
Security Scheduling for Real-world Networks

Manish Jain∗, Vincent Conitzer†, Milind Tambe∗
∗ Computer Science Department, University of Southern California, Los Angeles, CA. 90089

{manish.jain,tambe}@usc.edu
† Department of Computer Science, Duke University, Durham, NC. 27708

{conitzer}@cs.duke.edu

ABSTRACT
Network based security games, where a defender strategically places
security measures on the edges of a graph to protect against an ad-
versary, who chooses a path through a graph is an important re-
search problem with potential for real-world impact. For example,
police forces face the problem of placing checkpoints on roads to
inspect vehicular traffic in their day-to-day operations, a security
measure the Mumbai police have performed since the terrorist at-
tacks in 2008. Algorithms for solving such network-based security
problems have been proposed in the literature, but none of them
scale up to solving problems of the size of real-world networks.

In this paper, we present SNARES, a novel algorithm that com-
putes optimal solutions for both the defender and the attacker in
such network security problems. Based on a double-oracle frame-
work, SNARES makes novel use of two approaches: warm starts
and greedy responses. It makes the following contributions: (1)
It defines and uses mincut-fanout, a novel method for effi-
cient warm-starting of the computation; (2) It exploits the sub-
modularity property of the defender optimization in a greedy heuris-
tic, which is used to generate “better-responses"; SNARES also uses
a better-response computation for the attacker. Furthermore, we
evaluate the performance of SNARES in real-world networks illus-
trating a significant advance: whereas state-of-the-art algorithms
could handle just the southern tip of Mumbai, SNARES can com-
pute optimal strategy for the entire urban road network of Mumbai.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security, Performance

Keywords
Game theory, Double oracle, Zero-sum games, Minimax

1. INTRODUCTION
Game theory provides the sound mathematical tools for reason-

ing about both defenders and attackers in security domains. Many
algorithms, e.g. RANGER [12], GRANDE [13] have been devel-
oped on the principles of game theory to provide optimal schedul-

ing strategies to the defenders to protect a set of diverse targets
from adaptive intelligent adversaries. These algorithms have also
seen many real-world deployments, including recently in the PRO-
TECT system for the US Coast Guard [11].

This paper models the urban network security problem as a prob-
lem with two players: a defender and an attacker. The pure strate-
gies of the defender correspond to allocations of resources to edges
in the network – for example, an allocation of police checkpoints to
roads in the city. The pure strategies of the attacker correspond to
paths from any source node to any target node – for example, a path
from a landing spot on the Mumbai coast to the Mumbai airport.

In this domain, the strategy space of the defender grows expo-
nentially with the number of available resources, whereas the strat-
egy space of the attacker grows exponentially with the size of the
network. For example, in a fully connected graph with 20 nodes
and 190 edges, the number of defender actions for only 5 resources
is
(
190
5

)
≈ 2 billion, while the number of possible attacker paths

without any cycles is O(1018). Real-world networks are signif-
icantly larger, e.g., the entire road network of the city of Mumbai
has 9, 503 nodes (intersections) and 20, 416 edges (streets), and the
security forces can deploy large number of resources.

Southern Tip:
State-of-the-art

Full City:
This paper

Mumbai	

Figure 1: Comparison between SNARES and state-of-the-art:
SNARES can now scale to solve problems the size of full cities
where previous work could only scale to the southern tip of
Mumbai.

Previous work has presented algorithms to compute approximate
as well as optimal defender strategies for such domains [6, 12, 14].
RUGGED [6], the state-of-the-art optimal solver for this problem,
is a double-oracle algorithm [8] that does not explicitly store the
entire game matrix in memory. RUGGED computes the equilib-
rium strategy for a subset of the original game and then iteratively
computes best responses of both the defender and the attacker to fi-

215

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

nally converge to a global equilibrium. However, two issues restrict
RUGGED from scaling to real-world sized domains: (i) the best re-
sponse modules are both NP-hard [6], and (ii) the large number of
iterations required for the entire process.

The focus of this work is to present SNARES (Securing Networks
by Applying a Randomized Emplacement Strategy), a new algo-
rithm for computing the optimal solution for such domains. SNA-
RES has two novel features. First, SNARES uses greedy heuristics
to compute “better" (rather than “best") responses for both play-
ers. We show that the best-response problem for the defender has
a sub-modularity property, and exploiting this provide a bound for
the solution quality of our better response. Second, SNARES uses a
novel “mincut-fanout" technique to warm-start the computation by
initializing the game matrix with pure strategies for both the play-
ers. We show that naïve ways of warm-starting the computation
can actually increase the runtime, and that our novel technique is
effective. We extensively analyze these individual components of
SNARES in this paper. Finally, we demonstrate SNARES’s signifi-
cant advance over the state-of-the-art: whereas state-of-the-art was
restricted to the southern tip of Mumbai, with SNARES, optimal
strategies for the entire road network of the city of Mumbai (refer
Figure 1) can be obtained in a reasonable amount of time.

2. RELATED WORK
Many models have been proposed for network security domains.

Typically called pursuit-evasion games, they have been special-
ized into many sub-classes based on mobility capabilities for both
the players. For example, hider-seeker games [5] and infiltration
games [1] allow both the attacker and defender to move around in
the graph, whereas search games [3] have a fixed attacker and a mo-
bile defender. Our work is similar to the sub-class of interdiction
games [14] where the attacker is mobile and the defense measures
are static. However, previous work either does not consider the
presence of multiple targets with differing payoff values, or is not
scalable to size of real-world networks.

