
Security Games with Surveillance Cost and Optimal
Timing of Attack Execution

Bo An1, Matthew Brown2, Yevgeniy Vorobeychik3, Milind Tambe2

1The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, 100190, China

2University of Southern California, Los Angeles, CA, 90089, USA
3Sandia National Laboratories∗, Livermore, CA 94550, USA

1boan@ict.ac.cn, 2{mattheab,tambe}@usc.edu, 3yvorobe@sandia.gov

ABSTRACT
Stackelberg games have been used in several deployed applications
to allocate limited resources for critical infrastructure protection.
These resource allocation strategies are randomized to prevent a
strategic attacker from using surveillance to learn and exploit pat-
terns in the allocation. Past work has typically assumed that the
attacker has perfect knowledge of the defender’s randomized strat-
egy or can learn the defender’s strategy after conducting a fixed
period of surveillance. In consideration of surveillance cost, these
assumptions are clearly simplistic since attackers may act with par-
tial knowledge of the defender’s strategies and may dynamically
decide whether to attack or conduct more surveillance. In this
paper, we propose a natural model of limited surveillance in which
the attacker dynamically determine a place to stop surveillance in
consideration of his updated belief based on observed actions and
surveillance cost. We show an upper bound on the maximum num-
ber of observations the attacker can make and show that the attack-
er’s optimal stopping problem can be formulated as a finite state
space MDP. We give mathematical programs to compute optimal
attacker and defender strategies. We compare our approaches with
the best known previous solutions and experimental results show
that the defender can achieve significant improvement in expected
utility by taking the attacker’s optimal stopping decision into ac-
count, validating the motivation of our work.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: [Multiagent Systems]

General Terms
Algorithm, Security

Keywords
Game Theory, Security, Optimization, Stackelberg Games

1. INTRODUCTION
Stackelberg security games have been used in several deployed

applications for protecting critical infrastructure including LAX
∗Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Airport, US Coast Guard, and the Federal Air Marshals Service [4,
7, 5, 14, 3, 12, 1]. A Stackelberg security game models a sequential
interaction between a defender and an attacker [6]. The defender
first commits to a randomized security policy, and the attacker uses
surveillance to learn about the policy before attacking. A Stackel-
berg equilibrium of this game yields an optimal security policy for
the defender, based on the assumption that the attacker will observe
this strategy and respond optimally.

Terrorists conduct surveillance to select potential targets and gain
strong situational awareness of targets’ vulnerabilities and security
operations [13]. Most existing work on security games, including
deployed applications, assumes that the attacker is able to observe
the defender’s strategy perfectly or can learn the defender’s strategy
after conducting a fixed period of surveillance. These assumptions
are a useful first-level approximation, but it is clearly simplistic. In
reality, the attacker may have more limited observation capabilities
since surveillance is costly and delays an attack. Attackers may
also wish to reduce the number of observations due to the risk of be-
ing detected by security forces while conducting surveillance [13].
Therefore, it is essential to consider the attacker’s dynamic decision
making while conducting limited surveillance.

While there has been some related work that relaxes the perfect
observation assumption in security games, the proposed approach-
es have some fundamental drawbacks. The COBRA algorithm [10]
focuses on human perception of probability distributions by apply-
ing support theory [15]. RECON [18] considers imperfect obser-
vation by assuming that the attacker’s observation is within some
distance from the defender’s real strategy, but does not address how
these errors arise or how the beliefs are formed. Both RECON
and COBRA require hand-tuned parameters to model observations
errors, which make them less applicable. Korzhyk et al. [8] also
consider imperfect observation but only consider perfect observa-
tion and no observation. In practice, an attacker may have partial
knowledge of the defender’s strategy rather than the two extreme
situations. Generally, Stackelberg equilibria and Nash equilibria
in security games are different [19], and the defender’s optimal
strategy with limited surveillance may be different from both the
Stackelberg and Nash equilibria. An et. al [2] propose a model
wherein an attacker updates his belief based on a limited num-
ber of observed actions. But the model assumes that the defender
can perfectly estimate the number of observations the attacker will
make, which is unrealistic. There also has been some work on
understanding the value of commitment for the leader in general
Stackelberg games where observations are limited or costly [9, 16].

