
Sensor Fault Detection and Diagnosis for Autonomous
Systems

Eliahu Khalastchi, Meir Kalech, Lior Rokach
Information Systems Engineering, Ben-Gurion University of the Negev, Israel

Deutsche Telekom Laboratories at Ben-Gurion University, Israel

{khalastc,kalech,liorrk}@bgu.ac.il

ABSTRACT

Autonomous systems are usually equipped with sensors to sense

the surrounding environment. The sensor readings are interpreted

into beliefs upon which the robot decides how to act.

Unfortunately, sensors are susceptible to faults. These faults might

lead to task failure. Detecting these faults and diagnosing a fault's

origin is an important task that should be performed quickly

online. While other methods require a high fidelity model that

describes the behavior of each component, we present a method

that uses a structural model to successfully detect and diagnose

sensor faults online. We experiment our method with a laboratory

robot Robotican1 and a flight simulator FlightGear. We show that

our method outperforms previous methods in terms of fault

detection and provides an accurate diagnosis.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles,

Sensors.

General Terms

Reliability, Experimentation

Keywords

Fault detection, Model-Based Diagnosis, Robotics, UAV, sensors.

1. INTRODUCTION
The use of robots in our daily civilian and military life is

increasing. Robots can replace humans in certain tasks that are

too boring or too dangerous. However, these sophisticated and

sometimes very expensive machines are susceptible to faults. A

fault has the potential to cause mission failure or even to endanger

the system itself or its surrounding e.g. a UAV (unmanned aerial

vehicle) can crash due to a fault.

Faults are not restricted just to hardware wear and tear. Long

before a robot tries to activate some actuator it should sense the

ever changing dynamic environment and compute its beliefs over

the world. It then needs to make choices of how to behave, and

send the command to the relevant controllers to activate the

actuators. Based on its actions, the world changes; thus the

described operation proceeds iteratively. For example, a robot's

laser distance sensor returns a reading. This reading derives a

belief – the distance to a target object. The decision making

process of the robot might decide to move towards the target

object. This decision is translated to the execution of a set of

commands from the robot's API. Each command activates some

actuators, like the robot's wheels. As the robot is getting closer to
the target the sensors react accordingly and the belief is updated.

At each step of this cycle a fault might occur. Either due to false

sensing or runtime errors (in the operating system of the robot) or

due to a hardware failure. These faults need to be detected quickly

and diagnosed. For example, if the code that computes the

distance to the target crashes, then the robot might continue to

move forever. The same can happen if the laser sensor returns a

constant value or deviated from the target, or if the wheels are

spinning in place.

Steinbauer et al. [12] conducted a survey on the nature of faults of

autonomous robot systems. The survey participants are the

developers competing in the different leagues of the Robocup

competition [10]. Steinbauer et al. concluded that internal

hardware components such as batteries and motors are most

affected by faults to connectors or communication, and are critical

to mission success. They categorize these faults as platform faults.

Furthermore, configuration problems greatly affect sensors, and

sensors faults have similar frequency but a higher negative impact

than platform faults. We propose a Model-Based approach that

detects and diagnoses sensors faults, and relates sensors to internal

hardware components to enable diagnosis of these platform

related faults.

In this paper we propose a fault detection method in which an

autonomous system can detect that there is a failure in the system.

In addition, we propose a diagnosis method which isolates the

faulty component/sensor. In our fault detection method we

combine a Data Driven approach ([7],[9],[13]) with a Model-

Based approach [6]. We recognize correlations between data

readings online and track them to detect correlation breaks along

time where suspicious patterns are detected. To accurately

determine a fault has occurred, and for the diagnosis process, we

use a structural model that indicates sensors dependency on

hardware components, and thus enables the isolation of the faulty

sensor or component.

In our previous work [7] we introduced a successful model free,

unsupervised and online approach for anomaly detection. In this

work we use a structural model to isolate the faulty component or

sensor and thus provide diagnosis. In addition, we address faults

that their symptoms appear only over time.

There are two faults in particular that are hard to detect [13]: (1)

Stuck – the sensor returns the same reading regardless the real

state, and (2) Drift – the sensor returns values which continually

drift upwards (or downwards) from the real state.

The stuck fault may indicate data that is in a range of the truthful

readings, and the drift may change very slowly maintaining the

correct range of the sensor. Both kinds of fault express abnormal

behavior. On the other hand, even a healthy sensor can sometimes

produce values that appear to be stuck or drifting as a reaction to

15

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the robot's current action. Thus, these faults are challenging to

detect.

