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ABSTRACT
Agents in a Boolean game have a personal goal represented
as a propositional logic formula over a set of Boolean vari-
ables, where some of these variables are not necessarily held
by the agent. The actions available to each agent are as-
sumed to have some cost, and the agent’s secondary goal
is to minimize its costs. An interesting problem is to find a
taxation scheme that imposes additional costs on the agents’
actions such that it incentivizes the agents to reach a sta-
ble state. The present paper first theoretically outlines the
characteristics of Boolean games for which stabilization can
be achieved by applying a taxation scheme. Next, a search
method for an appropriate taxation scheme is proposed.
The proposed method transforms the Boolean game into
an Asymmetric Distributed Constraint Optimization Prob-
lem (ADCOP). ADCOPs are a natural representation of
Boolean games and enable effective search by using exist-
ing algorithms. A Boolean game that represents a traffic
light coordination game is used throughout the paper as a
clarifying example. Finally, an experimental evaluation of
the traffic light example confirms the applicability of the
proposed search method and outlines some attributes of the
game and the search process.
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1. INTRODUCTION
Boolean games are a family of games based on propo-

sitional logic [14, 2]. In a Boolean game each participant
(agent) holds a distinct set of Boolean variables, and has
some personal goal it attempts to satisfy. An agent’s per-
sonal goal is represented as a propositional logic formula over
some set of Boolean variables, where some of these variables
are not necessarily held by the agent. The actions that an
agent can take consist of assigning values to the variables it
holds.

In a recently proposed generalization and more expres-
sive version of Boolean games, termed Cooperative Boolean
Games [7], the actions available to an agent are assumed to
have some cost, and the agent’s secondary goal is to min-
imize its costs. The present paper, following other recent
studies [9, 11], refers to these cooperative Boolean games.

A common objective in game theoretic research is to reach
some sort of stabilization. In Boolean games this usually
means finding a Pure-strategy Nash Equilibrium (PNE),
which is a state in which no agent has an incentive to unilat-
erally change its selected action. The problem is that such
a state does not necessarily exist in every Boolean game.

In games with no PNE state some of the agents may be
manipulated by some external principal in order to achieve
stabilization. Two manipulation schemes for Boolean games
were recently proposed. In one scheme the Boolean games
model is slightly altered to include a set of environmental
variables [11]. The agents do not have direct access to these
environmental variables, so they only have beliefs regarding
these variables’ valuations. The principal may use this dis-
information in order to manipulate the agents into a stable
state by selectively communicating truthful information re-
garding the environmental variables to some of the agents.
A different type of manipulation, which is at the focus of the
present paper, involves a taxation scheme that imposes addi-
tional costs on the actions of agents. By changing the costs
of agents in this way, the taxation incentivizes the agents
to achieve some objective [9, 10]. In the case that several
taxation schemes are applicable, one can attempt to find the
most fitting scheme according to some criterion (e.g., mini-
mization of the overall amount of imposed tax). In both ma-
nipulation schemes the objective may be something beyond
mere stabilization, such as reaching some socially desirable
outcome.
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Taxation may not always enable the principal to achieve
its goal. The reason for this stems from the fact that taxa-
tion only affects the costs of actions for agents. The mini-
mization of costs is only the secondary goal for every agent
participating in a Boolean game, the primary goal being
their personal goals (whose gain is higher than all costs in
the game) [9, 10].

The first contribution of the present paper is a theoretical
characterization of Boolean games for which stabilization
can be achieved by applying a taxation scheme. Once such
classification is achieved, the remaining task involves the
actual search for a suitable taxation scheme.

It has been proven that deciding whether there is a PNE
in a Boolean game is

∑p
2-complete [2]1. Searching for a tax-

ation scheme is at least as hard, since for every potential tax-
ation scheme one must verify whether the resulting Boolean
game has a PNE. Since finding a taxation scheme or even
deciding whether a PNE exists are computationally hard
questions, one may approach the problem by the use of an
intelligent search algorithm or heuristics that could success-
fully prune the search space in a Boolean game. However,
a search algorithm for taxation schemes on Boolean games
has not been designed yet. The second contribution of the
present paper is an effective search algorithm for a taxation
scheme. In order to accomplish this task, the present study
proposes the transformation of the Boolean game into a dis-
tributed constraints problem, for which there are a variety of
search techniques. Since Boolean games are both distributed
between different agents and are generally asymmetric (in
the sense that a state of the game affects differently each of
the participating agents), the most natural formalization to
use for this purpose is Asymmetric Distributed Constraint
Optimization Problems (ADCOP) [12, 13].