More specifically, the following algorithms consider our network
security model where the attacker chooses a path from a source to
a target while the defender chooses to inspect edges. Washburn
and Wood [14] showed that in the presence of exactly one target
(or many targets with exactly the same payoff), a uniform distribu-
tion on the mincut between the sources and the target is the optimal
strategy. However, this does not generalize to situations with mul-
tiple targets with differing payoff values. RANGER [12] is an algo-
rithm that computes an approximate solution. It exploits the idea
of marginal coverage and it was shown that the RANGER solution
is optimal when the graph has certain structural properties. How-
ever, RANGER strategies can be arbitrarily bad in general, and even
exhibited high error for real-world graphs [6]. Also, Jain et. al [6]
presented RUGGED, which will be discussed in the next section.

Recent work has also generalized the network security problem
to a non-zero sum game [10]; however, some of the key differences
are in the modeling of the problem itself. For example, Okamoto
et. al [10] consider the game between a sender sending data pack-
ets and an attacker, such that the expected utility to the sender is
inversely proportional to the harm done by the attacker. The model
used by this work allows the payoff function to be additive over
the set of edges in the sender’s path; however, such a model is not
applicable in our domain where the payoff depends on whether or
not the attacker is intercepted. An alternate line of research on
network security is focused on developing algorithms that perform
well against human subjects, by addressing human bounded ratio-
nality and human decision making [15]. However, these algorithms

are not yet scalable to compute strategies for domains as large as
real-world networks handled by SNARES.

3. PROBLEM DESCRIPTION
We borrow the description of the network security domain first

introduced by Tsai et. al [12]. This domain is modeled using a
graph G = (N,E). A pure strategy Xi for the defender is an
allocation of the k defender resources to any k of the |E| edges,
i.e., Xi = {ei1 , ei2 , . . . , eik}. A pure strategy Aj for the attacker
is a path starting at any one of the source nodes s ∈ S,1S ⊂
N to any one of the targets t ∈ T, T ⊂ N . That is, Aj =
{ej1 , ej2 , . . . , ejm} such that the source s(j) of pathAj is also the
source of edge ej1 and the target t(j) of pathAj is also the target of
the last edge ejm . This leads to both the players having exponen-
tially many pure strategies in this game, e.g., in a fully connected
graph with 10 nodes, 1 target and 5 resources, there are

(
45
5

)
≈ 1.2

million pure strategies for the defender and approximately 4 mil-
lion pure strategies for the attacker.

A payoff of T (t) is associated with each target t ∈ T , such that
the defender gets−T (t) if the attacker successfully attacks t and 0
otherwise. Conversely, the attacker gains T (t) for a successful at-
tack on target t and 0 on failure. Furthermore, success and failure of
an attack is defined by computing the intersection between the pure
strategy allocation of the defender and the pure strategy path of the
attacker. For example, if edge e3 was used in the attacker’s pathA4

and was also covered in defender’s allocation X1, the attacker path
A4 is then a failure against the defender allocation X1. Formally,
the attacker fails along the path Aj against the defender allocation
Xi if and only if Xi ∩ Aj 6= ∅. The objective is to find a minimax
strategy x for the defender (since this is a zero-sum game, mini-
max strategy is also a Nash equilibrium and a Strong Stackelberg
equilibrium [16]).We describe the complete notation in Table 1.

Symbol Meaning
G(N,E) Graph representing the network security problem.
T (t) Payoff for target t
k Defender resources
X Set of defender allocations, X = {X1, X2, . . . , Xn}
A Set of attacker paths, A = {A1, A2, . . . , Am}
x Defender’s mixed strategy over X
a Adversary’s mixed strategy over A

Ud(x, Aj) Defender’s expected utility of playing x against Aj
Ua(Xi,a) Attacker’s expected utility of playing a against Xi

Table 1: The notation used in this paper is described here.

4. RUGGED
We now describe the RUGGED algorithm briefly since RUGGED

is the principal competitor to SNARES. RUGGED is initialized with
an arbitrary pure strategy X = {X1} and A = {A1} for both
players. This set of pure strategies, 〈X,A〉 represents the current
game on which RUGGED performs the computation. RUGGED uses
Minimax and best response modules iteratively as follows: it first
computes the minimax strategy x and a to the current game 〈X,A〉
(Line 4). This is followed by the best response module of the de-
fender which computes X∗, or the defender’s best response to a in
Line 5. X∗ is added to X if X∗ /∈ X (Line 6). This is followed
1Without loss of generality, we assume that |S| = 1, since in the
presence of more than one source, a virtual source is added and
connected to the existing sources.

216

by the best-response module of the attacker, which computes the
best response A∗ to x (Line 7). Again, analogous to the defender,
A∗ is added to A if A∗ /∈ A. The algorithm converges if both X∗

and A∗ are already present in X and A respectively. Algorithm 1
provides a sketch for RUGGED.

Algorithm 1 RUGGED

1: Initialize X using an arbitrary candidate defender allocation.
2: Initialize A using an arbitrary candidate attacker path.
3: repeat
4: (x,a)←CoreLP(X,A).
5: X∗ ← DO(a).
6: X← X ∪ {X∗}.
7: A∗ ← AO(x).
8: A← A ∪ {A∗}.
9: until convergence

10: return (x,a)

Minimax: The minimax formulation (labeled CoreLP) used
by RUGGED is given in Equations (1) to (4). Here, U∗d represents
the optimal (minimax) utility for the defender and x represents the
defender’s mixed strategy.

max
U∗

d
,x

U∗d (1)

s.t. U∗d ≤ Ud(x, Aj) ∀j = 1, . . . , |A| (2)
1Tx = 1 (3)
x ∈ [0, 1]|X| (4)

The mixed strategy a of the attacker can be obtained by comput-
ing the optimal values for the dual variables corresponding to the
Equation family (2). The utility function Ud(x, Aj) evaluating the
defender’s mixed strategy x against attacker’s pure strategy Aj is
defined as in Equation (5), where T (t(j)) is the payoff associated
with the target t(j) that is attacked through the path Aj .