We evaluate our method in two domains. The first is a laboratory

robot [11] that applied different behaviors upon which faults were

injected to its sensor readings. The second domain is a high

fidelity flight simulator – FlightGear [2]. This simulator presents a

more rich and complex environment to test our method. The

system and instrumental faults which are already built-in and

realistically mimic faults that occur in real flights present a very

suitable domain to test our fault detection and diagnosis methods.

We compare our fault detection method to the algorithm presented

in [7] and to the Local Outlier Factor (LOF) [9] and show that the

method proposed in this paper is more accurate. In addition, we

show the high success rates of detecting and diagnosing faults in

both domains.

2. RELATED WORK
Steinbauer et al. conducted a survey on the nature of faults of

autonomous robot systems [12]. The survey participants are

developers competing in different leagues of the Robocup

competition [10]. The reported faults were categorized as

hardware, software, algorithmic and interaction related faults. The

survey concludes that hardware faults such as sensors, actuators

and platform related faults have a high negative impact on mission

success. In this paper we focus on diagnosing sensor related faults

as well as internal hardware components that sensors are

dependent on.

There are diverse fault detection approaches as analytical

methods, data-driven or knowledge-based systems [6]. Analytical

approaches use mathematical models to compare expected outputs

with observed outputs and derive a residual that is used to

determine whether or not a fault has occurred. The limitation of

this approach is by its requirement to express all the behavioral

laws of every component in mathematical equations, which is a

very hard task [13].

Data-driven approaches are model-free statistical methods. These

methods face the challenge of dimension reduction and a

dependency in the existence of quality information that can be

extracted from the data ([6],[13]).

We propose the use of a structural model which depicts sensors

dependencies on internal hardware components. As opposed to

other analytical models, the structural model does not include a

mathematical representation of components behavior and thus is

easier to construct. On the other hand, the proposed approach is

not driven by data alone, and is not dependent on the existence of

quality information and has no need for dimension reduction.

We put our focus on one-dimensional sensors. Faults to these

types of sensors may appear in a variety of forms. For example,

the Advanced Diagnostics and Prognostics Testbed (ADAPT) [1]

depicts the following faults to sensors on an electrical circuit:

"stuck" where all values produced by the sensor are the same,

"drift" where the values show a movement towards higher (or

lower) values, and "abrupt" where there is a sudden large increase

(or decrease) in the sensor's values. This testbed uses for the

diagnosis competition [5] industrial track (DXC). Hashimoto et al.

[4] use kalman filters along with kinematical models to diagnose

"stuck" and "abrupt" faults to sensors of a mobile robot, as well as

"scale" faults, where the (gain) scale of the sensor output differs

from the normal. Our diagnosis algorithm relies on a function that

returns the state of the sensor (i.e. abrupt, drift, stuck, scale etc.).

When a sensor has a state such as stuck or drift it might be the

result of the robot's action and not a fault (e.g. a UAV climb might

appear as an altitude drift). To conclude whether the sensor

readings behave correctly or faulty we apply a similar technique

to that of our previous work. [7]. Since only the robot's perception

is available, we use correlated sensors for comparison. In our

previous work, we determined which sensors are correlated, and

per each correlated set of sensors we measured their current-

input's degree of being an outlier with respect to previous inputs

using the Mahalanobis Distance [8]. The approach suggested here,

compares the state of correlated sensors which do not share

component dependency. The same logical assumption is applied

in both approaches. If two sensors are correlated they should react

in the same manner to the robot's behavior. However, if the two

sensors show different behaviors then it might be due to a fault.

3. PROBLEM DESCRIPTION
We define an autonomous system with a structural model that

represents the sensors dependency of internal hardware

components. The most fundamental entities are the sensors and

components. The set of the sensors is . Each sensor

 reports online readings – a single value that is changed over

time as the system operates. The second set represents hardware

components which we denote as . The given

structural model maps internal components to their dependent

sensors denoted as M:

Definition 1: [dependency set] M is a set of tuples of the

form
 > where considers

sensors that are dependent on the hardware

component . Given the healthy predicate denotes

the health of .

If component is faulty then all of its dependent sensors

() will report faulty data. However, if sensor is faulty it

does not imply that is faulty; can be faulty itself.

To formally represent the mapping between components and

sensors we define the sensor mapping function and its inverse

component function:

Definition 2: [mapping functions] Given a component

 , is a function that returns the set of

sensors that are dependent on the component . Given a

sensor is a function that returns the set

of the components that the sensor is dependent on.

