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ABSTRACT 
Large-scale simulations often use multiple agent representations 
to permit the study of specific multi-agent phenomena, and to find 
a balance between run-time performance and level of detail of the 
simulation. Although these approaches are effective, they do not 
always offer the desired level of analysis, especially when this 
level is between the resolutions of the models available. In this 
paper, we aim at offering a finer method in exploring this trade-
off by introducing an intermediate level between two given 
resolutions, which can apply to all agent models and allows a 
more progressive transition to offer the desired level of analysis. 
We introduce a framework for such a methodology and evaluate it 
through the extension of an existing approach, along two criteria: 
its impact on computational resources, and an estimate of the 
dissimilarity between a simulation using our methodology and one 
without. Initial experiments show that consistency is almost 
maintained while CPU gain varies from low to significant 
depending on the context. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence – 
Multiagent systems 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Agent-based simulations – Simulation techniques – Tools and 
environments – Level of Detail – Multi Representation Modeling. 

1. INTRODUCTION 
The simulation of human behavior has attracted growing interest 
in many applicative fields. Its ability to populate complex 
environments with agents showing credible behaviors allows the 
study of different scenarios in fields such as security, 
infrastructure protection, urban planning or video game. The 
realism of the interactions exhibited by the virtual agents is a key 
point for military and civilian training simulations. However, 
those applicative domains also require the animation of large 
numbers of agents to breathe life into their scenarios. This ability, 
coupled with the complexity of the underlying agent models, 
requires important computational power. Indeed, microscopic 
behavioral models such as those used for computing the 
emotional, motivational, navigational and cognitive states of a 

single agent need several updates per second and sometime 
additional data from surrounding agents, for detection and 
communication purposes. Thus, the computational load is directly 
linked to the number of simulated agents. 

Several multi-resolution approaches have tried to overcome this 
difficulty by introducing new representation levels for the 
simulated entities, besides the microscopic one. From purely 
macroscopic to hybrid representations, they usually aim at 
breaking the typical one-to-one match between simulated entities 
from the “real world” and virtual agents in the simulation, so as to 
optimize the use of computing resources. However, their 
implementation is often done at the expense of a significant 
design cost. Moreover, the lower-resolution models do not always 
allow the reproduction of microscopic phenomena, thus impacting 
significantly the simulation consistency. This limitation has been 
highlighted in the work described in [7], which is the basis of the 
approach presented here. In [7], a dynamic agent aggregation 
method applied to a pedestrian simulation showed that, in specific 
contexts, the aggregates were not able to exhibit specific 
navigational and decisional patterns, which were yet observed in 
the microscopic simulation of the same scenario. 

A possible and natural way to overcome this is to enhance the 
lower-resolution models, allowing them to reproduce the desired 
phenomena. However, this solution requires the ability to 
understand and modify the models as well as the associated 
transition functions. In addition, it is not reasonable to apply such 
process each time a new phenomenon emerges from the 
microscopic level without complicating the lower-resolution 
models. On the contrary, we argue that it is possible to offer a 
more flexible and controlled way to migrate from a representation 
level to another in order to keep, if needed, parts of the highest-
resolution model responsible for the emergence of the desired 
phenomena, while abstracting less needed behavioral aspects. 1 

To do so, we present here a novel approach for multi-level agent-
based simulations, by introducing an intermediate level between 
microscopic and macroscopic resolutions, which can apply to all 
agent models. This level, referred here as mesoscopic, allows a 
more progressive transition between two models to offer the 
desired level of analysis given the context of the simulation and 
the user needs. With this aim, we define the notion of agent 
processes, which are inner parts of the agent models. Then, we 
extend the generic notions of dynamic change of representation 
and spatial aggregation introduced in [7]. Finally, we define 
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several environments in which we evaluate the approach 
experimentally, discuss the results and propose enhancements for 
future work. 

2. RELATED WORK 
Finding the resolution that best suits a given problem, among 
several models of a given phenomenon, has been widely studied 
within the Multi Representation Modeling (MRM) field through 
the joint execution of multiple models. In selective viewing, only 
the highest resolution model is executed at all times, and all other 
models are emulated by abstracting the representation of the most 
detailed one [9]. This approach is used when the simulation 
requires a phenomenon to be modeled in detail. Although it may 
be efficient for applications which need high precision, it requires 
huge computational resources. Moreover, multiple models are not 
necessarily organized hierarchically in a natural way, preventing 
designers to define which model is the most detailed. Finally, 
executing the higher-resolution model does not always facilitate 
decision making. 

In aggregation / disaggregation techniques, only one model is 
executed at a given time, but not necessarily the most detailed 
one. Aggregation corresponds to the transition from high-
resolution entities to a low-resolution one, while disaggregation is 
the opposite process. The choice of model depends on the user’s 
need or the necessity to match the resolution of other interacting 
entities. Several variants exist, such as Full Disaggregation [10], 
Partial Disaggregation [6], Playboxes [11], Dynamic Component 
Substitution [15] and Pseudo Disaggregation [10]. Each of them 
can lead to speedup when a balance between complexity and 
simulation needs is found. But they require huge resources when 
moving from one model to another, and problems – such as chain 
disaggregation – may arise in case of cross-level interactions. 
Finally, transition latency, network fl ooding and thrashing may 
impact simulation consistency [16]. 

