alarm rate of our proposed 

approach is lower than the optimized false alarm rate of the LOF 

algorithm. 

In the Robotican domain we tested 17 diagnosis scenarios. The 

results are a fault detection rate of 0.96 and a false alarm rate of 

0.013. One fault out of 26 faults was not detected. The faulty 

sensor was suspected but was cleared after another correlated 

sensor of a different component dependency shared the same 

state. All detected faults were diagnosed correctly, i.e. the sensors 

and internal components that were reported matched the injected 

faults and the report was given at the time of the fault injection.  

Figure 7 illustrates the proposed approach results of the two 

domains in an ROC chart2. an ROC chart describes the entire 

space of fault detection: the X-axis is the false alarm rate and the 

Y-axis is the detection rate. A classifier is expressed as a 2D point. 

The perfect anomaly detector is located at point (0,1). In both 

domains our proposed approach is very close to the perfect fault 

detector (theoretically with a detection rate of 1 and a false alarm 

rate of 0).  

In the FlightGear domain we evaluated two more scenarios, a 

takeoff and a free flight, 16 flights per each scenario. These 

scenarios were used to further evaluate the diagnosis aspect of the 

proposed approach. All instrumental failures and system failures 

were diagnosed. We would like to elaborate on the following 

study cases which show the need for various aspects of the 

diagnosis algorithm, advantages and disadvantages. 

                                                                 

2 Note that to produce a better view the scale of the false alarm 

rate reach 0.1 (and not 1) 

 

Figure 7: ROC chart of the two domains 

Case 1: a static system failure causes the altimeter to be stuck, 

and the airspeed indicator to drift down to 0 a few seconds later. 

The static system was suspected at a probability of 1 due to the 

fact that suspected sensors remain suspected for a given time (a 

few seconds). The drift of the airspeed indicator caused the pitot 

system to be suspected as well and included in the diagnosis. 

Case 2: a failure to the pitot system causes the airspeed indicator 

to drift upwards, unless there is a failure to the static system as 

well, which causes the airspeed indicator to be stuck. Note that the 

proposed approach is unaware of these rules, but still recognizes 

these effects as suspected faults and reports the pitot system as 

suspect when needed. 

Case 3: a failure to the electrical system causes many instruments 

to fail immediately. But the turn indicator starts to drift 

downwards only after 30 seconds to 1 minute and is yet to be 

detected. This case justifies the use of probability to determine a 

suspected internal component. The electrical system is suspected 

in a probability greater than 0.9. 

Case 4: a failure to the attitude indicator (and not the vacuum 

system) causes some sensors to fail i.e. pitch, roll and yaw angles. 

The proposed approach reported that the vacuum system is 

suspected at a probability of 0.8. The heading indicator which is 

also dependent on the vacuum system is healthy. If the proposed 

approach did not use a probability then the heading-indicator's 

health would have cleared the vacuum system suspicion. This case 

does not justify the use of a probability. However, the heading 

indicator may yet fail as in case 3 and thus a probability is used. 

6. Discussion 
Redundancy and correlation: since the approach tries to detect 

faults to single-dimensional sensors, it relies heavily on the 

additional data provided by redundant sensors. The correlation is 

used to indicate which sensors are redundant. When the 

knowledge of redundant sensors is present, we suggest using it 

instead.  

However, some correlations between irredundant sensors might 

also help in fault detection. For example, a climbing rate sensor is 

usually correlated to the pitch sensor even though they are not 

redundant with respect to each other. Yet, possessing different 

states (e.g. pitch is "ok", climbing rate is "drifting" down) might 

indicate a fault (e.g. climbing rate is faulty or worse, an aircraft 

stall). 

If attributes that calculate the expected value of a sensor are 

present, then they can be used as "redundant sensors" as well. For 

instance, the attribute speed calculated from GPS position samples 

can be used as a redundant sensor to a speed sensor. 

m.distance approach 
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Suspicious patterns: as described in the paper the fault detection 

algorithm is provided with a function   that recognizes known 

suspicious patterns in a sensor data. Therefore,   is domain 

specific and should be implemented according to the expression 

of known faults in the system's sensors. Since   is a part of the 

approach's input the approach is still general and not contained 

strictly to patterns such as "drift" and "stuck".   also handles 

noise issues. For instance, in the tested domains the "drift" state 

was calculated with a linear regression slope. The only concern of 

the fault detection approach is to determine whether a suspicious 

pattern is a reaction to a behavior of the system or a reaction to a 

fault. 

Algorithm parameters: the fault detection algorithm and the 

diagnosis algorithm used different parameters. These parameters 

are domain specific, and should be adjusted according to a labeled 

data set.  

Setting the correlation threshold too low could result in more false 

positives as well as false negatives since irrelevant sensors are 

used to implicate or clear uncertain sensors of suspicion. Setting 

the threshold too high could result in a higher rate of false 

negatives due to approaches reliance of redundancy. 

The sliding-window size affects the time of calculation as well as 

the false negatives rates. Setting it too small could result in 

insufficient data size to determine a good correlation by Pearson 

or recognize a suspicious pattern by the    function. We suggest 

using the largest size which is in the capabilities of online 

calculation in the system. 

The time ( ) a sensor remains suspected (in   ) affects the 

implication of an internal component. The longer the time is, the 

more likely it is for an internal component to be included in the 

diagnosis. Since past suspicions become, in time, irrelevant to 

current events then   should be limited. The setting of   is domain 

specific and should be learned from labeled diagnosis data set. 

Structural model and diagnosis: the structural model presented 

in this paper may appear as simple partition to subsystems. In 

reality, a structural model contains several levels of depth 

describing component dependency (e.g. a sensor is dependent on a 

component that is dependent on another component). The 

diagnosis algorithm can be applied recursively, implicating each 

component at level  , if all its dependent components at level 

    are suspected of having a fault. Thus, a component level 

fault is unmasked. 

The proposed approach gives sensors an even weight when 

implicating a suspected component. Different weights can be used 

in the model according to the sensor's ability to indicate that the 

internal component is failing. In the FlightGear domain we did not 

monitor sensors that would have made the fault detection and 

diagnosis too easy. The vacuum intake sensor could easily 

implicate the vacuum system, and the voltmeter and ampermeter 

sensors could easily implicate the electrical system. We suggest 

modeling these kinds of sensors with a high weight. 

7. CONCLUSION  
We showed an approach that when given a structural model and 

sensor readings it can detect sensor related faults that occur over 

time and diagnose them online with high precision. We showed 

how a structural model is used diagnose internal components. We 

evaluated the approach on physical and simulated domains. We 

described study cases which show the advantages and 

disadvantages of the different aspects of the proposed approach. 

The advantages of the approach are the ability to distinguish a 

fault from a normal behavior when a suspicious pattern is 

recognized in a sensor, the ability to detect faults that occur over a 

period of time, and the ability to successfully diagnose root 

causes. The disadvantages are the reliance on redundancy, the 

reliance on predefined suspicious patterns, and the return of the 

degree of faultiness of internal components rather than a 

deterministic answer. 

We believe that further optimizations can be made as described in 

the discussion section. 
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