In this paper, we propose a natural model of limited surveillance
in which the attacker dynamically determines whether to make more
observations or to attack his best target immediately. The attack-
er’s optimal stopping decision after each observation takes into

223

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

account both his updated belief based on observed defender actions
and surveillance cost. Such an optimal stopping model for limited
surveillance does not assume the knowledge about the defender’s
strategy nor the number of observations the attacker will make.

We investigate the model both theoretically and experimental-
ly. We make the following key contributions: (1) We introduce a
model of security games with limited surveillance in which attacker
dynamically decides when to attack. (2) We show that the attacker’s
optimal stopping problem can be formulated as a discrete state
space MDP. (3) We show an upper bound on the maximum number
of observations the attacker can make and thus the stopping prob-
lem is equivalent to a finite state MDP. (4) We give mathematical
programs for computing optimal attacker and defender strategies.
(5) Experimental results show that the defender can gain signifi-
cantly higher utility by considering the optimal stopping decision.

2. STACKELBERG SECURITY GAMES
A Stackelberg security game [6] has two players, a defender

who uses m identical resources to protect a set of targets T =
{1, 2, . . . , n} (m<n), and an attacker who selects a single target
to attack. The defender has N pure strategies A, each a cover-
age vector representing which m targets are covered. Our model
can handle more general security settings in which there may exist
scheduling constraints on the assignment of resources. In that case,
A represents feasible assignments. We write Ai = 1 if target i is
covered in strategy A ∈ A, and Ai = 0 otherwise. Each target
i is covered by some pure strategies. The defender can choose a
randomized strategy x, with xA ≥ 0 the probability of playing
a strategy A. A defender strategy can be represented more com-
pactly using a marginal coverage vector c(x) = 〈ci(x)〉 where
ci(x) =

∑
A∈A xAAi is the probability that target i is covered

by some defender resource [6]. The attacker’s strategy is a vector
a= 〈ai〉 where ai is the probability of attacking target i. Since the
attacker always has an optimal pure-strategy response, we restrict
the attacker’s strategies to pure strategies without loss of generality.

The payoffs for each player depend on which target is attacked
and the probability that the target is covered. If the attacker attacks
target i, there are two cases: If target i is covered, the defender
receives a reward Rdi and the attacker receives a penalty P ai . Oth-
erwise, the payoffs for the defender and attacker are P di and Rai ,
respectively. We assume that Rdi ≥ P di and Rai ≥ P ai in order
to model that the defender would always prefer the attack to fail,
while the attacker would prefer it to succeed. For a strategy profile
〈c,a〉, the expected utilities for both agents are given by:

Ud(c,a)=
∑
i∈T

aiU
d(ci, i),where Ud(ci, i)=ciR

d
i +(1− ci)P di

Ua(c,a)=
∑
i∈T

aiU
a(ci, i),where Ua(ci, i)=ciP

a
i +(1− ci)Rai

In a Stackelberg game, the defender moves first, choosing x,
while the attacker observes x and plays an optimal response a to
it. The standard solution concept is strong Stackelberg equilibrium
(SSE) [17]. In an SSE, the defender chooses an optimal strategy x,
accounting for the attacker’s best response a, under the assumption
that the attacker breaks ties in the defender’s favor.

3. OPTIMAL STOPPING SECURITY GAMES
In this work we depart from the typical Stackelberg assumption

that the attacker has full knowledge of the defender strategy x, and
also relax the assumption made by An et al. [2] that the defender
knows how many observations the attacker will make. Instead,
we model the attacker as a Bayesian decision maker who opti-
mally solves the following sequential decision problem: for each

sequence of observed defender moves, decide whether to attack
now, or to make another observation of the defender, at some fixed
cost. We refer to our model as OPTS (OPtimal sTopping Security
games). Specifically, OPTS assumes the following sequence of
moves:

1. The defender chooses a mixed strategy x. We assume that
when choosing a strategy, the defender has knowledge of the
attacker’s prior beliefs.