Variable Resolution Modeling (VRM) allows the creation of 
families of models that support dynamic changes in resolution [9] 
by introducing several constraints. Thus, all the models 
parameters are standardized within a dictionary and inserted in a 
hierarchical structure symbolizing their dependencies. Rules are 
defined between models to match the computation time steps, 
ensure the consistency of the simulation and allow the calibration. 
Following those rules, a designer can create a family of models 
that can adapt their resolution level to the simulation needs. But 
this approach is mainly theoretical and is not suitable when the 
models are pre-designed and cannot be adapted to the VRM 
approach. 

Multiple Representation Entities [5] is a last example from the 
MRM field that is of particular interest here. This approach 
maintains, at all time in the simulation, all representations through 
all available models of a given phenomenon, using appropriate 
mapping functions to translate changes between two 
representations. This allows interactions between all the 
representations, and avoids wasting resources as happens when 
scaling from one model to another. MRE is a powerful way to 
deal with complex MRM, which offers a remedy for the weakness 
of aggregation / disaggregation methods and requires lower 
resources than the simultaneous execution of multiple models. But 
it only provides mathematical requirements for the mapping 
functions, through the use of attributes dependency graphs. Also, 

it does not identify the representation at any level nor 
relationships between representations. 

Some approaches in Multi-Agent Simulation (MAS) also leverage 
the principle of simultaneous use of microscopic and macroscopic 
models, by partitioning the environment and running a different 
model in each zone. The pedestrian simulations described in [1] 
and [17] use high-level flow and distribution models to steer non-
visible agents along a network of nodes that describe the 
accessible areas of a city, and a microscopic collision avoidance 
model with speed adjustment for visible actors. Similarly, [13] 
and [14] describe traffic simulations using a static predesigned 
world. Thus, a macroscopic model based on the flow theory is 
used in low interest areas without crossroads, and a microscopic 
multi-agent car-following model in high interest areas. Those 
architectures can handle several thousand agents with high 
consistency and offer a good interactivity with the agents’ 
behavior within both macroscopic and microscopic areas. But 
they require a preprocessed environment and predefined transition 
functions between the agent models. 

A last set of MAS approaches tries to overcome the design 
constraint of the transition functions between agent models. In 
IVE [18], the 2D environment is abstracted in a topological tree in 
which each leaf represents a reachable location and each node an 
aggregation of areas. On the other hand, the agents are driven by a 
hierarchical reactive planning mechanism whose nodes are linked 
to the ones of the topological tree. IVE can then adapt the level of 
detail of the agent’s behavior according to the importance of the 
area in which the entity is located without having to tweak the 
model of change the agent’s representation. Similarly in JEDI [4], 
the environment is represented as atomic cells nested together to 
form lower-level areas. To each cell is linked a matrix of possible 
interactions, thus defining the behaviors of the agents it contains. 
The interactions of the low-resolution areas are deducted from the 
ones of the cell it aggregates. These two frameworks can change 
the representation level of their agents without using transition 
functions, and thus maintain a strong consistency. However, this 
is only possible because the behavioral models are rule-based, and 
thus remain quite simple. 

All the approaches described above use a set number of 
representations that depends on the number of models they 
consider. They therefore cannot address accurately a problem 
whose solution is intrinsically situated between two representation 
levels. For a given resolution, the behavior of a virtual actor 
depends entirely on its assigned agent model. If its dynamics 
diverges from the one of the other higher or lower resolution 
models, then the consistency of the simulation cannot be 
maintained, regardless of the transfer functions used. 

3. DYNAMIC LEVEL OF DETAIL 
This section describes more precisely an alternative approach to 
the ones reviewed above, and provides a formal and experimental 
context to the rest of this paper. This approach, detailed in [7], 
introduces an aggregation method for the dynamic (online) 
migration from several microscopic agents to a single 
macroscopic entity. It is composed of two phases: an agent 
aggregation phase and a representation change phase. 

The first phase is used to determine which agents should be 
grouped together, based on the context of the simulation. Given 
two entities 𝐴! and 𝐴!, this approach introduces a physical 
distance, 𝐷! 𝐴!;   𝐴! , and a psychological one, 𝐷! 𝐴!;   𝐴! , 
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which are combined to estimate the affinity 𝐴𝑓𝑓 𝐴!;𝐴!  between 
those two agents. The affinity represents the proximity of 𝐴! and 
𝐴!, based on their physical and mental states. The context of the 
simulation is taken into account with the definition of events, 
which are points of interest requiring surrounding agents to be 
simulated at highest resolution to ensure simulation consistency. 
If 𝐸 = 𝐸!;… ;𝐸!  is a set of events, the affinity of 𝐴! and 𝐴! 
regarding the simulation context is denoted by 𝐴𝑓𝑓 𝐴!;𝐴!;𝐸 , 
such as: 

𝐴𝑓𝑓 𝐴!;𝐴! = 𝑓 𝐷! 𝐴!;𝐴! ;𝐷! 𝐴!;𝐴!  

𝐴𝑓𝑓 𝐴!;𝐴!;𝐸 = Max
!∈ !; !