Ud(x, Aj) = −T (t(j)) · (
∑
i

(1− zij)xi) (5)

Here, zij computes the intersection between the defender allocation
Xi and attacker path Aj , and is given as

zij =

{
1 if Xi ∩Aj 6= ∅
0 otherwise (6)

Defender Oracle: It computes X∗, or a best response of the
defender given the attacker’s mixed strategy a as input. This is
done using the following MIP formulation (Equations (7)–(11)).
Here again, t(j) refers to the target being attacked through the path
Aj . Also, Aj is represented as 〈Aje〉, where Aje = 1 if path Aj
goes through edge e and 0 otherwise. Finally, X∗ is constructed
from the solution of the MIP by selecting edges e for which λe = 1,
i.e., X∗ = {e|λe = 1}. Here, the MIP formulation will set zj = 1
if X∗ ∩Aj 6= ∅, and 0 otherwise.

max
z,λ

−
∑
j(1− zj)ajT (t(j)) (7)

s.t. zj ≤
∑
e

Ajeλe (8)∑
e λe ≤ k (9)
λe ∈ {0, 1} (10)
zj ∈ [0, 1] (11)

Attacker Oracle: Similarly, the attacker oracle computes A∗,
or the best response of the attacker given the defender’s mixed strat-
egy x as input. This is done using the following MIP formulation

(one for each target), and then picking the best. The below formu-
lation is for target t∗.

max
z,γ

T (t∗)
∑
i xi(1− zi) (12)

s.t.
∑
e∈out(n) γe =

∑
e∈in(n)

γe n 6= s, tm (13)

∑
e∈out(s) γe = 1 (14)∑
e∈in(t∗) γe = 1 (15)

zi ≥ γeXie ∀e∀i (16)
zi ∈ [0, 1] (17)
γe ∈ {0, 1} (18)

Again, A∗ = {e|γe = 1}. This formulation sets γe = 1 such that
the attacker follows a valid path along e|γe = 1 from the source to
t∗. Also, zi is set to 1 iff the attacker path A∗ ∩Xi 6= ∅.

5. SNARES
We now present SNARES with the following three novel features:

(1) an efficient warm start technique, (2) a better response heuristic
for the defender, and (3) a better response heuristic for the attacker.
The flow chart for SNARES is presented in Figure 2. The boxes
with double lines are the three features mentioned above, and we
will describe them in detail in this section. The formal algorithm is
given as Algorithm 2.

Minimax

Best Response
Defender

Best Response

Better Response
Defender

Better Response
Attacker

Useful: Yes Useful: No

Useful: Yes

Useful: No

mincut!
fanout!

Figure 2: Flow Chart for the SNARES Algorithm

Algorithm 2 SNARES (G, k)

1: Initialize X,A using mincut-fanout
2: repeat
3: (x,a)←CoreLP(X,A).
4: X ← DBO(a).
5: if Ud(X,a)− Ud(x,a) ≤ ε then
6: X ← DO(a).
7: X← X ∪ {X}.
8: A← ABO(x).
9: if Ua(A,x)− Ua(a,x) ≤ ε then

10: A← AO(x).
11: A← A ∪ {A}.
12: until convergence
13: return (x,a)

SNARES warm starts the computation with the pure strategies ob-
tained using the mincut-fanout procedure, which will be ex-
plained next. DBO and ABO in Lines 4 and 8 refer to the defender
better response and attacker better response oracles respectively,
while DO and AO in Lines 6 and 10 are the best response oracles
for both players respectively. In Line 4, DBO returns a heuristic re-
sponse X of the defender (we call this heuristic response as a “bet-

217

ter" response as opposed to the “best" response; hereX may not be
strictly better than existing strategies). Line 5 checks whether this
utility Ud(X,a) is higher than the utility Ud(x,a) obtained from
minimax by at least ε, i.e., whether X is at least ε-better than all
strategies present in X against a. IfUd(X,a) is not at least ε higher
thanUd(x,a), then the best response DO is invoked (Line 6). Line 7
guarantees that each iteration adds an improving pure strategy to
X, should one exist. Similarly computation is performed for the at-
tacker in Lines 8–11. Line 12 states that the computation proceeds
until convergence, which is obtained when the utility obtained
from the best response of each player is not better than the corre-
sponding player’s utility from the minimax strategy. In other words,
convergence is obtained when Ud(X,a) − Ud(x,a) ≤ τ and
Ua(A,x)−Ua(a,x) ≤ τ , where τ defines the tolerance.2 Finally,
SNARES is guaranteed to converge on the global optimal solution
since convergence can be obtained only when the best responses
for both the players are unable to generate an improving strategy.

5.1 Warm-starting using mincut-fanout
The objective of warm-starting is to generate pure strategies for

both the defender and the attacker before the computation of the
minimax strategy is started. Given the setup of the game, the best
response of the attacker will choose to attack the highest-valued
target t̂ with probability 1.0, if there exists a s− t̂ path in G(N,E)
that does not intersect with any of the defender’s allocations. Con-
sequently, strategies considering the most-valued target get gener-
ated by the iterative procedure of the double-oracle based algorithm
in the first few iterations. The objective of warm-starts here is to
generate such strategies for both players and add them before the
start of the double-oracle iterative procedure. This will reduce the
number of iterations that are required by the algorithm.