Figure 1 illustrates our model. It presents a partial structural

model of the cockpit panel of a Cessna 172p airplane as it

modeled by FlightGear simulator. The dark rectangles represent

the components and the bright rectangles represent sensors. For

instance, to enable the speed indicator to return a correct reading

both the pitot system and the static system need to be operating

correctly. The altimeter is dependent only on the static system.

The altimeter returns two data readings - altitude and pressure,

each is considered as a one dimensional sensor that is dependent

on the static system. The same is applied for the attitude indicator

that returns the values of the Pitch, Roll and Yaw, which are all

dependent on the vacuum system. The GPS is a redundant sensor

that besides position values it also returns the speed and the

altitude of the aircraft. Since the GPS is dependent only on the

electrical system, it will still work in case of a static system

failure.

16

http://en.wikipedia.org/wiki/Local_Outlier_Factor

The goal is to report, for each online reading of the sensors,

whether the reading indicates a fault (fault detection), and upon a

detected fault to diagnose which of the internal components or

sensors caused the fault (diagnosis).

4. FAULT DETECTION AND DIAGNOSIS
We present an online and unsupervised approach for fault

detection and diagnosis. Besides consuming the input in an online

fashion, the approach is applicable online; meaning that (1) fault

detection and diagnosis are returned quickly after the fault occurs,

and that (2) all calculations are applicable on a computationally

weak robot. Furthermore, only the online consumed data is

available; no other past records of offline data are used.

Supervised approaches require labeled data of both normal and

faulty observations. These labeled observations are not always

available and cannot hope to cover every possible scenario. Our

unsupervised approach has no need for labeled data of any sort.

Our approach proceeds as follow: (1) The consumed inputs of the

sensors readings are subjected to a correlation test that determines

which sensors are correlated to each other. (2) Each sensor is

tested for showing predefined suspicious patterns; sensors that

show at least one of those patterns are marked as uncertain. (3)

The fault detection and diagnosis use the structural model to

verify that the uncertain sensors reacted to a fault and to diagnose

the root cause of the fault.

Parts (1) and (2) are a data driven approach and will be described

in the following subsection. Part (3) is a model-based approach

and will be described in sections 4.2 and 4.3. The contribution of

the model-based approach to the fault detection and to the

diagnosis processes is described in the results section.

4.1 Online Preprocess
In our approach we propose to store the online consumed data in a

sliding window.

Definition 3: [sliding window] A sliding window of size

m is an matrix denoted as , stores the latest

readings of sensors ending at time . A cell
 stores

the value of sensor at time step .

With each incoming input, is updated, keeping the current data

of the last time steps for each sensor. The data of is used to

both check which sensors are correlated as well as which sensors

display predefined suspicious patterns.

We expect that redundant sensors that measure the same thing or

sensors that are affected by the same action of the robot will show

the same behavior during their last values and return a high rate

of correlation. Therefore, sensors that used to be correlated and

now show a different behavior might indicate that a fault has

happened. Since there is no external observation to compare to in

the domain of autonomous systems but only the system’s

perception is available, the knowledge of which sensors are

correlated is very important.

We divide to two parts. The first (oldest)

 rows and

the second (newest)

) rows. The first

 values of

each sensor denoted as

 are used for a

correlation test. The last

 values (newer) of sensor denoted as

 are subjected to predefined suspicious

patterns recognition test, as will be described later.

The correlation detection algorithm uses the Pearson Correlation

Coefficient calculation with respect to every two sensors

in

 , thereby determining their

rate of correlation.

Definition 4: [correlated sensors set] given sensor and

sliding window , the set contains the sensors

that are correlated to based on :

 (

) 1
. We define

 .

The knowledge of the correlated sensors will be used to determine

whether a suspicious pattern in a sensor is due to a fault or it is a

normal reaction to the system's behavior. A suspicious pattern for

a single dimension sensor is an observable pattern of the sensor

values over time, which might indicate a fault. Notice that the

pattern may be a normal reaction to the system's behavior.

Suspicious patterns are predefined and sensor specific. The

appearance of a suspicious pattern in a sensor is associated with a

sensor state. We are given a function that recognizes these

suspicious patterns and returns the sensor state. To demonstrate it

in this paper, we focus on three sensor states:

Definition 5 [sensor state] a sensor can be in one of

the following states:

"stuck" -

"drift" – the values in
 show a movement towards

higher values or a movement towards lower values.

"ok" – otherwise.

The function returns

the state of according to its latest values ().

Since sensors are noisy, a drift is not necessarily a smooth

movement towards higher or lower values. A simple linear

regression can be used to indicate the slope of the drift. The

function returns a drift state if the slope is higher than a

threshold value.