𝑔 𝐷! 𝐴!;   𝐴!;   𝐸! ;𝐷! 𝐴!;   𝐴!;   𝐸!  

𝑤𝑖𝑡ℎ  
𝐷! 𝐴!;𝐴!;   𝐸! = Min

  
𝐷! 𝐴!;𝐸! ;   𝐷! 𝐴!;𝐸!

𝐷! 𝐴!;𝐴!;𝐸! = Min
  
𝐷! 𝐴!;𝐸! ;   𝐷! 𝐴!;𝐸!

 

𝐴𝑓𝑓 𝐴!;𝐴!  and 𝐴𝑓𝑓 𝐴!;𝐴!;𝐸  are combined to define the 
aggregation utility 𝑈!" 𝐴!;𝐴! . It represents the usefulness of 
creating an aggregate considering 𝐴!, 𝐴! and the simulation 
context. A similar process is described to disaggregate a low 
resolution entity 𝐴!, based on physical and psychological 
distances between 𝐴! and 𝐸, which are combined to set a 
disaggregation utility 𝑈!"#$% 𝐴′ . 

In a second phase, the representation change provides a way to 
compute the attributes of the representation of a low resolution 
agent given those of several higher resolution entities, and vice 
versa. Let 𝑀! be an agent model, which is a computational 
abstraction of the global behavior of a synthetic actor. 𝑀! takes as 
input the representation of an agent and of its environment, and 
outputs an action or a modification of the agent’s representation. 
This representation – denoted by 𝑅𝑒𝑝 𝑀!  – is the set of attributes 
𝒜! !∈ !.. !!  needed by the agent model to perform its task and is 

usually assimilated to its internal state. Then, the representations 
of an agent 𝐴! in 𝑀! at time 𝑡, and a set of agents 
𝐴 = 𝐴!;   … ;   𝐴!  in 𝑀! at time 𝑡 are the vector and the matrix of 
attributes’ values, denoted by  𝑅𝑒𝑝 𝐴!;𝑀!; 𝑡  and 𝑅𝑒𝑝 𝐴;   𝑀!; 𝑡 , 
such as: 

𝑅𝑒𝑝 𝐴!;𝑀!; 𝑡 =
𝑎!;  ! 𝑡

⋮
𝑎!;   !! 𝑡

 

𝑅𝑒𝑝 𝐴;   𝑀!; 𝑡 = 𝑅𝑒𝑝 𝐴!;   𝑀!; 𝑡 ;… ;   𝑅𝑒𝑝 𝐴!;   𝑀!; 𝑡

=
𝑎!;  ! 𝑡 ⋯ 𝑎!;  ! 𝑡

⋮ ⋱ ⋮
𝑎!;   !! 𝑡 ⋯ 𝑎!;   !! 𝑡

 

If 𝑀! is another agent model whose resolution is lower than the 
one of 𝑀!, then the objective of the representation change axis is 
to compute the representation of the aggregate 𝐴′ in 𝑀! at time 𝑡 
from the set of agents 𝐴, such as: 

𝑅𝑒𝑝 𝐴!;   𝑀!; 𝑡 = 𝐹!" 𝑅𝑒𝑝 𝐴;   𝑀!; 𝑡  

To do so, the approach proposes to divide the representation of 
each model into subsets of attributes sharing the same meaning 
and therefore a common dynamics. Accordingly, 𝐹!" is split into 
several sub functions, each operating on a specific class of 
attributes. In [7], those sub functions are simple SUM, MIN, 
MAX, MEDIAN or MEAN operators. During aggregation, a 
memory function is used. Its goal is to save data for further 
disaggregation, for each attribute of each agent in 𝐴 and regarding 
the computed representation of 𝐴′, such as: 

𝑀𝑒𝑚 𝐴;   𝑀!; 𝑡 = 𝐹!"# 𝑅𝑒𝑝 𝐴;   𝑀!; 𝑡 ;   𝑅𝑒𝑝 𝐴!;   𝑀!; 𝑡  

𝑅𝑒𝑝 𝐴;   𝑀!; 𝑡! = 𝐹!"#$% 𝑅𝑒𝑝 𝐴!;   𝑀!; 𝑡! ;   𝑀𝑒𝑚 𝐴;   𝑀!; 𝑡  

The approach described above has been evaluated on a large-scale 
multi-agent simulation, along two criteria: the gain in computer 
resources induced by the dynamic level of detail, and the 
preservation of the simulation consistency. This second criterion 
is described in [9] and represents the quantity of information lost 
during the aggregation / disaggregation process. It is obtained by 
comparing the final states of a microscopic simulation and a 
multi-resolution one. Evaluations conducted on different 
environments have shown that the approach offers, in most 
scenarios, an effective way to save computational resources at the 
expense of a small loss of consistency. However, several 
experimentations highlighted its failure at accounting for 
macroscopic phenomena emerging at the microscopic level. For 
example, specific navigational and decisional effects in crowded 
environments due to congestion, such as the increase in physical 
collisions and stress resulting in panic and fleeing behaviors, are 
not reproduced.  