For the purpose of clarity, the transformation into an AD-
COP and the description of the search process are demon-
strated through an example game, which is a Boolean game
representation of a traffic light coordination game (based
on [16, 6]). However, the transformation into an ADCOP
can be applied to any Boolean game and is described in de-
tail for the general case. The final contribution of the paper
is an experimental evaluation of the traffic light example (on
randomly generated grids), which confirms the applicability
of the proposed search method and outlines some attributes
of the game and of the search process.

The plan of the paper is as follows. First, Boolean games
are presented in detail in Section 2. Two propositions that
characterize the existence of a PNE in a Boolean game are
presented. The traffic lights example of a Boolean game is
described in Section 3. First, the traffic lights problem is
described and its Boolean game representation, then an im-
portant proposition is proven – showing that all traffic lights
problems have a PNE. Section 4 describes the search pro-
cedure for taxation. It starts by defining the problem and
the framework of ADCOPs, proceeds to describe the con-
struction procedure for an ADCOP that serves for taxation
search on a given Boolean game, and then presents the re-
quired modifications to an existing ADCOP algorithm so it
could handle k-ary constraints. An extensive empirical eval-
uation of the proposed search for taxation is in Section 5.
Section 6 outlines our conclusions.

1∑p
2 = NPNP is the class of all the languages that can be

recognized in polynomial time by a nondeterministic Turing
machine equipped with NP oracles [17].

2. BOOLEAN GAMES
A Boolean game [14, 2] contains a set of agents A =
{1, ..., n}, the players of the game. Each agent Ai ∈ A con-
trols a set of Boolean variables (ϕi is the set of variables
controlled by agent Ai). Controlling variables means that
the agent Ai has a unique ability within the game to set the
values for each variable p ∈ ϕi. It is required that ϕ1, ..., ϕn

form a partition of the game variables Φ. In other words
every variable is controlled by some agent and no variable
is controlled by more than one agent (ϕi ∩ ϕj = ∅ for i �= j
and

⋃
i∈A ϕi = Φ).

Each agent has a personal goal, represented by a Boolean
formula. Thus, γi represents the goal of agent Ai. Every
goal γi may contain the variables of agent Ai and possibly
variables controlled by other agents.

A choice of agent Ai, defined by a function vi : ϕi → B, is
an allocation of truth or falsity to all of the agent’s variables,
ϕi. Let Vi denote the set of all available choices for agent
Ai. The intuitive interpretation of Vi is that it defines all
actions or strategies available to agent Ai.

An outcome (v1, ..., vn) ∈ V1 × ... × Vn is a collection of
choices, one for each agent. It is clear that every outcome
uniquely defines a valuation for all variables in the game and
we often think of outcomes as valuations.

We assume that actions available to agents have costs de-
fined by a cost function c : Φ × B → R≥, so that c(p, b) is
the cost of assigning the value b ∈ B to variable p ∈ Φ [7].

Consequently, as in [7, 9, 10], a Boolean Game is a 2n+3
tuple:

G =< A,Φ, c, γ1, ..., γn, ϕ1, ..., ϕn >

where A = {1, ..., n} is the set of agents, Φ = {p, q, r, ...} is
a finite set of Boolean variables, c : Φ × B → R≥ is a cost
function for available assignments, γ1, ..., γn are the goals of
agents A, and ϕ1, ..., ϕn is a partition of variables Φ over
agents A.

The primary aim of each agent Ai is to choose an assign-
ment to the variables ϕi under its control, so as to satisfy
its personal goal γi. The main difficulty is that γi may con-
tain variables controlled by other agents who are also trying
to choose values for their variables, so as to get their goals
satisfied, and their goals may be dependent on variables con-
trolled by agent Ai. If an agent can achieve its personal goal
in more than one way, then it will prefer to minimize costs.
If the agent cannot get its goal achieved it will prefer to
choose a valuation that minimizes the costs.

2.1 Taxation scheme
A taxation scheme [9, 10] defines additional costs on ac-

tions, over those given by the cost function c. We model
a taxation scheme as a function τ : Φ × B → R≥, so that
τ(p, b) is the tax that should be levied on the agent control-
ling variable p ∈ Φ in case the value b ∈ B is assigned. While
the cost function c is fixed for any given Boolean game G,
the taxation scheme can be changed to fit our requirements.
Agents always seek to minimize their costs, so by assigning
different taxations we can incentivize agents to performing
some actions over others.

One important assumption we make is that while taxation
schemes can influence the decision making of rational agents,
they cannot change the personal goal of an agent. Therefore,
if an agent has a chance to achieve its goal, it will take it,
no matter what the taxation incentives are.
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2.2 Impact of a taxation scheme on the exis-
tence of a pure-strategy Nash equilibrium

Let us consider the following example to illustrate a
Boolean game with no PNE for any taxation scheme.
Throughout the paper the symbol a is used to denote the
negation of a (i.e., ¬a). This is clearer to the eye for formulas
that include the negation of longer literals.