Thus, we construct a game with just one target: t̂. Solution for
this game can be computed in polynomial-time: it is to uniformly
distribute the defender’s resources on the s− t̂ min-cut [14]. Thus,
mincut-fanout will sample pure strategies for the defender, or
defender allocations, from the s − t̂ min-cut, such that each allo-
cation covers k edges. We then compute pure strategies for the
attacker, or attacker paths, which are best responses to each indi-
vidual defender allocation. This is done using Dijkstra’s shortest
path computation, such that each edge e in the defender allocation
X has weight inf , while the other edges have a weight of 1. This
also prefers short attacker paths over long ones, the intuition being
that shorter paths should be preferred by the attacker since longer
paths are more likely to be intercepted.

We also generalized the above idea to consider all the targets
and not just the highest valued target t̂. However, as we show in
Section 6.1.1, our choice of using only the highest valued target
in mincut-fanout performs better against considering all the
targets. We also show that it performs better against other potential
strategies for warm starting the computation.

5.2 Using "Better" Responses
SNARES presents heuristics to compute “better responses" for

both players. Each better response module aims to compute a strat-
egy for the corresponding player that is better than any strategy
already in the mix against the other player’s current equilibrium
strategy. If successful, this guarantees that CoreLP will compute
a different equilibrium when this strategy is added. If the better
response heuristic fails to generate such a strategy, then the best-
response module is called. The objective is to reduce the number
of invocations of the best response modules, both of which solve

2In all our experiments, we fix both ε and τ to 0.001.

an NP-hard problem [6] and consume significant runtime when the
problem size gets bigger. On the other hand, the better response
solutions used by SNARES can be computed in polynomial time.
Furthermore, even with the use of better responses, SNARES still
converges on the global equilibrium since the best responses mod-
ules are called if the better response modules do not generate an
improving strategy. We now present the better response algorithms
for both players.

5.2.1 Better Response for the Defender
In this section, we first present a greedy approach to generate

the better response Xg of the defender. This approach greedily
maximizes a “normalized" defender utility function f(X,a). We
next show that this utility function is a non-negative sub-modular
function, and then establish a bound on the solution quality of
our greedy better response solution. This bound suggests that our
greedy approach generates good solutions.

The defender payoffs are always negative in our domain: the
defender gets a payoff of −T (t) when the attacker successfully
attacks target t and 0 otherwise. To facilitate analysis, we define a
non-negative normalized utility function f for the defender, where

Ud(X,a) = −
∑
Aj∈A|X∩Aj=∅ ajT (tj) (19)

fa(X) = Ud(X,a)− Ud(∅,a) (20)

More specifically, f gives the added benefit of the defender alloca-
tion X over the defender not protecting any edges. Furthermore,
using Equation 19,

fa(X) = −
∑

Aj∈A|X∩Aj=∅

ajT (t(j))− Ud(∅,a) =
∑

Aj∈A|X∩Aj 6=∅

ajT (tj) (21)

The greedy better response algorithm is described as Algorithm 3,
where in each iteration, the objective is to add an edge e to the
greedy defender allocationXg that maximizes fa(X ∪{e}). Here,
Xg (Line 1) is the computed better response of the defender. a is
the mixed strategy of the attacker over the set of paths A that is
input to the better response oracle. Ar in Line 2 is used to keep
track of attacker paths that not already covered by the defender’s
allocation. we (initialized in Line 4) represents the weight of each
edge. These weights are updated in Lines 5–7, such that we rep-
resents the total marginal usage of edge e in the attacker’s mixed
strategy a, weighted by the payoff of the target attacked by the
attacker when traversing through e. The defender, following the
greedy approach, chooses an edge e∗ with the highest weight in
Line 8. Finally, all the paths intersecting with edge e∗ are removed
from the set of paths considered in subsequent iterations, i.e., from
Ar (Lines 10–12). Lines 13–15 are invoked only if the allocation
Xg already intersects with all the attacker paths Aj ∈ A, and en-
sures that the defender chooses k edges in its allocation.

THEOREM 1. The normalized defender utility, fa(X), is sub-
modular in X .

PROOF. We show here that the gain in defender utility when
adding an edge e to an existing defender allocation X exhibits di-
minishing returns. LetX1 andX2 be two defender allocations such
that X1 ⊆ X2 ⊆ E. Furthermore, let A1 = {Aj |Aj ∩X1 = ∅},
i.e., the set of attacker paths that are not covered by X1. Similarly,
let A2 = {Aj |Aj ∩X2 = ∅}. Furthermore, X1 ⊆ X2, therefore,
A2 ⊆ A1 since every path that is covered byX1 is covered byX2.

Moreover, using Equation 21,

fa(Xi) = −
∑

Aj∈Ai

ajT (t(j))− Ud(∅,a), i ∈ {1, 2} (22)

218

Algorithm 3 Defender Better Response: DBO(A,a)

1: Initialize Xg ← ∅ (defender allocation)
2: Initialize Ar ← A
3: while |Xg| < k and Ar 6= ∅ do
4: we = 0 ∀e ∈ E
5: for all Aj ∈ Ar do
6: for all e ∈ Aj do
7: we ← we + ajT (t(j))
8: e∗ ← argmaxe we
9: Xg ← Xg ∪ {e∗}

10: for all Aj ∈ Ar do
11: if e∗ ∈ Aj then
12: Ar ← Ar − {Aj}
13: while |Xg| < k do
14: Choose e arbitrarily from E
15: Xg ← Xg ∪ e
16: return Xg

Let us now consider the addition of an edge e. Let e intersect
with attacker pathsAe12∪Ae2∪Ae∅ whereAe12 = {Aj |e ∈ Aj , Aj ∈
A, Aj ∩X1 6= ∅} (and thus, paths in Ae12 also intersect with X2),
Ae2 = {Aj |e ∈ Aj , Aj ∈ A, Aj ∩ X1 = ∅, Aj ∩ X2 6= ∅}, and
Ae∅ = {Aj |e ∈ Aj , Aj ∈ A, Aj ∩X2 = ∅} (and thus, paths inAe∅
also do not intersect with X1). Here, A represents all the possible
exponentially many attacker paths possible in the input network
security game. Therefore,

fa(X1 ∪ {e})− fa(X1) (23)

=
∑

Aj∈Ae
2∪A

e
∅

ajT (t(j)) (24)

=
∑

Aj∈Ae
2

ajT (t(j)) +
∑

Aj∈Ae
∅

ajT (t(j)) (25)

=
∑

Aj∈Ae
2

ajT (t(j)) + (fa(X2 ∪ {e})− fa(X2)) (26)

≥ fa(X2 ∪ {e})− fa(X2) (27)

Hence, the normalized defender utility fa(X) is a non-negative
sub-modular function.