The reason we focus on stuck and drift faults is that these are

common to single dimensional sensors ([1][5][13]) and yet are

hard to be classed as faults. For example, the altimeter gage in a

UAV might appear to be stuck when the UAV is maintaining its

altitude, or appear to be drifting when the UAV is gaining

1 The Pearson function returns a value (-1..1), the threshold is a

user defined value (0..1) e.g. 0.9.

Figure 1: Partial structural model of a Cessna 172p

airplane.

17

altitude; both are reactions to the UAV's normal behavior.

However, if the altimeter gage appears to be drifting while the

UAV is maintaining altitude or the altitude gage is stuck while the

UAV is gaining altitude, then these are the expressions of a fault.

If a sensor's state is changed to "stuck" or to "drift" we cannot

conclude that it is due to a fault, since the values could still be

expressing a reaction to the system's normal behavior. However,

the sensor is considered as uncertain.

Definition 6: [uncertain sensor] given the sensor state of

 at time , then if () ≠”ok” and

 then is declared as an

uncertain sensor. We use the set to denote the set of

uncertain sensors at time . In addition

⋃
 contains all sensors that were marked as

uncertain in the last time steps.

By extracting information out of the correlations between sensors

in and the system's structural model , we can conclude

whether or not the recognized suspicious pattern of a sensor is due

to a fault.

In the next subsection we describe how the online preprocessing

described here is used in the fault detection and diagnosis

procedures.

4.2 Fault Detection
Following the previous subsection, a detection of a suspicious

pattern in a sensor is not sufficient to implicate the sensor as

faulty. We should still investigate whether it reflects a normal

behavior or a fault. We propose to use the correlated sensor set to

indicate a failure. A high correlation rate between two sensors

dependent on two different components in the structural model

can be the result of: (1) Redundant sensors (dependent on

different internal components) that measure the same thing. For

example, the altimeter and the GPS indicated altitude. If one

system fails the other can be used as a backup. (2) Sensors that

react to the same action of the robot. For example the Pitch angle

and the climb rate indicator are correlated as the UAV's elevator

is invoked.

In these two cases one sensor can either implicate or clear an

uncertain correlated sensor of suspicion. If one sensor is faulty or

displays a faulty behavior due to a dependency on a faulty

component, then it is reasonable to assume that the other sensor

was not affected by the fault and still reflects the robot's behavior.

The same cannot be said about two correlated sensors that share a

component dependency, since both sensors can be affected by the

same fault.

For instance, consider that the altimeter shows a drifting state. If it

is the result of the UAV's climbing then the GPS indicated altitude

(which is dependent on a different component and was determined

as correlated to the altimeter) also changed its state to drift and the

altimeter is cleared of suspicion (see Fig.2). However, if the drift

was a result of a fault, and not of the UAV's behavior, then every

other correlated sensor from another internal component

dependency should not be affected by the fault, and therefore

poses a different state than the altimeter. In this case, we declare a

fault (see Fig.3).

It is important to guarantee first that there is no possibility to clear

the uncertain sensor of its suspicion (i.e. look for another

correlated sensor that do not share component dependency but has

the same state). Only then we look for an implicating sensor (i.e. a

correlated sensor that does not share component dependency and

has a different state) in order to verify the failure of the uncertain

sensor.

Consider, for instance, that a UAV is taking off the runway.

Before it gained altitude, the altimeter which is dependent on the

static system, and the heading indicator which is dependent on the

Figure 2: both Altimeter and GPS altitude are "drifting"

Figure 3: Altimeter "drifts" while GPS is not "drifting"

vacuum system, were both correlated (since both were idle). But

then while taking off the altimeter appears to drift, while the

heading indicator does not. This case would have implicated the

altimeter unless the GPS indicated altitude was also found

drifting, thereby clearing the altimeter of suspicion.

Algorithm 1 presents a fault detection algorithm that determines

whether a sensor with a suspicious pattern state is the result of a

fault. The fault detection algorithm is invoked with each input

reading of the sensors. The algorithm obtains as an input the

updated sliding window , the updated set that contains per

each sensor a set of 's correlated sensors , and the

updated uncertain sensors set .

The algorithm iterates through every uncertain sensor (line 3).

is the set of internal components that is dependent on (line 4).

 is extracted from the structural model by using the mapping

function (Definition 2). Lines 5-8 try to find a sensor that clears

the uncertainty of , i.e. whether there exist a sensor correlated

to that share the same state but is dependent on different

components. We check every sensor in 's correlated set

(line 5). is the set of components that is dependent on (line

6). If and share the same state (())

and do not share dependent components () then is

cleared of suspicion (lines 7-8).