The example game consists of two agents A = {1, 2}, each
of them controlling a single variable: A1 controls variable a
(ϕ1 = {a}) and A2 controls variable b (ϕ2 = {b}, so Φ =
{a, b}). The cost function will remain undefined for this
example due to its irrelevance. The personal goal of agent
A1 is γ1 = (a ∧ b) ∨ (a ∧ b), whereas the personal goal of
agent A2 is γ2 = (a ∧ b) ∨ (a ∧ b). The matrix form of the
game is depicted in Figure 1:

A1\A2 b = F b = T

a = F γ1 γ2

a = T γ2 γ1

Figure 1: An example of a Boolean game with no
PNE for any taxation scheme

Now we can ensure that the given Boolean game has no
PNE for any taxation scheme. Consider the outcome {a =
F, b = F}. This pure strategy is not a Nash equilibrium
because of agent A2. Given the current outcome, the agent
does not achieve its goal, but if it changes the assignment of
its variable (b = T ) it will achieve its goal. By definition of a
Boolean game, the primary aim of each agent is to satisfy its
personal goal (if possible), so the given pure strategy is not a
Nash equilibrium. Another possible outcome is {a = F, b =
T}. In this case agent A1 does not achieve its goal, but by
changing the variable it controls (a = T ) the agent’s goal will
be achieved. Thus, the given strategy is also not a PNE. The
remaining two outcomes are symmetric to the considered
ones and are therefore also not PNEs. After considering all
possible pure strategies we conclude that the given Boolean
game has no PNE for any taxation scheme.

Definition 1. A partial valuation (PV) for agent Ai is
the valuation of all variables Φ in the Boolean game except
for the variables controlled by agent Ai. The partial valua-
tion of agent Ai is denoted by v−i = (v1, ..., vn) \ vi.

Definition 2. A special partial valuation (SPV) is a
partial valuation v−i for agent Ai such that there exists at
least one choice vi that combined with v−i satisfies the goal
γi, and there exists another choice v′i that does not satisfy
the goal γi.

Definition 3. A special outcome (SO) is an outcome
that at least one agent does not achieve its personal goal
and excluding that agent’s choice results in a special partial
valuation.

Proposition 1. Given a Boolean game, an outcome is
not a pure-strategy Nash equilibrium state for any taxation
scheme if and only if the outcome is a special outcome.

Proof. In case the outcome is a special outcome, then
by definition of SO there is at least one agent that does not
achieve its personal goal and excluding that agent’s choice

results in a special partial valuation. Suppose WLOG that
Ai is such an agent, then by the definition of SPV there
exists at least one choice vi that satisfies the agent’s personal
goal. The agent does not achieve its personal goal given the
current outcome but by changing its choice it can achieve
the goal. Following the assumption on taxation schemes the
agent will achieve its personal goal if it is possible no matter
what the taxation scheme is. Thus, there is at least one
agent that wants to change its choice in the given outcome.
Consequently, the current outcome is not a PNE state for
any taxation scheme.

In case the outcome is not a special outcome, then each
agent either achieves its personal goal or excluding that
agent’s choice does not result in a SPV. In case an agent
achieves its goal then there exists a taxation scheme that
minimizes the cost of its current choice. In case an agent
(Ai) does not achieve its goal then there does not exist a
choice vi that helps the agent achieving its goal, since this
is not a SPV. Hence, there is a taxation scheme that mini-
mizes the cost of its current choice. Since the taxations on
the actions of each agent are independent, there is a clear
rule to creating a taxation scheme so that no agent wants to
change its choice, which means that the outcome is a PNE
state given this taxation scheme.

Proposition 2. A Boolean game has no pure-strategy
Nash equilibrium for any taxation scheme if and only if every
outcome is a special outcome.

Proof. In case every outcome is a special outcome, then
following Proposition 1, each of the outcomes is not a PNE
state for any taxation scheme. Consequently, the Boolean
game has no PNE for any taxation scheme.

In case there exists at least one outcome that is not a
special outcome, then following Proposition 1 there exists a
taxation scheme that converts the given outcome to a PNE
state. Thus, the Boolean game has a PNE given this taxa-
tion scheme.

3. TRAFFIC LIGHT COORDINATION
The increase demand for mobility in our society poses

challenges that have to be addressed by the area of intelligent
transportation systems. Among the efforts currently under
investigation or deployment, one traditional (but nonethe-
less important) effort is related to optimization methods and
traffic control by means of traffic signal controllers (in short,
traffic lights).