Letting X∗ to be the best response of the defender,

fa(Xg) ≥ (1− 1

e
)fa(X

∗) (28)

since we compute an incrementally maximizing greedy solution to
a non-negative sub-modular function [9].

We now establish the relationship between a global minimax
equilibrium solution 〈x∗,a∗〉 and the solution 〈xc,ac〉 obtained
when using just this greedy responseDBO to compute pure strate-
gies for the defender, i.e., we never call DO but we do call AO by
taking out Lines 5 and 6 from Algorithm 2 to arrive at 〈xc,ac〉.

THEOREM 2. The defender utilityUd(xc,ac) is lower bounded
by (1− 1

e
)Ud(x

∗,a∗) + 1
e
Ud(∅,ac).

PROOF. Firstly, given that 〈x∗,a∗〉 is a minimax solution,

Ud(x
∗,a∗) ≥ Ud(x,a

∗) ∀x (29)
Ud(x

∗,a) ≥ Ud(x
∗,a∗) ∀a (30)

Furthermore, defining

fa(x) =
∑
Xi∈X

xifa(Xi) (31)

and using Equations (20), (29), (30) and (31), we have:

fa∗(x
∗) ≥ fa∗(x) ∀x (32)

fa(x
∗) ≥ fa∗(x∗) + (Ud(∅,a∗)− Ud(∅,a)) ∀a (33)

Therefore, using Equations (28) and (33),

fac(xc) = fac(DBO(ac)) (34)

≥ (1− 1

e
)fac(DO(ac)) (35)

≥ (1− 1

e
)fac(x

∗) (by definition of DO) (36)

≥ (1− 1

e
)[fa∗(x

∗) + (Ud(∅,a∗)− Ud(∅,ac))] (37)

Therefore, Ud(xc,ac) ≥ (1− 1
e
)Ud(x

∗,a∗) + 1
e
Ud(∅,ac).

Thus, not only is the better response defender utility bounded in
each iteration, but the solution quality for using just the better re-
sponse is also bounded at convergence. Furthermore,Ud(xc,ac) ≥
Ud(xc,a) ∀a. Thus, Ud(xc,ac) is the utility that xc guarantees the
defender. Also, naturally, Ud(∅,ac) ≥ −maxt∈T T (t). So the
greedy solution does at least as well as doing nothing 1

e
of the time

and playing optimally the rest of the time. This proof suggests that
the better response oracle can produce good solutions efficiently, a
hypothesis which we experimentally validate in Section 6.

5.2.2 Better Response for the Attacker
We now describe the better response heuristic for the attacker.

We use a shortest path based approach to generate better responses
for the attacker, which is given as Algorithm 4. This algorithm is
designed to accurately determine the defender’s coverage probabil-
ity when estimating the attacker’s utility of the better response, even
if the attacker chooses two edges in his path which are covered in
the same defender allocation. For example, if in the attacker’s bet-
ter response, the attacker traverses through the edges e1 and e2,
and there exists a defender allocation Xi|e1, e2 ∈ Xi, then Al-
gorithm 4 will not double count the probability xi associated with
allocationXi when computing the attacker’s reward. This is differ-
ent from previous greedy approaches for computing the attacker’s
response, which defined the cost of the edge e as the defender’s
marginal coverage of e [12], and suffered from over-estimation of
the defender’s coverage. Algorithm 4 below assumes the presence
of only one source s; if there are multiple sources, then a virtual
source is added which then connects to all the existing sources.

Lines 1–15 of Algorithm 4 follow the Dijkstra’s algorithm. Here,
path distances are computed using caught[u], which gives the
probability of the attacker’s s − u path getting intercepted by the
defender. To ensure the correct computation of caught[u], the al-
gorithm keeps track of Xu, or the set of allocations that the attacker
has not encountered along the s − u path. Xv is updated once the
attacker moves to node v using the edge e : (u, v) (Line 14), by
removing all the allocations from Xu that contributed to the cost
ce of edge e. ce (Line 10) gives the probability of the attacker
getting intercepted by the defender on this particular edge, only
considering allocations in Xu. Lines 16 to 18 then find highest ex-
pected utility target to attack for the attacker, and the greedy path
Ag is then constructed using the stored predecessor information
(Lines 13 and 19). As opposed to the defender’s pure strategies,
the edges for the attacker cannot be chosen independently, because
they should define a valid path from s to a target t. Such a restric-
tion prevents us from conducting a sub-modularity analysis similar
to the defender case; and we focus on experimental validation of
this approach. The results are presented in Section 6.