18

If the algorithm did not return, then lines 9-14 check if an

implicating sensor exists, i.e. whether exists a sensor correlated

to that does not share the same state and is dependent on

different components. In the same manner we iterate through each

one of 's correlated sensors (line 10). This time we search a

Algorithm 1: Fault Detection Algorithm

1. Input:

 sliding window at time

 - the sets of correlated sensors at time

 - the uncertain sensors set at time

2. Output: a fault detection report

3. For each sensor

4.

5. For each sensor

6.

7. If () ⋀

8. Return;

9.

10. For each sensor

11.

12. If () ⋀

13.

14. Break;

15. If

16. Report "fault detected, " , , " is suspected"

sensor that shares the same state as but does not share

component dependency (line 12). If such a sensor is found then

the search is stopped (line 14) and a fault is reported (lines 15,16).

Upon fault detection, the diagnosis procedure is invoked. The

diagnosis procedure is described next.

4.3 Diagnosis
In the previous subsection we described how an uncertain

sensor becomes suspected for a fault. The following diagnosis

algorithm (Algorithm 2) is invoked upon fault detection. The

algorithm is invoked with the suspected sensor as an input. The

fact that is suspected and not any other that was correlated to

 is because was the sensor that changed its state to drift or

stuck while the other correlated sensors did not reflect the same

state. Since we concluded that the change of 's state was not a

reaction to the robot's behavior then we determine that is

suspected for a fault.

When a sensor is reported of having a stuck or drift state, it can

either be a single sensor fault, or an expression of a fault of an

internal component that the sensor is dependent on. If an internal

component is faulty then all of its dependent sensors should

display a faulty behavior (Definition 1). Therefore, we check for

each of the other sensors that are dependent on the same internal

component if they are suspected (i.e. changed their state into drift

or stuck). If so, we can include the internal component in the

report.

For example, when the heading indicator was reported as

suspected for a fault, we check if the attitude indicator's pitch, roll

and yaw changed their state as well (see figure 1). If so, then we

also report the vacuum system as suspected of having a fault.

Algorithm 2: Diagnosis Algorithm

1. Input:

 – the suspected sensor

 - the state of
 – the set of all uncertain sensors from the last time

steps

2. Output: a diagnosis report

3. Report is a candidate with a fault state

4.

5. For each

6.

7.
| |

8. Report is a candidate with probability

9. Return;

The diagnosis process reports as a faulty sensor (line 3). Then,

it extracts from the structural model the internal components that

 is dependent on (line 4). For each of those internal components

(line 5) the diagnosis process determines their probability of being

faulty according to the number of their dependent sensors that are

uncertain (are in the suspect set). is a set containing the

component 's dependent sensors (line 6). We report as

having the probability of being faulty as the ratio between the

number of its dependent sensors that are suspected and

the total number of 's dependent sensors (line 7).

Since an internal component fault might be expressed by its

dependent sensors in different time intervals, we use the suspected

set , and return a probability of being fault. If we were to use

rather than , then only sensors that changed their state during

this particular time frame could have implicate the component .

However, some of the sensors might have already changed their

state and hence are not suspected during this particular time

frame. This would result in a low probability of faultiness.

Therefore, we use where suspected sensors remain for several

time frames.

For example, a static system failure causes the altimeter to be

stuck immediately and the vertical speed indicator to drift

downwards a few seconds later. Since both sensors are in , the

static system is reported at a probability of 1. If we were to use ,

the static system would have a probability of 0.5 for being faulty.

The reason for returning a probability rather than determine

faultiness only if all its dependent sensors are suspected is due to

the fact that some sensors might take very long time to react to

 's failure while all others are already suspected. In this case we

wish to report and give an indication about the degree of its

faultiness.

For example, when the electrical system fails, some instruments

such as the GPS fail immediately, but the turn indicator in

particular, will take 30-60 seconds to start drifting downwards.

This is due to the fact that the unpowered gyro still spins, though

slowly loosing speed. Hence the turn indicator's drift effect is yet

19

to show. In this case we would not like to clear the electrical

system from all suspicion just because one instrument is yet to

show suspicion. Therefore, we return the probability, which in this

particular example is above 0.9.

5. EVALUATION

5.1 Experimental Setup
To evaluate our fault detection and diagnosis algorithms we use

two domains. The first domain is a laboratory robot called

Robotican1 (see Figure 4) [11]. The robotican1 has two wheels, 3

sonar range detectors in the front, and 3 infrared range detectors

which are located right above the sonars, making the sonars and

infrareds redundant systems to one another.