3.1 Approaches for traffic light coordination
Signalized intersections are operated by traffic lights that

implement the signal timing. A signal-timing plan is a
unique set of timing parameters comprising the cycle length
L (the length of time for the complete sequence of the phase
changes), and the split (the division of the cycle length
among the various movements or phases).

Traffic signals can be operated in a variety of modes. For
the purpose of this paper, we are interested in the coordi-
nated control. The goal of coordinated systems (also called
synchronized or progressive systems) is to synchronize traffic
signals along an arterial in order to allow platoon of vehi-
cles, traveling at a given speed, to cross the arterial without
stopping at red lights. Thus, if appropriate signal plans are
selected to run at adjacent traffic signals, a “green wave” is
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built. This is achieved by means of a so-called offset (time
between the beginning of the green phase of two consecu-
tive traffic signals) that is computed based on the desired
speed and on the distance between intersections. Another
important concept is the bandwidth. It is the time difference
between the first and the last vehicle that can pass through
without stopping.

Well designed synchronized signal plans can achieve ac-
ceptable results in one flow direction. Thus one may expect
the other direction to have more delays. Although it is the-
oretically possible to set the synchronization for more than
one flow, the bandwidth decreases in more constrained prob-
lems. For example, when the synchronization is to be set in
two directions of an arterial, the bandwidth generally de-
creases. The difficulty is that the geometry of the arterial
is fixed and with it the spacing between adjacent intersec-
tions. If one wants to have a long bandwidth in one traffic
direction (e.g., bandwidth is equal to the green time), this
may have consequences in other directions.

Nonetheless, synchronized or coordinated traffic lights in
arterials are commonly seen, especially in cities with well
behaved traffic patterns. There are several methods to com-
pute the synchronization. Optimization of traffic lights in an
off-line way is the basis of well established algorithms such as
TRANSYT [18], which generates optimal coordinated plans
for fixed-time operation. One drawback of this method is
that plans are computed for a static situation, based on his-
torical data. Alternatives are SCOOT, SCATS, and TUC,
which are based on real-time data. However, all these ap-
proaches focus on synchronization of traffic lights in an ar-
terial. The main difficulty to extend the synchronization to
a network or to more directions of traffic is the fact that
in some key intersections conflicts may appear because dif-
ferent directions compete for bandwidth. The conventional
approach is to let a traffic expert solve these conflicts. Al-
ternatives to such approach seek to replace the traditional
arterial green wave by shorter green waves in segments of
the network. This can be done, e.g., using negotiation over
the question of which traffic direction shall be given more
bandwidth.

An approach based on Distributed Constraint Optimiza-
tion Problems (DCOPs) was proposed in [6]. The constraints
in this problem arise from the fact that, in each node of the
graph, a traffic signal cannot coordinate to establish a syn-
chronization with neighbors located in a different direction
at the same time. A conflict occurs when two neighbors want
to coordinate in two different traffic directions. Junges and
Bazzan [16] have later extended this scenario to bigger net-
works, aiming at investigating computational issues related
to DCOP performance, such as time to reach an agreement
and number of exchanged messages.

In the present paper, the goal of the coordination among
agents is to synchronize the traffic lights in adjacent inter-
sections in order to allow vehicles traveling at a given speed
to cross the intersections without stopping at red lights. The
criteria for obtaining the optimum signal timing at a single
intersection is that it should lead to the minimum overall
delay at the intersection. In general, the more neighbors
that are synchronized, the shorter the queues.

In our setting we use a grid, in which synchronization can
be achieved in either south-north and north-south or east-
west and west-east directions. We assume one-way traffic to
simplify the system.

3.2 Boolean game representation of the traffic
light coordination

One can think of traffic light coordination as a Boolean
game, in which each traffic light is an agent ai,j controlling a
single Boolean variable pi,j that indicates the synchroniza-
tion direction (True = SN/NS and False = EW/WE).
The cost function c(pi,j , b) will be the amount of vehicles in
the lane incoming to the traffic light that controls variable
pi,j from the opposite direction of the variable’s synchroniza-
tion. The personal goal of an agent ai,j is to be synchronized
with two adjacent agents in the same direction to create a
“mini-green-wave”, i.e., γi,j = (pi−1,j∧pi,j∧pi+1,j)∨(pi,j−1∧
pi,j ∧ pi,j+1). The personal goal of agents that reside on the
edges of the grid are slightly simplified.

Let us consider a simple example that illustrates the gen-
eral setup of the Boolean game representation.