219

Algorithm 4 Attacker Better Response: ABO(X,x)

1: for all n ∈ N do
2: caught[n]←∞
3: caught[s]← 0
4: Xs ← X
5: Add s to Priority Queue PQ
6: while PQ is not empty do
7: u← argminn∈PQ caught[n]
8: Remove u from PQ.
9: for e(u, v) ∈ out-edges(u) do

10: ce ←
∑
Xi∈Xu|e∈Xi

xi
11: if caught[u] + ce ≤ caught[v] then
12: caught[v]← caught[u] + ce
13: prev[v]← u
14: Xv ← Xu − {Xi|e ∈ Xi}
15: Add v to PQ
16: for t ∈ T do
17: payoff[t]← (1− caught[t]) · T (t)
18: t∗ ← argmaxt payoff[t]
19: Ag ← path(s− t∗) constructed using prev[t∗]
20: return Ag

6. EXPERIMENTAL RESULTS
We now experimentally evaluate the performance of SNARES,

both on simulated graphs as well as on real urban road networks.

6.1 Analysis of Components of SNARES
In this section, we evaluate the performance boost provided by

each component of the SNARES algorithm. Specifically, we com-
pare the performance with and without the use of mincut-fanout
strategies for warm starts as well as with and without the better re-
sponses. These experiments were conducted on a machine with 16
GB main memory and a 2.3 GHz processor.

6.1.1 Warm Starts without Better Responses:
We compare the performance of choosing the mincut-fanout

warm-start methodology with 5 other methodologies, ranging from
random selection to using previously published algorithms for this
domain. We also establish the baseline using RUGGED.

All data points are averaged over 30 samples for random geo-
metric graphs. We use random geometric graphs since they have
been shown to mimic the connectivity properties of real road net-
works [2]. A random geometric graph is generated as follows:
nodes or vertices are placed at random uniformly and indepen-
dently on a 2-D region, and two vertices u, v are connected by an
edge if and only if the distance between them is at most a threshold
d, i.e., ||x − y||2 ≤ d. In all our experiments, our 2-D region is
normalized to a unit square, and the value of d varies from 0 to 1.

These results are shown in Figure 3(a). The y-axis shows the
runtime in seconds and the x-axis shows the different methodolo-
gies for warm starts. These results are averaged over 30 random
geometric graphs with 50 nodes, 5 targets, 3 defender resources
and d = 0.2. The target payoffs were randomly generated be-
tween 0 and 100. The first bar of the graph represents the runtime
of RUGGED. The second, third and fourth bars are results when
warm starts are used for the defender. They represent a random
choice of k edges, sampling of defender pure strategies from the
union of min-cuts between the source s and each target t ∈ T , and
pure strategies obtained by sampling the solution obtained using
RANGER respectively. The fifth and the sixth bars are results when
warm-starts are used for the attacker. They use the RANGER algo-

rithm and shortest paths from the source s to each target t ∈ T re-
spectively. The seventh bar in the graph represents the results of us-
ing mincut-fanout as in SNARES. Here, RUGGED took 329.69
seconds, random selection of edges for the defender increased the
runtime to 435.24 seconds whereas mincut-fanout reduced it
to 76.67 seconds. These results show that while mincut-fanout
is effective, other approaches are not as effective and may even per-
form worse than RUGGED.

6.1.2 Better Responses without Warm Starts
We now present the results of using better responses in SNARES.

We evaluate the use of better responses for each player indepen-
dently as well as in conjunction. However, no warm starts were
used in these experiments, that is, the full Algorithm 2 was used but
with Line 1 disabled. These experiments are also done on the same
graphs as before: 30 samples of random geometric 50 node graphs
with 5 targets, 3 defender resources and d = 0.2. Again, RUGGED
forms the baseline. These results are shown in Figure 3(b). The
y-axis shows the runtime in seconds whereas the x-axis shows the
different configurations for the experiment. For example, RUGGED
took 329.69 seconds whereas using better responses for just the de-
fender reduced the runtime to 33.58 seconds. Moreover, SNARES
required just 4.46 seconds, an improvement of 98%. These results
also show that using better responses for any one player provides a
boost in performance, and using it for both players simultaneously
makes SNARES even more effective.

Figure 3(c) shows the percentage of times calls to the best re-
sponse module have to be made on the y-axis (on log-scale) and
varies the configuration on the x-axis. The results are shown for all
the four configurations from the previous experiment. Each result
shows the percentage of iterations better response did not gener-
ate an improving strategy for both the players (i.e, in Algorithm 2,
check in Line 5 failed and Line 6 was called for the defender, and
check in Line 9 failed and Line 10 was called for the attacker).
The lower the bar, the lower percentage of times the best response
module has to be called. RUGGED has no better responses, and is
hence plotted at 100%. For example, the best response of the at-
tacker and defender were computed in only 15.81% and 1.69% of
the iterations in SNARES.

6.2 Scalability in Simulation
This section evaluates the performance of SNARES as the input

problem size is varied. These results are also conducted on random
geometric graphs and are averaged over 30 samples. We do not
plot error bars in our graphs because the y-axis is on a log-scale;
however, SNARES was statistically significantly (with p < 0.05)
faster than RUGGED for all experiments with more than 100 nodes,
or d ≥ 0.2, or k ≥ 4, or |T | ≥ 4.