This is mainly a consequence of the fact that the same agent 
model is used at both microscopic and macroscopic representation 
levels. Thus, the physical space occupied by an aggregate is the 
same as the one of a microscopic agent. In the multi-resolution 
simulation, and for the same number of agents as in the 
microscopic one, the congestion of the environment no longer 
exists. Entities’ perceptions are different from one simulation to 
another, which leads to diverging choices of paths and actions. 
The obvious inability of the agent model to reproduce a spatial 
phenomenon at low-resolution is sufficient to induce a significant 
and unacceptable loss of consistency. While a possible solution is 
to create an adequate macroscopic model capable of managing 
accurately the space taken by an aggregate, we suggest here 
another approach which is to preserve the spatiality of the 
aggregated agents, thus solving the problem described above, 
while migrating their decision-making processes at the 
macroscopic level. We chose to explore and generalize this idea in 
this paper, as described below. 

4. MESOSCOPIC LEVEL 
4.1 The mesoscopic representation 
In this work, we aim to offer a smoother transition between two 
representations by creating an intermediate resolution level. 
Unlike the macroscopic one in which all agents are aggregated 
into a single entity, the mesoscopic level centralizes parts of the 
computation performed on the microscopic agents in order to free 
computational resources while letting other parts be updated 
according to their initial level. 

We consider the case where the higher-resolution model is not 
composed of a single block, such as a single function, but rather a 
set of several distinct processes, each being a mostly autonomous 
module leading to a particular skill of the agent. Such skills can be 
the navigation, decision, emotions, planning, communication or 
social interactions ability of the agent. For example, in well-
known cognitive architectures such as ACT-R [3], ICARUS [2] 
and SOAR [8] the processes could be the emotional, decisional or 
sensitive / short term / long term memories modules for the first 
one, or the declarative procedural memory, pattern matching, and 
production execution modules for the second. Those processes are 
themselves models, taking as inputs a subset of the agent model’s 
inputs and outputting modifications of the agent’s representation 
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as well as specific data. They are usually chained, each of them 
requiring others to do their work before it can execute its own. To 
continue the previous example, the SOAR decision process needs 
the elaboration process to fire all production rules, meaning that 
the working memory has been previously updated by the 
perception module. Thus, it is often possible to identify a 
hierarchy of dependencies between processes within a single 
agent model. 

 
Figure 1. Example of the macroscopic and mesoscopic 

aggregation of 4 agents implemented as a set of P processes. 

We consider that the agent model 𝑀 is composed of a set of 
processes 𝑃 = 𝑃!;   𝑃!;   … ;   𝑃! . The goal, outlined in Figure 1, is 
to allow the subset 𝑃!"#$ ⊂ 𝑃 to be run at the mesoscopic level 
while 𝑃!"#$% = 𝑃 ∖ 𝑃!"#$ will remain at the microscopic level. 
The microscopic representation of an agent 𝐴! and the one of a set 
of agents 𝐴 = 𝐴!;   𝐴!;   … ;   𝐴!  in 𝑃! ∈ 𝑃 at time 𝑡 are denoted 
by 𝑅𝑒𝑝!"#$% 𝐴!;𝑃!; 𝑡  and 𝑅𝑒𝑝!"#$% 𝐴;𝑃!; 𝑡  such as: 

𝑅𝑒𝑝!"#$% 𝐴!;   𝑃!; 𝑡 =
𝑎!;!! 𝑡
⋮

𝑎!; !!
! 𝑡

  𝑤𝑖𝑡ℎ  𝑅𝑒𝑝 𝑃! ⊂ 𝑅𝑒𝑝 𝑀  

𝑅𝑒𝑝!"#$% 𝐴;   𝑃!; 𝑡 = 𝑅𝑒𝑝!"#$% 𝐴!;   𝑃!; 𝑡 ;… ;𝑅𝑒𝑝!"#$% 𝐴!;   𝑃!; 𝑡

=
𝑎!;!! 𝑡 ⋯ 𝑎!;!! 𝑡
⋮ ⋱ ⋮

𝑎!; !!
! 𝑡 ⋯ 𝑎!; !!

! 𝑡
 

For a process 𝑃! ∈ 𝑃!"#$, we need to compute the mesoscopic 
representation of 𝐴 at time 𝑡 denoted by 𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡 . To do 
so, we use the methodology described in [7] and detailed above. 
First, we partition 𝑅𝑒𝑝 𝑀  among several attributes classes. Then 
we link each class with an aggregation operator and its 
corresponding disaggregation and memory functions, respectively 
denoted by 𝐹!", 𝐹!"#$% and 𝐹!"#, so that we have for a given 
process 𝑃!: 

𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡 = 𝐹!" 𝑅𝑒𝑝!"#$% 𝐴;   𝑃!; 𝑡  

𝑀𝑒𝑚 𝐴;   𝑃!; 𝑡 = 𝐹!"# 𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡 ;   𝑅𝑒𝑝!"#$% 𝐴;   𝑃!; 𝑡  

𝑅𝑒𝑝!"#$% 𝐴;   𝑃!; 𝑡! = 𝐹!"#$% 𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡! ;   𝑀𝑒𝑚 𝐴;   𝑃!; 𝑡  