Suppose we have a grid as depicted in Figure 2:

Figure 2: Network of 9 intersections

We have 9 agents A = {a1,1, a1,2, ..., a3,3}, each controlling
a single variable ϕi,j = {pi,j} (so Φ = {p1,1, p1,2, ..., p3,3}).
The personal goals are γ1,1 = (p1,1 ∧ p2,1) ∨ (p1,1 ∧ p1,2)
, γ1,2 = (p1,2 ∧ p2,2) ∨ (p1,1 ∧ p1,2 ∧ p1,3) , ... , γ2,2 =
(p1,2 ∧ p2,2 ∧ p3,2) ∨ (p2,1 ∧ p2,2 ∧ p2,3) , ... . Let ri,j→k,l

be the amount of vehicles in the lane between traffic light
i, j and traffic light k, l, then c(pi,j , T rue) = ri−1,j→i,j and
c(pi,j , False) = ri,j−1→i,j .

Proposition 3. Every Boolean game representing a traf-
fic light coordination problem has at least one taxation
scheme that ensures a pure-strategy Nash equilibrium.

Proof. Consider an outcome for the Boolean game con-
structed from the traffic light coordination problem, in which
every agent assigns True to its variable2. In this particular
outcome all the agents achieve their goals (by definition), so
this is not a special outcome. Following Proposition 2, there
is at least one taxation scheme that ensures a PNE.

4. SEARCHING FOR TAXATION
Given a Boolean game one wants to find a taxation scheme

that ensures the existence of a PNE. There may be many
appropriate taxation schemes, so one can search for the op-
timal scheme according to some criteria. The most common
taxation scheme criterion is minimizing the overall tax in
the game [9]. The overall tax of a game is defined by the
present paper in the following way:

T (G) =
∑

p∈Φ,b∈B

τ(p, b) (1)

2This is one of the possible outcomes, but in the general
case the Boolean game may contain more such outcomes.

186



One can think of this approach as minimizing the degree
of intervention in the game. Alternatively, there are many
other, more social, criteria for taxation schemes. These in-
clude the minimax approach, in which the maximal tax is
minimized, as well as an approach that minimizes the differ-
ence in taxes [9]. Additional criteria look at the end result of
the game and not only at the taxation itself. These include
egalitarian social welfare, which looks at how well the“worst-
off” agent is treated, and horizontal equity, in which the dif-
ference in taxes is minimized separately for each class of
agents [5]. The relevant classes of entities of Boolean games
for the above social criterion are the agents that achieve
their personal goal and those that do not. For simplicity,
the present study will focus on minimizing the overall tax,
although any of the above mentioned criteria could be ap-
plied with some small adjustments.

Some intuition about how to find a suitable taxation
scheme follows from Proposition 1. Given a Boolean game,
the search process must select only those outcomes that are
not special outcomes. For each of these outcomes the search
process must find the appropriate taxation scheme (Propo-
sition 1 ensures that such taxation exists) and finally select
the taxation that minimizes the overall tax T (G). It is im-
portant to note that in the case that the game already has a
PNE the search process should return an “empty” taxation
(T (G) = 0).
A problem arises when one attempts to translate the above

intuition into a search process for Boolean games. To the
best of the authors’ knowledge there are currently no algo-
rithms or heuristics for searching for taxation or for general
purpose search in Boolean games. The search task in the
present paper involves exhaustive search of the entire search
space of the Boolean game. This means that for the sake of
finding a taxation scheme one should first go over all possible
outcomes and then find the appropriate taxation scheme for
each outcome. Even performing only the first stage of the
search results in the exploration of an exponential number
of states with no possibility of pruning.

Several studies aim at reducing the computational effort
for some Boolean games tasks. Bonzon et al. [1] exploit the
dependency structure between the personal goals of the var-
ious agents to facilitate the computation of PNE, by partly
decomposing a game into several sub-games that are only
loosely related. In another study [3] the authors connect
between Boolean games and CP-nets [4]. Sauro and Vil-
lata [19] further study the dependency structure and propose
a reduction that reduces the search space when searching for
coalitions. Dunne and Wooldridge [8] study cases in which
Boolean games may become tractable. One such case is to
search for an alternative type of equilibria, and another case
refers to specific Boolean games for which finding equilibria
is easier than in general. As far as we can tell, none of the
above approaches can assist one in searching for a taxation
scheme.

In the absence of an effective search algorithm for Boolean
games, one needs to turn to an alternative formalization for
which search techniques that enable pruning of the search
space do exist. Boolean games are both distributed between
different agents and are generally asymmetric in the sense
that a state of the game may differently affect each of the
participating agents. Consequently, the most natural for-
malization to use for this purpose is Asymmetric Distributed
Constraint Optimization Problems (ADCOP) [12, 13]. By

transforming the Boolean game into an ADCOP, one can
exploit existing ADCOP search algorithms. In the following
subsections a short reminder of the ADCOP model is pre-
sented, as well as the process of casting the Boolean game
as an ADCOP and performing the search process.