This redundancy reflects real world domains such as unmanned

vehicles (aerials, ground underwater etc.) in which fault tolerance

is very important for mission successful completion. When a

sensor is damaged then another sensor can be used to fulfill the

perception. Such is the case with UAVs where a set of different

sensors measure the UAV's 3D location. If the GPS fails, other

altitude gages, accelerometers and attitude gages can be used.

Robotican1 also has 5 degrees

of freedom arm. Each joint is

held by two electrical engines.

These engines provide a sensed

reading of the voltage applied

by their action. To mimic some

internal component depths we

defined 3 abstract internal

components: 1) sonar power

supplier, 2) infrared power

supplier, 3) arm power supplier.

We devised 17 different

scenarios, which included a

scenario without injected faults

and scenarios that included different injected faults while the

robot performed different tasks. Faults were injected to each type

of sensor (motor voltage, infrared and sonar). The injected faults

to the sensors were of type stuck or drift. These faults were

injected to one or more sensors in different time intervals. We

covered cases of faults to sensors that are dependent on the same

components and on different internal components. Failing one of

the three power suppliers described above causes each of the

dependent sensors to fail. The robot's behavior was either to

move, to stand still, or to move its arm to a given position.

The second domain is the FlightGear [2] high fidelity flight

simulator (see Fig.5). This open source simulator is built for and

used in academic research [3]. Furthermore, it realistically

simulates flight instrumental faults such as an altimeter stuck, or

system faults. For example, if the vacuum system fails, then the

gyros responsible for the attitude indicator and the heading

indicator slowly lose their spin speed, causing the indicators to

drift slowly and deviate from the readings of the turn indicator

and compass. These features make the FlightGear simulator to be

very suitable to test our method.

We implemented an autopilot, which flies the aircraft according to

its sensor readings. We used 16 flights that included 4 to 6

instrumental failures at different times while the UAV takes off

and makes a few turns. We failed the altimeter, airspeed indicator

and compass.

Figure 5: FlightGear Simulator Screenshot

On this data set of flights we evaluated (1) the contribution of

using the structural model as an addition to the suspicious pattern

recognition for fault detection (2) the accuracy of our algorithm

comparing to similar competing fault detection approaches.

(1) As described in section 4, our fault detection technique

consists of two parts, the Data Driven part which reports

suspicious patterns in sensors, and the Model-Based part which

uses a structural model to determine whether a suspicious pattern

is a fault. We compared our fault detection algorithm to the same

algorithm without the Model-Based part (i.e fault is reported

whenever a suspicious pattern was recognized).

(2) We compared our approach to our previous fault detection

approach presented in [7] (denoted here m.distance) and to

another competing method for fault detection Local Outlier Factor

(LOF) algorithm [9]. m.distance approach also utilizes a sliding

window technique and Pearson correlation. However, to detect

faults it uses Mahalanobis Distance [8] to compare the online

input to the current data in the sliding window. The LOF

algorithm is also an online density based outlier detection

algorithm which uses the K-nearest neighbor to compare local

density to the expected density and calculate the data instance

measure of being an outlier accordingly.

To evaluate each approach, we calculated the detection rate and

the false alarm rate. The best possible result for the detection rate

is 1 indicating that all faults were detected. The best possible

result for the false alarm rate is 0 indicating that no false alarms

were raised.

In addition, we tested two scenarios for diagnosis – a takeoff and

a free flight. For each scenario we tested every possible

instrumental or system failure, and a combination of multiple

faults. There are 8 types of instruments and 4 types of systems

that can be failed. In total, we examined 16 flights for each

scenario. We used these two data sets to test the diagnosis

accuracy of our current approach.

5.2 Results
The evaluation of the fault detection over the 16 flights produced

the following results: (1) without the use of the structural model in

our fault detection algorithm the false alarm rate is very close to 1

whereas with the use of the structural model the false alarm rate is

very close to 0, indicating the contribution of using the structural

model. (2) All competing algorithms had a detection rate of 1 – all

faults were detected. (3) Our proposed approach also diagnosed

the failing sensor correctly. (4) The false alarm rates of the

competing approaches are shown in Figure 6.

The proposed approach has a false alarm rate of 0.028. This rate is

less than half of the false alarm rate of the m.distance approach.

Moreover, most of the false reports of our proposed approach

were produced by the same sensor. When this sensor is

suppressed there are virtually no false alarms. The lower false

Figure 4: Robotican1

20

alarm rate is explained by the fact that the proposed approach uses

the additional knowledge of component dependency to clear or

implicate an uncertain sensor.