This method allows the migration from a microscopic 
representation to a macroscopic one – and vice versa – except that 

it operates here on a chosen subset of 𝑅𝑒𝑝 𝑀 . Thus, it allows a 
single process to work at the mesoscopic level by computing the 
needed representation of 𝐴. However, this process is part of a 
hierarchy and may have dependencies with other processes. In 
order to avoid inconsistencies in the computation of the agent 
model, we must consider the attributes of 𝑅𝑒𝑝 𝑀 . If an attribute 
𝒜 is only used at the microscopic level, then it is ignored. On the 
other hand, if 𝒜 is only used at the mesoscopic level, which 
means that 𝒜 ∉ 𝑅𝑒𝑝 𝑃!!!∈!!"#$% , it is aggregated once. 
Finally, if 𝒜 is used at both levels, we need to maintain both 
microscopic and mesoscopic values of 𝒜 when it is updated by 
any process, with the aggregation, disaggregation and memory 
functions described above for the attributes class to which it 
belongs. In practice, it is possible to restrict such computation – 
which can be CPU intensive – by updating the microscopic values 
of an attribute only if a mesoscopic process has updated it earlier 
in the agent model update and vice versa. 

At this point, we propose a simple example to illustrate the 
process described above. Let 𝑀 be an agent model whose 
representation is composed of 5 attributes and which can be split 
into a set 𝑃 containing 3 processes, such as: 

𝑅𝑒𝑝 𝑀 = 𝒜!;   … ;   𝒜!  

𝑃 = 𝑃!;   𝑃!;   𝑃!  and 
𝑅𝑒𝑝 𝑃! = 𝒜!;   𝒜!;   𝒜!
𝑅𝑒𝑝 𝑃! = 𝒜!;   𝒜!;   𝒜!
𝑅𝑒𝑝 𝑃! = 𝒜!;   𝒜!

 

The dependency hierarchy between the processes constituting our 
example is outlined in Figure 2. It shows that, in order to achieve 
a full update of the agent model, 𝑃! must be computed first, then 
𝑃! and finally 𝑃!. When a mesoscopic agent 𝐴 is created at time 𝑡, 
𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡  is computed because 𝑃! is at the mesoscopic 
level. At time 𝑡!, when 𝐴 is updated in the simulation, then 𝑃! is 
computed, followed by 𝑃!. To do so, the value of 𝒜! in 
𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡!  is aggregated from 𝑅𝑒𝑝!"#$% A;𝑃!; 𝑡! , 
because 𝒜! is common to 𝑅𝑒𝑝 𝑃!  and 𝑅𝑒𝑝 𝑃! . Similarly, in 
order to update 𝑃!, the value of 𝒜! in 𝑅𝑒𝑝!"#$% A;𝑃!; 𝑡!  is 
disaggregated from 𝑅𝑒𝑝!"#$ 𝐴;𝑃!; 𝑡! . The values of 𝒜!, 𝒜! 
and 𝒜! are not modified by our approach as they only appear in 
one representation level. 

 
Figure 2. Example of dependency hierarchy of a model 

constituted of 3 processes. 
Such approach allows the migration of any process constituting 
the agent model from the microscopic to the mesoscopic level, 
resulting in the freeing of computation time. The choice of the 
aggregation functions – and their corresponding disaggregation 
and memory operators – must be done wisely in order to maintain 
simulation consistency as defined in [9]. The selection of the 
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processes to transfer is also an important issue. Firstly, it impacts 
the consistency, as the processes do not share the same impact on 
the environment and the surrounding agents. Moreover, it is better 
to migrate those that require high computational resources and 
have few dependencies with others in order to avoid constant 
aggregation / disaggregation of attributes. Finally, it is important 
to note that migrating all processes to the mesoscopic level is 
equivalent to aggregating the set of agents to a macroscopic one 
driven by the same agent model. 

4.2 Spatial aggregation 
This section tackles the problem of finding which agents should 
be aggregated to form a mesoscopic entity, and which processes 
of this new entity must be migrated to the mesoscopic level. To do 
so, our approach uses the mechanisms of spatial aggregation 
described in Section 3. Thus, it relies on the physical and 
psychological distances 𝐷! and 𝐷! between the considered pair 
of agents and the set of simulation events, combined to compute 
the aggregation utility 𝑈!". However, the definitions of 𝐷! and 
𝐷! are not trivial here because the representation of the 
mesoscopic agent is fragmented. Indeed, if their computation 
requires a set of attributes of which a part is used by a mesoscopic 
process while the rest remains microscopic, then their 
implementation will require choosing carefully the suitable 
attributes in the correct representation.  

In addition to identifying agents that can be aggregated, this 
method offers the ability to choose the processes which should 
migrate to the mesoscopic level and those which should stay at the 
microscopic one. To do so, we define for each process an 
aggregation threshold, thus creating a total order over them. It 
means that the lower the threshold, the higher priority is given to 
the migration of the process to the mesoscopic level. At 
aggregation time, those values are compared to 𝑈!" and will 
determine the structure of the final aggregate. It is important to 
note that the aggregation thresholds do not rely on the dependency 
hierarchy described above. However, choosing the processes 
order according to the hierarchy lowers the risk of having 
attributes at microscopic and mesoscopic levels which, as seen 
before, need to be maintained in both representations to ensure the 
consistency of the processes computation. Of course, it may 
happen that two processes cannot be separated because of some 
characteristics of their implementation or of the high number of 
attributes they share. In this case, a possible solution would be to 
assign the same threshold to both. 