4.1 ADCOP
An ADCOP [12, 13] is a tuple

< A,X,D,R >

where A = {A1, A2, ..., An} is a finite set of agents.
X = {X1, X2, ..., Xm} is a finite set of variables. Each
variable is held by a single agent (an agent may hold more
than one variable). D = {D1, D2, ..., Dm} is a set of do-
mains. Each domain Di consists of the finite set of values
that can be assigned to variable Xi. R is the set of rela-
tions (constraints). Each constraint C ∈ R is a function

C : Di1 × Di2 × ... × Dik →
∏k

j=1 R≥ that defines a non-
negative cost for every participant in every value combina-
tion of a set of variables. The asymmetry of constraints in
the ADCOP model stems from the potentially different costs
for every participant.

An assignment (or a label) is a pair including a variable,
and a value from that variable domain. A partial assignment
(PA) is the set of assignments, in which each variable ap-
pears at most once. vars(PA) is the set of all variables that
appear in PA, vars (PA) = {Xi|∃a ∈ Di • (Xi, a) ∈ PA}.
A constraint C ∈ R is applicable to PA if Xi1 , Xi2 , ..., Xik ∈
vars(PA). The cost of partial assignment PA is the sum of
all applicable constraints to PA over the assignments in PA.
A full assignment is a partial assignment that includes all
the variables (vars(PA) = X). A solution is a full assign-
ment of minimal cost.

4.2 Taxation search using ADCOP
Following the intuition presented in the beginning of the

section, we describe the construction procedure of an AD-
COP. Searching this ADCOP should reveal the taxation
scheme that ensures the existence of a PNE and imposes
the minimal overall tax. Given a Boolean game G we define
the ADCOP as follows:

• The set of agents in the ADCOP is exactly the set of
agents from G.

• The variables of the ADCOP are exactly the variables
from G with the same variable allocation.

• Every domain Di consists of two values (0 represents
False and 1 refers to True).

• For every agent Ai construct a constraint. This con-
straint includes valuations of variables that appear in
γi (in the following the variables that appear in γi will
be denoted by (vi1 , ..., vik )). The constraints of the
ADCOP are not in the form of a table, but are com-
puted during search from a formula that takes con-
stant computation time. The detailed description of
the constraints is below.

One wants to select only those outcomes that are not SO, so
for every special outcome the cost should be larger than the
maximal possible overall tax. Taxation values may of course
be infinitely large, but since we are searching for a taxation
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scheme with the minimal overall tax, we always refer to the
minimal needed value. Thus, the maximal possible overall
tax M can be computed using the following equation:

M =
∑
p∈Φ

|c(p, True)− c(p, False)| (2)

Out of all the outcomes that are not SO, we want to find
the one that minimizes the overall tax. Therefore, the cost
of a constraint should be the needed (minimal) tax. For
all such outcomes the tax is needed only in the case where
the achievement of the personal goal is independent of the
agent’s choice vi. This outcome is a PNE only in case the
following equation holds for every agent Ai and every valu-
ation v′i ∈ Vi of the agent:∑

p∈ϕi

c(p, vi(p)) ≤
∑
p∈ϕi

c(p, v′i(p)) (3)

where vi(p) means the Boolean value of variable p accord-
ing to the choice vi (of agent Ai). Thus, taxation must be
apllied in case the equation does not hold. In such case one
can rewrite Equation 3 by adding taxation in the following
manner:∑

p∈ϕi

c(p, vi(p)) ≤
∑
p∈ϕi

c(p, v′i(p)) + τ(p, v′i(p)) (4)

The taxation can be found by solving a system of linear
equations that is constructed following Equation 4. In the
specific case of a Boolean game that represents a traffic light
coordination problem, every agent Ai owns exactly one vari-
able pi ∈ ϕi. Thus, Equations 3 and 4 can be simplified to:

τ(p, vi(p)) =

{
c(p, vi(p))− c(p, vi(p)) if c(p, vi(p)) > c(p, vi(p))

0 otherwise
(5)

where vi(p) refers to the negation of vi(p). Consequently,
the above equation describes the minimal taxation to a sin-
gle variable p that ensures that the agent Ai holding vari-
able p will not have any incentive to change p’s valuation.
This incentive exists whenever the current cost c(p, vi(p)) is

higher than the cost of the negation c(p, vi(p)). So in such
cases the minimal needed tax is a value that makes both rel-
evant costs equal, i.e., the tax equals the difference between
the two costs.