Figure 6: The False Alarm Rates for the approaches

The LOF algorithm returns the degree of a data instance being an

outlier. Thus, a threshold is needed to label a data instance as

faulty or healthy. Since the LOF algorithm does not have a policy

to set these thresholds, we chose these thresholds in such a way

that the results of the LOF algorithm will be optimized. Offline,

considering the reports of an entire flight, we set the threshold as

high as possible such that all faults are detected and thus false

positives are minimized. The false alarm rate of our proposed

approach is lower than the optimized false alarm rate of the LOF

algorithm.

In the Robotican domain we tested 17 diagnosis scenarios. The

results are a fault detection rate of 0.96 and a false alarm rate of

0.013. One fault out of 26 faults was not detected. The faulty

sensor was suspected but was cleared after another correlated

sensor of a different component dependency shared the same

state. All detected faults were diagnosed correctly, i.e. the sensors

and internal components that were reported matched the injected

faults and the report was given at the time of the fault injection.

Figure 7 illustrates the proposed approach results of the two

domains in an ROC chart2. an ROC chart describes the entire

space of fault detection: the X-axis is the false alarm rate and the

Y-axis is the detection rate. A classifier is expressed as a 2D point.

The perfect anomaly detector is located at point (0,1). In both

domains our proposed approach is very close to the perfect fault

detector (theoretically with a detection rate of 1 and a false alarm

rate of 0).

In the FlightGear domain we evaluated two more scenarios, a

takeoff and a free flight, 16 flights per each scenario. These

scenarios were used to further evaluate the diagnosis aspect of the

proposed approach. All instrumental failures and system failures

were diagnosed. We would like to elaborate on the following

study cases which show the need for various aspects of the

diagnosis algorithm, advantages and disadvantages.

2 Note that to produce a better view the scale of the false alarm

rate reach 0.1 (and not 1)

Figure 7: ROC chart of the two domains

Case 1: a static system failure causes the altimeter to be stuck,

and the airspeed indicator to drift down to 0 a few seconds later.

The static system was suspected at a probability of 1 due to the

fact that suspected sensors remain suspected for a given time (a

few seconds). The drift of the airspeed indicator caused the pitot

system to be suspected as well and included in the diagnosis.

Case 2: a failure to the pitot system causes the airspeed indicator

to drift upwards, unless there is a failure to the static system as

well, which causes the airspeed indicator to be stuck. Note that the

proposed approach is unaware of these rules, but still recognizes

these effects as suspected faults and reports the pitot system as

suspect when needed.

Case 3: a failure to the electrical system causes many instruments

to fail immediately. But the turn indicator starts to drift

downwards only after 30 seconds to 1 minute and is yet to be

detected. This case justifies the use of probability to determine a

suspected internal component. The electrical system is suspected

in a probability greater than 0.9.

Case 4: a failure to the attitude indicator (and not the vacuum

system) causes some sensors to fail i.e. pitch, roll and yaw angles.

The proposed approach reported that the vacuum system is

suspected at a probability of 0.8. The heading indicator which is

also dependent on the vacuum system is healthy. If the proposed

approach did not use a probability then the heading-indicator's

health would have cleared the vacuum system suspicion. This case

does not justify the use of a probability. However, the heading

indicator may yet fail as in case 3 and thus a probability is used.

6. Discussion
Redundancy and correlation: since the approach tries to detect

faults to single-dimensional sensors, it relies heavily on the

additional data provided by redundant sensors. The correlation is

used to indicate which sensors are redundant. When the

knowledge of redundant sensors is present, we suggest using it

instead.

However, some correlations between irredundant sensors might

also help in fault detection. For example, a climbing rate sensor is

usually correlated to the pitch sensor even though they are not

redundant with respect to each other. Yet, possessing different

states (e.g. pitch is "ok", climbing rate is "drifting" down) might

indicate a fault (e.g. climbing rate is faulty or worse, an aircraft

stall).

If attributes that calculate the expected value of a sensor are

present, then they can be used as "redundant sensors" as well. For

instance, the attribute speed calculated from GPS position samples

can be used as a redundant sensor to a speed sensor.

m.distance approach

21

Suspicious patterns: as described in the paper the fault detection

algorithm is provided with a function that recognizes known

suspicious patterns in a sensor data. Therefore, is domain

specific and should be implemented according to the expression

of known faults in the system's sensors. Since is a part of the

approach's input the approach is still general and not contained

strictly to patterns such as "drift" and "stuck". also handles

noise issues. For instance, in the tested domains the "drift" state

was calculated with a linear regression slope. The only concern of

the fault detection approach is to determine whether a suspicious

pattern is a reaction to a behavior of the system or a reaction to a

fault.