6.2.1 Vary Number of Nodes
Figure 4(a) presents the results when varying the number of nodes

in the input problem. The x-axis shows the number of nodes in
the graph, whereas the y-axis shows the runtime in seconds (on a
log-scale). The four bars in the graph compare the performance of
RUGGED with (i) SNARES without better responses, (ii) SNARES
without mincut-fanout, and (iii) SNARES. These experiments
were conducted on random graphs generated with density d = 0.1,
3 targets, 3 source nodes for the attacker, and 3 defender resources.
These results show that all configurations are better than the base-
line of RUGGED, and that SNARES is the most efficient. RUGGED
ran out of memory in 26 out of 30 samples for 200 node graphs, and
was killed in another 2 samples since it did not finish execution in
3 hours. For example, for 150 nodes, while RUGGED took 6021.08

220

0	

200	

400	

600	

800	

R
un

*
m
e	

(in

	
 s
ec
s)
	

Rugged	

Def:	
 Random	

Def:	
 MinCut	

Def:	
 Ranger	

A>:	
 Ranger	

A>:	
 Shortest	

mincut-­‐fanout	

(a) Effect of warm starts

0	

50	

100	

150	

200	

250	

300	

350	

Ru
n*

m
e	

(in

	
 s
ec
s)
	

Rugged	

Defender	

A8acker	
 	

SNARES	
 (wo	

mincut-­‐fanout)	

(b) Effect of using better responses

1	

10	

100	

Rugged	
 Defender	
 A.acker	
 Both	

Pe
rc
en

ta
ge
	
 o
f	
 c
al
ls
	
 to

	
 	

be

st
-­‐r
es
po

ns
e	

A.:	
 AO	
 Def:	
 DO	

(c) Analyzing better responses

Figure 3: The contributions of individual components of SNARES. RUGGED is used as a baseline.

0.1	

1	

10	

100	

1000	

10000	

50	
 100	
 150	
 200	

Ru
n*

m
e	

(in

	
 se
cs
)	
 	

[lo
g-­‐
sc
al
e]
	

Nodes	

Rugged	

Snares	
 without	

beAer	
 responses	

Snares	
 without	

mincut-­‐fanout	

Snares	

(a) Varying number of nodes

0.01	

0.10	

1.00	

10.00	

100.00	

1000.00	

10000.00	

0.1	
 0.2	
 0.3	
 0.4	

Ru
n+

m
e	

(in

	
 se
co
nd

s)
	
 	

[lo
g-­‐
sc
al
e]
	

Graph	
 Density	

Rugged	

Snares	
 without	

beEer	
 responses	

Snares	
 without	

mincut-­‐fanout	

Snares	

(b) Varying density d

0.01	

0.10	

1.00	

10.00	

100.00	

1000.00	

1	
 2	
 3	
 4	
 5	

Ru
n,

m
e	

(in

	
 se
co
nd

s)
	
 	

[lo
g-­‐
sc
al
e]
	

Resources	

Rugged	

Snares	
 without	

beBer	
 responses	

Snares	
 without	

mincut-­‐fanout	

Snares	

(c) Varying number of defender resources

Figure 4: The runtime required by SNARES as the input problem size is varied.

seconds, and SNARES without better responses used 4, 152.80 sec-
onds. Additionally, SNARES without mincut-fanout reduced
the runtime to 19.58 seconds and SNARES required only 6.53 sec-
onds. Thus, the experiment shows that the combination provides
the most significant boost in performance, SNARES taking only
1.08% of the time required by RUGGED.

6.2.2 Vary Graph Density
Figure 4(b) presents the results when varying the distance d used

when generating the random geometric graphs. The x-axis shows
the value of d, whereas the y-axis gives the runtime. These exper-
iments were conducted on random graphs generated with density
50 nodes, 3 targets, 3 source nodes for the attacker, and 3 defender
resources. These results show that as the density of the graph is
increased, the runtime required by all the algorithms increases. Ex-
periments that did not terminate in 10, 800 seconds (3 hours) were
terminated (as in the case of most experiments with graph density
higher than 0.3 when run with RUGGED). These results also show
that SNARES performs much better than RUGGED. For example,
for d = 0.3, most experiments with RUGGED did not finish in 3
hours, whereas SNARES without better responses took 537.19 sec-
onds. Furthermore, SNARES without mincut-fanout required
32.74 seconds, whereas SNARES required only 9.04 seconds.

6.2.3 Vary Number of Resources
We now present the results when varying the number of de-

fender resources in Figure 4(c). These results are shown for ran-
dom graphs with 50 nodes, 3 targets, 3 sources and graph density
d = 0.1. The x-axis in this graph shows the number of defender
resources, whereas the y-axis shows the runtime in seconds on log
scale. The results show that the performance trends remain the
same: SNARES scales much better than RUGGED when the prob-
lem size is increased and the use of better responses provides a
more significant performance boost. For example, for 4 resources,
RUGGED required 83.90 seconds whereas SNARES only required
0.72 seconds on average.

0.10	

1.00	

10.00	

1	
 2	
 3	
 4	

Ru
n+

m
e	

(in

	
 se
co
nd

s)
	
 	

[lo
g-­‐
sc
al
e]
	

Targets	

Rugged	

Snares	
 without	

beBer	
 responses	

Snares	
 without	

mincut-­‐fanout	

Snares	

Figure 5: Varying Number of targets.

6.2.4 Vary Number of Targets
Figure 5 presents the results when varying the number of targets

for random graphs 50 nodes, 3 sources, 3 resources and d = 0.1.
The x-axis shows the number of targets, whereas the y-axis shows
the runtime in seconds on log-scale. We observe similar perfor-
mance trends: SNARES scales better than RUGGED in the number
of targets as well. For example, for 4 targets, where RUGGED took
10.97 seconds, SNARES only required 0.77 seconds.

6.3 Real Data
We also tested the performance of SNARES on real urban road

network data. We downloaded the OSM information for the road
network of Mumbai [4]. We extracted this information for the en-
tire city of Mumbai, that is, the road network existing between lat-
itudes 18.840 and 72.750 and longitudes 19.360 and 73.160.