Finally, the cost function is defined as follows:

CAi(vi1 , ..., vik ) =

{
M + ε if (vi1 , ..., vik ) is part of a SO∑

p∈ϕi,b∈B
τ(p, b) otherwise

(6)
for any ε > 0. The term part of a SO relates to a valuation
of γi that satisfies Definition 3. Equation 6 ensures that
no special outcomes would be selected if there is at least
one outcome which is not special. Note that the constraints
defined above are asymmetric because each constraint incurs
a cost on a single agent.

The ADCOP’s solution is a full assignment (v1, v2, ..., vn)
that represents a PNE state when the appropriate taxation
scheme is used. The taxation scheme is calculated during
the search process and can be stored along with its matching
assignment.

Note that the taxation scheme only adds costs to the neg-
ative valuations. The reason for this is that the solution
is a potential PNE (unless there is no taxation scheme that
achieves stabilization for this Boolean game), so the taxation
scheme only needs to make sure that the negative valuations
are taxed accordingly, so as to remove the agents’ incentives
to move away from this state. In case the Boolean game
already has at least one PNE (without taxation) then the
ADCOP’s solution will be a PNE state.

The correctness of this approach stems from Proposition 1.
The ADCOP will check all the outcomes that can have a
PNE state with some taxation scheme. In case there are no
such outcomes then the cost of the solution will be higher
than M , so the cost must be verified in order to know if
there is an appropriate taxation scheme or not. According
to Proposition 3, this verification is not needed in the special
case of a Boolean game representation of the traffic light
coordination problem. The correctness of the overall tax’s
minimality comes directly from the correctness of the chosen
ADCOP algorithm.

Endriss et al. [9] suggest that taxation schemes may also
be used to incentivize agents to reach some socially desir-
able outcome. For instance, in the traffic lights coordination
problem such a social outcome may be the formation of a
long green wave (longer than the mini-green-wave of size 3
that serves as an agent’s personal goal). In order to facili-
tate such a social outcome, the only change to the ADCOP
is the addition of another constraint to one of the agents.
The cost of this (global) constraint is M + ε (for any ε > 0)
for valuations in which the social outcome is not achieved
(and 0 otherwise).

4.3 k-ary SyncABB-1ph
Grubshtein et al. [12] introduced several complete AD-

COP algorithms. The most simple, yet effective, complete
ADCOP algorithm is SyncABB-1ph, which is an asymmet-
ric version of the famous Synchronous Branch & Bound
(SyncBB) algorithm [15]. After each step of the algorithm,
when an agent adds an assignment to the Current Partial
Assignment (CPA) and updates one direction of the bound,
the CPA is sent back to the assigned agents to update its
bound by the costs of all backwards directed constraints
(back-checking). This is done by replacing the CPA MSG
message sent after each value assignment to the next agent
with a CPA BACK MSGmessage to the preceding agent.

The problem with all the presented ADCOP algorithms,
including SyncABB-1ph, is that they were developed to han-
dle binary constraints, whereas the constraints in the above
constructed ADCOP are k-ary. Thus, we slightly adjust the
SyncABB-1ph algorithm to handle k-ary constraints:

As in the original pseudo-code [12], Ai refers to the agent
that currently holds the CPA, Aj represents the agent that
initiated the current back-checking, An is the last agent in
the order, and B denotes the current bound. The modi-
fications we made are to ensure that the CPA has all the
assignments needed for calculating the constraint cost and
that the last assignment was added by a neighbor of the
current agent (line 2). The second condition assures that
every constraint cost is evaluated only once for every full as-
signment. Moreover, the constraint cost is calculated using
the entire CPA rather than with a single agent (line 3). In
case Ai is the last agent in this particular constraint then
the cost is added as in the regular SyncBB algorithm (with
the slight change of the constraint being k-ary).
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Algorithm 1 k-ary SyncABB-1ph: back-checking

when received 〈CPA BACK MSG,CPA, cost〉 do
1: j ← CPA.lastId
2: if all variables from Ai’s constraint are in the CPA and

Aj is a neighbor of Ai then
3: f ← cost of the constraint with the CPA
4: else
5: f ← 0
6: if cost+ f ≥ B then
7: send 〈CPA MSG,CPA〉 to Aj

8: else if Ai �= A1 then
9: send 〈CPA BACK MSG,CPA, cost+ f〉 to Ai−1

10: else if Aj = An then
11: B ← cost+ f
12: broadcast 〈NEW SOLUTION,CPA, B〉
13: send 〈CPA MSG,CPA〉 to An

14: else
15: CPA.cost← cost+ f
16: send 〈CPA MSG,CPA〉 to Aj+1

5. EXPERIMENTAL EVALUATION
The Boolean games used in the following experiments rep-

resent traffic lights coordination problems of different grid
sizes – 3x3, 4x4, 5x5, and 6x6. Problems were randomly
generated and the reported results are averages over 100
different experiments for each setting.