The disaggregation of a mesoscopic agent proceeds of the same 
idea, via the definition of a disaggregation utility. However, 
unlike the macroscopic approach where this utility has to be 
computed once for the whole aggregate, it must here be computed 
for each microscopic entity composing the mesoscopic agent, 
because some of its processes might remain at the microscopic 
level and are involved in the calculus of 𝐷! and 𝐷!. Although this 
approach requires significant computational resources, it allows 
disaggregating a single microscopic agent from the aggregate, in 
regard to the simulation context. Such feature was not possible 
with the macroscopic approach. For example, if a microscopic 
agent tries to communicate with some microscopic entities of a 
mesoscopic agent, and if the communication process is still at the 
microscopic level, then the disaggregation utility of the 
communicating entities – and only them – will allow a partial 

disaggregation of the mesoscopic agent. We then have, for a 
mesoscopic agent 𝐴: 

𝐴𝑓𝑓 𝐴!;𝐸 = Max
!∈ !; !

𝐴𝑓𝑓 𝐴!;𝐸! ,𝐴! ∈ 𝐴 

The method described above only applies when the aggregation 
and disaggregation utilities between two agents must be 
computed. However, it does not let the processes migrate 
dynamically when the mesoscopic agent is alone. To do so, we 
define a representation change utility for a mesoscopic (or 
macroscopic) agent 𝐴, denoted by 𝑈!" 𝐴 , such as: 

𝑈!" 𝐴 = 𝑓 Max
!∈ !; !

𝑓 𝐷! 𝐴;   𝐸! ;𝐷! 𝐴;   𝐸!  

𝑈!"  has nearly the same meaning as the aggregation utility except 
that it applies to a single agent. As a result, comparing it to the 
processes aggregation thresholds lets the aggregate adapt 
dynamically the representation level of its own processes. While 
this approach allows a complete control over the processes 
migration, it implies an additional cost in computational resources 
as it is applied for every mesoscopic agent registered in the 
simulation at each LOD update. 

5. EXPERIMENTAL EVALUATION 
The approach described above has been implemented and 
evaluated within a proprietary multi-agent simulator. This system 
is a synthetic environment engine in which each agent has a 
motivational tree containing predefined attributes, internal 
variables, emotion and motivations, and can exhibit complex 
adaptive behaviors. The agent model contains several processes 
on which our approach can work, such as perceptions, emotions, 
decision, planning, navigation and interaction with the 
environment through Smart Objects. Currently, the system can 
animate up to 20,000 agents driven by more than 20 motivations 
within a complex environment. 

For these experimentations, we tackled the limitations observed 
with previous work. Thus, we split the representation of the agent 
model between two main attribute classes: physical and 
psychological. We simply do the same for the processes. We 
assign the aggregation thresholds 𝑇! to the emotional and 
decisional processes and 𝑇! to the planning one, such as 𝑇! ≤ 𝑇!. 
In contrast, we give an infinite threshold to the other physical 
processes such as perception and navigation. The goal is to allow 
only those working on psychological attributes to migrate to the 
mesoscopic level, starting with the most abstract and cognitive 
ones, later followed by the most concrete if 𝑇! ≠ 𝑇!. Doing so, the 
microscopic agents will share their ‘minds’ through execution of 
the mesoscopic processes while their bodies will remain at high-
resolution in the simulation. This LOD approach tries to reflect 
the human characteristic of being more sensitive to the physical or 
visual inconsistencies – wrong trajectories, oscillations, faulty 
collision avoidance – than the psychological ones. 

By preserving the physical parts of the microscopic agents, we 
hope to solve the spatial inconsistencies observed during previous 
experimentations. However, maintaining the perception process at 
the microscopic level means that the perceptions of the 
mesoscopic agent are an automatic aggregation of those of its 
microscopic entities. Moreover, the choice of leaving the process 
in charge of the interactions with the environment at the 
microscopic level implies that all parts of the mesoscopic agent 
interacting with a Smart Object will be disaggregated, following 
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the definition of the disaggregation utility defined above. Such 
choice leads to an additional cost in computing resources, but is 
the easiest way to handle interactions here. Indeed, migrating this 
process to the mesoscopic level would require specific interaction 
models in the objects themselves, giving them the ability to 
interact with only a part of a mesoscopic agent. This point is the 
most important functional difference between macroscopic and 
mesoscopic simulations. 

We use two scenarios that were used previously. The first one 
takes place in an initially empty subway station, shown in Figure 
3, including various objects such as ATMs, ticket vending 
machines, beverage dispensers and ticket barriers.  

 

Figure 3. View of a part of the test subway station with 
mesoscopic agents, symbolized by a center linking its 

associated microscopic entities. 

 
Figure 4. View of the test city. 

The second one occurs in a large city, shown in Figure 4, which 
includes the subway station described above. In each scenario, the 
agents are animated by a dozen different motivations, such as 
going to work, drinking, wondering, destroying or repairing a 
machine, or fleeing. Each incoming agent in the simulation has 
random internal traits and inventory. We run each scenario with 

different values for the maximum number of actors allowed in the 
environment and the maximum size allowed for an aggregate. 