We first present results in Table 2 comparing SNARES with RUG-
GED on the southern part of the Mumbai road network. RUGGED
was only able to solve for a subset of the Mumbai road network, and
thus, we can only use a subset of the Mumbai map for this experi-
ment. These experiments were done with 3 targets and 3 sources,
whose locations on the map were motivated by the Mumbai attacks
of November 2008. These results show that SNARES has a signif-

221

Map Resources
Size Algorithm 1 2 3 4

45 RUGGED 0.91 6.43 22.58 33.42
SNARES 1.08 2.62 7.53 7.71

129 RUGGED 6.63 32.55 486.48 3, 140.23
SNARES 2.23 2.99 10.99 21.06

252 RUGGED 17.19 626.25 2, 014.14 34, 344.70
SNARES 3.83 4.85 16.19 30.77

Table 2: Runtime of RUGGED [6] and SNARES on real Mumbai
map. Results of SNARES are averaged over 30 runs.

icant improvement over RUGGED; for example, for a subset of the
graph with 252 nodes, RUGGED took 34, 344.70 seconds to place
4 resources whereas SNARES only 30.77 seconds!

While RUGGED could only compute solutions for the southern
tip of the road network of Mumbai, SNARES was able to solve the
entire road network. These results are shown in Table 3. We ran
SNARES varying the number of targets and number of defender re-
sources for 3 sources. The easy-hard-easy pattern in the runtime
with the increase in resources is expected based on the runtime
properties of security games [7]. For example, it took SNARES only
101.09 seconds to find the optimal solution for placing 10 check-
points when considering 8 targets. Thus, SNARES is now scalable
enough to be applied and used in the real world.

Resources Number of Targets
4 8

1 18.23 27.12
5 1, 209.37 7, 289.03

10 27.26 129.51
15 12.64 101.09

Runtime Required by SNARES:
All results averaged over 30 samples.

Table 3: The image is map of Mumbai road network compris-
ing 9, 503 nodes and 20, 416 edges. The sources (blue dots) and
targets (red dots) are placed arbitrarily for these tests.

7. CONCLUSIONS
Scheduling of defender resources on a network is a significant

and challenging research problem with real-world importance. Fas-
ter and more scalable security algorithms are required before such
algorithms can be of assistance to end-users in the real world. This
paper presents a significant advance towards addressing this chal-
lenge. For example, whereas previous state-of-the-art algorithms
could solve for the road network of at most the southern tip of the
city of Mumbai, we can now solve for the entire city providing
orders-of-magnitude speedups. This advance is made possible by
SNARES, which makes the following new contributions: First, we
provide mincut-fanout, an effective procedure to warm start
the computation. Second, we show that the defender optimization
exhibits the sub-modularity property and we exploit it by develop-
ing a greedy better-response heuristic. We also present a better-
response heuristic for the attacker. These methods combine pro-
viding SNARES orders of magnitude improvement over previous
algorithms, as we show in extensive analysis of individual compo-
nents of SNARES. Third, we also present results on much larger

real-world urban road network data, and demonstrate that SNARES
can now compute solutions for problems of the size encountered in
the real-world. The scalability of SNARES now makes it feasible to
use game-theoretic strategies in real-world networked domains.

8. ACKNOWLEDGEMENTS
This research has been funded by the Army Research Office

through the MURI grant number W911NF-11-1-0332.

9. REFERENCES
[1] S. Alpern. Infiltration Games on Arbitrary Graphs. Journal

of Mathematical Analysis and Applications, 163:286–288,
1992.

[2] D. Eppstein and M. T. Goodrich. Studying (Non-Planar)
Road Networks Through an Algorithmic Lens. CoRR,
abs/0808.3694, 2008.

[3] S. Gal. Search Games. Academic Press, New York, 1980.
[4] M. Haklay and P. Weber. Openstreetmap:user-generated

street maps. Pervasive Computing, IEEE, 7(4):12–18, 2008.
[5] E. Halvorson, V. Conitzer, and R. Parr. Multi-step

Multi-sensor Hider-Seeker Games. In IJCAI, pages 159–166,
2009.

[6] M. Jain, D. Korzhyk, O. Vanek, V. Conitzer, M. Pechoucek,
and M. Tambe. A Double Oracle Algorithm for Zero-Sum
Security Games on Graphs. In AAMAS, 2011.

[7] M. Jain, K. Leyton-Brown, and M. Tambe. The
Deployment-to-Saturation Ratio in Security Games. In AAAI,
2012.

[8] H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the
Presence of Cost Functions Controlled by an Adversary. In
ICML, pages 536–543, 2003.

[9] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
Analysis of Approximations for Maximizing Submodular Set
Functions–I. Mathematical Programming, 14(1):265–294,
Dec 1978.

[10] S. Okamoto, N. Hazon, and K. Sycara. Solving non-zero sum
multiagent network flow security games with attack costs. In
AAMAS, pages 879–888, 2012.

[11] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin,
J. DiRenzo, B. Maule, and G. Meyer. Protect: A Deployed
Game Theoretic System to Protect the Ports of the United
States. In AAMAS, 2012.

[12] J. Tsai, Z. Yin, J. young Kwak, D. Kempe, C. Kiekintveld,
and M. Tambe. Urban Security: Game-Theoretic Resource
Allocation in Networked Physical Domains. In AAAI, pages
881–886, 2010.

[13] O. Vanek, Z. Yin, M. Jain, B. Bosansky, M. Tambe, and
M. Pechoucek. Game-theoretic resource allocation for
malicious packet detection in computer networks. In
AAMAS, 2012.

[14] A. Washburn and K. Wood. Two-person Zero-sum Games
for Network Interdiction. Operations Research,
43(2):243–251, 1995.

[15] R. Yang, F. Fang, A. X. Jiang, K. Rajagopal, M. Tambe, and
R. Maheswaran. Designing Better Strategies against Human
Adversaries in Network Security Games. In AAMAS
(Extended Abstract), 2012.

[16] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in Security Games: Interch-
angeability, Equivalence, and Uniqueness. In AAMAS, pages
1139–1146, 2010.

222