5.1 Problem generation
For each experiment a random problem was generated.

First, a traffic lights coordination problem was generated by
randomly selecting the number (in the range [0,max−cost))
of vehicles in the lane between every two adjacent traffic
lights. Next, the appropriate Boolean game representing
the generated traffic lights coordination problem was con-
structed according to the rules described in Section 3.2.
Then, an ADCOP problem was generated from the Boolean
game using the procedure described in Section 4.2. Finally,
the problem was solved using the k-ary SyncABB-1ph algo-
rithm that was presented in Section 4.3.

5.2 Experimental results
The first part of the experimental evaluation is aimed to

help one understand the properties of the randomly gener-
ated games. For this purpose two measures are considered.
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Figure 3: Percentage of games that have a PNE
without any taxation scheme

Figure 3 presents the first measure – the percentage of
games that originally have a PNE state (without taxation).
It is easy to see that the probability for a PNE drops when
the problems become larger and when the range of costs
(size of max-cost) is wider. The costs affect the existence
of a PNE because two valuations of the same variable have
different costs, which cannot be balanced for an equilibrium.
The fact that a larger range of costs increases the probability
that the costs will be different, explains the effect of max-
cost. The effect of the grid size can also be explained, since
it is clearly harder to find stable states when there are more
players participating in the game.

The second measure is the size of the overall tax with
respect to the original costs of the game. The percentage of
the overall tax is calculated as follows:∑

p∈Φ,b∈B
τ(p, b)∑

p∈Φ,b∈B
c(p, b)

∗ 100% (7)
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Figure 4: Percentage of overall tax

While it was shown that both the dimensions of the prob-
lem and the range of costs affect the existence of a PNE,
the needed tax load to achieve stabilization does not seem
to be affected by these parameters. Figure 4 shows that the
overall needed tax is only about 4% in all of the problem
settings in the evaluation.
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Figure 5: Mean number of NCCCs

In order to evaluate the algorithm, we consider the mean
number of Non-Concurrent Constraint Checks (NCCCs),
which is a commonly used measure for the runtime perfor-
mance of distributed constraints algorithms [20]. The ex-
ponential growth of the computational load with respect to
the problem size is clearly seen in Figure 5 and is of no sur-
prise as ADCOPs are NP-Hard problems. In contrast, the
range of max-cost does not seem to have any effect on the
performance.
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In order to understand the impact of the pruning that
was enabled by the transformation into an ADCOP, one can
compare to a naive algorithm that exhaustively traverses
the entire search space of the Boolean game. The naive
algorithm must run through every possible outcome, check
if it is a special outcome, and in case it is not an SO –
calculate the overall tax. The approximate complexity of
this naive approach is n∗2n (there are 2n possible outcomes
and the algorithm must traverse all the variables in order to
calculate the overall tax).

Grid size k-ary SyncABB-1ph Naive approach

3x3 550 4, 608

4x4 6, 468 1, 048, 576

5x5 63, 841 838, 860, 800

6x6 893, 863 2, 473, 901, 162, 496

Table 1: Runtime performance of k-ary SyncABB-
1ph vs. a naive approach

Table 1 compares the NCCC results of the k-ary SyncABB-
1ph algorithm with the approximate number of operations
performed by the naive approach (problems with max-cost =
1000). Although the computational time of an NCCC may
be somewhat different than that of the naive approach’s op-
eration, the difference in orders of magnitude between the
two alternatives establishes the great impact of the pruning
that is achieved when the ADCOP representation is used.

6. CONCLUSIONS
Taxation schemes that impose additional costs on the ac-

tions of agents in a Boolean game may in some cases incen-
tivize the agents to reach a stable state. The present paper
theoretically outlines the characteristics of Boolean games
for which stabilization can be achieved by applying a taxa-
tion scheme. When a Boolean game is one that meets the
theoretical criteria, one must search for the most appropri-
ate taxation scheme.

The present paper proposes a method that effectively
searches for the taxation scheme. The proposed method
transforms the Boolean game into an Asymmetric
Distributed Constraint Optimization Problem (ADCOP).
The resulting ADCOP enables an effective search by using
an existing algorithm with some minor adjustments.

The method is evaluated on Boolean games that represent
a traffic light coordination game of different grid sizes. The
runtime performance of the proposed method was shown to
be better by several orders of magnitude than a naive ap-
proach for finding a taxation, that exhaustively goes over
all the possible outcomes of the Boolean game. The sub-
stantial advantage of the proposed method stems from the
effective pruning of the search space that is inherent to the
used ADCOP algorithm.
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