Each scenario is run twice – one as a fully microscopic simulation 
without any LOD process and one with our dynamic aggregation 
method activated – during 30 minutes on an Intel Core i5 2.50 
GHz laptop with a memory of 4 Go. Three criteria are computed: 
the actual size of the aggregates, the CPU gain and the 
consistency. The actual size tends to estimate the actual impact of 
the approach on the simulation and its link with the other two 
other criteria. The CPU gain is computed by comparing the time 
needed by both simulations to compute 60 frames. Finally, the 
consistency is calculated by comparing the cumulative number of 
uses of each object as a function of time between both 
simulations. With 𝑈! 𝑡  the cumulative number of uses of object 
o at time t during the microscopic simulation, and 𝑈!! 𝑡  the 
cumulative number of uses of the same object at the same time 
during the LOD simulation, then: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 100 1 −
1

𝑁!"#$%&'
𝑈! 𝑡 − 𝑈!! 𝑡!

!!!

𝑈! 𝑡!
!!!

!!"#$%&'

!!!

 

The subway station has been evaluated with a maximal number of 
allowed entities ranging from 100 to 1.000, in order to study the 
impact of this parameter on the criteria described above. 
Moreover, we set  𝑇! = 𝑇! in this scenario so that we only have to 
deal with a single mesoscopic level. In contrast, the number of 
simulated agents in the city was fixed to 10.000, due to the size of 
the environment and the time taken by each evaluation run. 
Unlike previously, we tested two configurations, one with 𝑇! = 𝑇! 
and another with 𝑇! < 𝑇!, allowing us to measure the impact of 
several mesoscopic levels on our evaluation criteria. Finally, the 
affinity and aggregation utility functions were directly imported 
from previous work described in [7], such as: 

𝐴𝑓𝑓 𝐴!;   𝐴! =
1

𝛼𝐷! 𝐴!;   𝐴! ! + 𝛽𝐷! 𝐴!;   𝐴! ! , 𝛼;   𝛽 ∈ 𝑅!∗
! 

𝑈!" 𝐴!;   𝐴! =
𝐴𝑓𝑓 𝐴!;   𝐴!

𝛾𝐷! 𝐴!;   𝐴!;𝐸 ! , 𝛾 ∈ 𝑅!
∗  

The results of the experimentations done on the subway station 
are shown in Table 1. It appears that the mesoscopic level allows 
a slight gain in CPU while the consistency reaches a very high 
level. Moreover, the real group size is relatively low, regardless of 
the configured maximum size. As the maximum number of 
entities in the station increases, the CPU gain decreases and the 
consistency remains stable. Finally, unlike the simulations with 
macroscopic aggregates, the strong dissimilarity observed when 
the maximum number of agents exceeded 500 no longer appears. 

This evolution of the criteria can be explained by the preservation 
of the interaction process at the microscopic level. Indeed, all 
agents entering the station have at least one interaction with the 
ticket barriers – and most of them have 2 or 3 more interactions – 
before reaching a train or an exit. Thus, a lot of disaggregation 
occurs and the microscopic agents queuing at the machine lower 
the mean group size as well as the CPU gain. Moreover, only the 
mental processes were set to migrate to the mesoscopic level, 
leaving some heavy processes with quadratic complexity, like 
navigation or perception, at the microscopic level. This explains 
why the CPU gain is not linear in the actual group size. 
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Table 1. Experimentation results on the subway stations. 

Entities 
Max 

Group 
Size 

Actual Group 
Size CPU Gain (%) Consistency 

(%) 
Macro Meso Macro Meso Macro Meso 

100 

5 2,8 2,1 53,1 10,8 98,0 98,8 
10 3,6 2,3 58,3 11,9 97,6 97,2 
15 3,9 2,3 59,9 13,1 95,4 98,1 
20 4,3 2,4 61,2 13,2 92,3 97,6 
25 4,5 2,6 61,7 13,7 91,8 97,3 

300 

5 3,6 1,7 69,9 7,6 92,6 98,9 
10 4,7 1,9 74,5 9,5 90,7 98,7 
15 5,1 1,9 76,4 9,9 88,0 98,8 
20 5,4 1,9 77,5 10,1 87,4 99,1 
25 5,4 1,9 77,4 10,0 87,4 98,8 

500 

5 3,5 1,5 71,1 4,8 78,0 98,7 
10 4,0 1,6 74,0 7,0 80,1 98,9 
15 4,4 1,7 76,1 7,5 78,4 98,7 
20 4,6 1,7 76,3 7,6 81,8 98,7 
25 4,7 1,8 76,3 7,8 77,3 98,6 

1000 

5 3,6 1,1 71,4 2,0 76,3 99,3 
10 4,3 1,3 74,6 3,6 77,8 99,5 
15 4,5 1,2 74,7 2,9 75,4 99,4 
20 4,6 1,3 73,9 3,7 78,1 99,0 
25 4,7 1,4 75,4 3,9 74,7 99,1 

 

Table 2. Experimentation results for the city environment, 
with 𝑻𝟏 < 𝑻𝟐 (Meso 01) and 𝑻𝟏 = 𝑻𝟐 (Meso 02). 