Algorithm parameters: the fault detection algorithm and the

diagnosis algorithm used different parameters. These parameters

are domain specific, and should be adjusted according to a labeled

data set.

Setting the correlation threshold too low could result in more false

positives as well as false negatives since irrelevant sensors are

used to implicate or clear uncertain sensors of suspicion. Setting

the threshold too high could result in a higher rate of false

negatives due to approaches reliance of redundancy.

The sliding-window size affects the time of calculation as well as

the false negatives rates. Setting it too small could result in

insufficient data size to determine a good correlation by Pearson

or recognize a suspicious pattern by the function. We suggest

using the largest size which is in the capabilities of online

calculation in the system.

The time () a sensor remains suspected (in) affects the

implication of an internal component. The longer the time is, the

more likely it is for an internal component to be included in the

diagnosis. Since past suspicions become, in time, irrelevant to

current events then should be limited. The setting of is domain

specific and should be learned from labeled diagnosis data set.

Structural model and diagnosis: the structural model presented

in this paper may appear as simple partition to subsystems. In

reality, a structural model contains several levels of depth

describing component dependency (e.g. a sensor is dependent on a

component that is dependent on another component). The

diagnosis algorithm can be applied recursively, implicating each

component at level , if all its dependent components at level

 are suspected of having a fault. Thus, a component level

fault is unmasked.

The proposed approach gives sensors an even weight when

implicating a suspected component. Different weights can be used

in the model according to the sensor's ability to indicate that the

internal component is failing. In the FlightGear domain we did not

monitor sensors that would have made the fault detection and

diagnosis too easy. The vacuum intake sensor could easily

implicate the vacuum system, and the voltmeter and ampermeter

sensors could easily implicate the electrical system. We suggest

modeling these kinds of sensors with a high weight.

7. CONCLUSION
We showed an approach that when given a structural model and

sensor readings it can detect sensor related faults that occur over

time and diagnose them online with high precision. We showed

how a structural model is used diagnose internal components. We

evaluated the approach on physical and simulated domains. We

described study cases which show the advantages and

disadvantages of the different aspects of the proposed approach.

The advantages of the approach are the ability to distinguish a

fault from a normal behavior when a suspicious pattern is

recognized in a sensor, the ability to detect faults that occur over a

period of time, and the ability to successfully diagnose root

causes. The disadvantages are the reliance on redundancy, the

reliance on predefined suspicious patterns, and the return of the

degree of faultiness of internal components rather than a

deterministic answer.

We believe that further optimizations can be made as described in

the discussion section.

8. REFERENCES
[1] ADAPT system http://ti.arc.nasa.gov/tech/dash/diagnostics-

and-prognostics/adapt-diagnostics/

[2] FlightGear, http://www.flightgear.org/

[3] FlightGear in Research - http://www.flightgear.org/Projects/

[4] Hashimoto M. (2005) A multi-model based fault detection

and diagnosis of internal sensors for mobile robot.

Intelligent Robots and Systems ,pp.3787- 3792.

[5] International Diagnostic Competition -

http://sites.google.com/site/dxcompetition2011/

[6] Isermann R. (2005). Model-based fault-detection and

diagnosis—Status and applications. Annual Reviews in

Control, 29(1), 71–85.

[7] Khalastchi E., Kalech M., lin R. and Kaminka G. Online

Anomaly Detection in Unmanned Vehicles. The Tenth

International Conference on Autonomous Agents and Multi-

Agent Systems, p. 115-122 (2011).

[8] Mahalanobis P. C. (1936). On the generalized distance in

statistics. The National Institute of Science, pages 49–55.

[9] Pokrajac D. (2007) Incremental local outlier detection for

data streams. IEEE Symposium on Computational

Intelligence and Data Mining.

[10] Robotcup, http://www.robocup.org/

[11] Robotican http://www.robotican.net/

[12] Steinbauer G. a survey on the nature of faults of

autonomous robot systems

http://www.ist.tugraz.at/rfs/index.php/Main_Page

[13] Varun C., Arindam B. Anomaly detection: A survey. The

Association for Computing Machinery, Computing Surveys,

41(3):1–58. (2009)

22

http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/adapt-diagnostics/
http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/adapt-diagnostics/
http://www.flightgear.org/
http://www.flightgear.org/Projects/
http://sites.google.com/site/dxcompetition2011/
http://www.robocup.org/
http://www.robotican.net/
http://www.ist.tugraz.at/rfs/index.php/Main_Page