Max 
Group 

Size 

Actual Group Size CPU Gain (%) 

Macro Meso 01 Meso 02 Macro Meso 01 Meso 02 
5 5.0 4,9 4,9 69,0 18,2 31,3 

10 9,2 9,5 9,4 73,4 24,7 36,4 
15 12,5 12,1 12,4 77,7 30,9 40,0 
20 13,7 13,4 13,4 81,7 32,8 42,2 
25 14,1 13,7 13,9 82,8 33,2 42,5 

 

The impact of the interactions can be observed in the second 
experimentation. Here, only a few agents among the 10.000 want 
to take the train in the subway station, the others just walk 
randomly in the city. Thus, the number of interactions with the 
objects is smaller than in the first scenario. Table 2 shows that the 
actual group size is nearly the same for the macroscopic and the 
mesoscopic scenarios, meaning that the limiting parameter is only 
the aggregation threshold applied to the aggregation utility. As a 
consequence, the mesoscopic CPU gain is far higher in this 
scenario. Moreover, this gain is higher in the experimentation 
with only one mesoscopic level than in the one with two levels, as 
expected. It is interesting to note that in this last case, the CPU 
gain is still significant, suggesting that the emotional and 
decisional processes require an important amount of 
computational resources. This result is encouraging as it implies 
that the approach can save more computational resources in large 
spaces where agents limit their interactions with the environment. 

The comparison between the approach in [7] and the one 
described here shows that in terms of CPU gain and consistency, 
the mesoscopic level is an intermediate between the microscopic 
and macroscopic resolutions. This point is of particular interest 

here as the mesoscopic level is – by construction – an 
intermediate toward the construction of the macroscopic one. 
Thus, if we link the non-mental processes to a threshold whose 
value is finite and higher than the one defined for the mental 
processes, then this second aggregation would lead to the creation 
of a unique macroscopic aggregate as detailed in [7]. The 
mesoscopic state is then an intermediary step to another resolution 
level, possibly driven by a different agent model. 

Moreover, the stability of the consistency of the mesoscopic level 
for the simulations involving more than 500 actors, where the 
macroscopic level shows an important dissimilarity, means that 
our approach can model the congestions in the station and the 
evacuation of the agents which are under psychological stress. 
Indeed, when the subway station is crowded, we see that some 
agents who cannot access the machines get nervous and leave the 
station, an interesting and credible event. This phenomenon, 
which does not exist in the fully macroscopic simulation, remains 
in the mesoscopic experimentations. Moreover, we observe that 
the stress of the mesoscopic agent is increasing due to its 
perceptions, leading it to leave the station. This shows that the 
interaction between the two resolution levels in the mesoscopic 
agent leads to consistent actions and can reproduce microscopic 
behaviors observed in real settings. 

6. DISCUSSION AND FUTURE WORK 
In this paper, we have presented a novel approach for multi-level 
agent-based simulations, by introducing an intermediate level 
between microscopic and macroscopic resolutions. It allows a 
smoother resolution change between models. Indeed, it supports 
the definition of several aggregation steps, each corresponding to 
a process composing the initial agent model, and the migration of 
the agents to the appropriate aggregation step based on the context 
of the simulation. It introduces a kind of continuum between the 
lowest and highest level of simulation. 

The results detailed in section 5 show a very high and steady 
consistency between the fully microscopic and the LOD 
simulations. On the other hand, the computational gain is not 
significant in constrained environments where the agents must 
often interact, but significant when those interactions are less 
intensive. So, our approach is able to reduce computational needs 
with no consistency loss as long as the processes maintained at the 
microscopic level do not need recurrent interactions with their 
counterpart in other mesoscopic agents, creating partial 
disaggregation. 

This result highlights the importance given to model design in this 
approach. Indeed, to apply our method, one needs to have a 
precise view of the available processes, as well as the complete 
representation of the agent model. While this is always 
theoretically possible, in practice this may require some 
modifications of a simulator to control the update of each process 
and catch the transiting data between them. Moreover, the choice 
of the aggregation threshold is fundamental as it has a direct 
impact on the resources, because the processes do not have the 
same complexity – thus not the same interest to migrate to the 
mesoscopic level – and because having attributes involved in both 
microscopic and mesoscopic representations requires the use of 
the aggregation and disaggregation functions associated with their 
attribute class. It would be interesting to study the rules that define 
the optimal aggregation thresholds, depending on the complexity 
of the processes and their dependency hierarchy. Machine 
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learning approaches could also help find the best values for the 
aggregation thresholds. 

Finally, it would be particularly interesting to enhance the 
experimental part of our work. Indeed, by setting more 
aggregation thresholds, we could test mesoscopic agents having 
shared perceptions but separate decision and navigation processes, 
or having only a common long term memory, to test the impact on 
the consistency. Moreover, we could create enhanced scenarios. 
Firstly, we could use a train station with a scale larger than our 
subway station, allowing the agents to have complex behaviors 
without having too many interactions. We could see if the CPU 
gain tends to reach the one observed on the city while the 
consistency remains maximal. Secondly, and more important, we 
could add more mesoscopic aggregation steps and combine 
mesoscopic and macroscopic approaches into a unique scenario to 
verify that the smooth aggregation has an impact on consistency.  
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