2. The attacker decides whether to make an observation or to
attack immediately. After making one observation, the at-
tacker updates his belief and decides whether to continue
observing the defender based on his posterior belief about
the defender’s strategy, and so on. The game ends when the
attacker attacks a target.

Consider the LAX airport example based on the ARMOR ap-
plication [2, 11]. The police at LAX deploy checkpoints on the
entrance roads to LAX according to a randomized strategy com-
puted by ARMOR. Prior to an attack, attackers typically engage in
surveillance [13] which can take the form of driving around the dif-
ferent airport entrances, but will ultimately launch an attack based
on a finite number of observations of the checkpoint locations.1

More salient to our work is that a rational attacker can, and will,
dynamically choose whether to attack or to continue surveillance,
depending on the particular sequence of observed checkpoint loca-
tions, as well as his prior belief and observation costs.

Formally, in an OPTS model the attacker has a prior belief about
the defender’s strategy, updates this belief upon observing actu-
al defense realizations, and dynamically decides whether to stop
surveillance after each observation based on this posterior belief.
Suppose that the attacker makes a sequence of τ ≥ 0 observa-
tions, σ = {σ1, . . . , στ}, where each observation σi corresponds
to the defender’s pure strategy realization A, drawn i.i.d. from
the defender’s mixed strategy. Such a sequence of observations
σ can be compactly represented by an observation vector o =
〈oA〉 in which oA is the number of times pure strategy A was
observed. Thus, a single observation vector o represents τ !∏

A∈A oA!

different observation sequences. Let O = ∪τ∈Z≥0
Oτ denote the

set of all possible observation vectors, with Oτ = {o : oA ∈
{0, . . . , τ},

∑
A∈A oA = τ} the set of all observation vectors with

length (the number of observations) exactly τ . Additionally, we let
o = 〈oA = 0〉 be an “empty” observation vector corresponding to
the intial attacker state prior to surveillance activity.

The attacker starts the decision problem with a prior belief, which
is also known to the defender. We assume that the attacker’s belief
is represented as a Dirichlet distribution with support S = {x :∑
A∈A xA = 1, xA ≥ 0,∀A ∈ A}. A Dirichlet distribution f(x)

is characterized by a parameter vector α = 〈αA〉 with αA > −1
for all A ∈ A. It assigns probability β

∏
A∈A(xA)αA to the

defender’s mixed strategy x, where β =
Γ(

∑
A∈A αA+|A|)∏
A∈A Γ(αA+1)

is a
normalization constant expressed in terms of the gamma function
Γ. The prior belief can be represented as follows:

f(x) =
Γ(
∑
A∈A αA + |A|)∏

A∈A Γ(αA + 1)

∏
A∈A

(xA)αA .

If the defender’s actual mixed strategy is x and the attacker
makes τ observations, the probability that the attacker observes
o ∈ Oτ is f(o|x) = τ !∏

A∈A oA!

∏
A∈A(xA)oA . By applying

1An alternative model could be developed where the attacker picks
a subset of targets to observe, and will therefore only partially
observe the strategy realization of the defender in each observation.
We leave this model for future work.

224

Bayes’ rule given the observation vector o, we can calculate the
posterior distribution as:

f(x|o) =
Γ(
∑
A∈A αA + |A|+ τ)∏

A∈A Γ(αA + oA + 1)

∏
A∈A

(xA)αA+oA .

Having observed o, the attacker believes that the probability with
which the defender chooses a pure strategy A is

Pr(A|o) =

∫
S
xAf(x|o)dx =

αA + oA + 1∑
A′∈A αA′ + |A|+ τ

.

Finally, the marginal coverage of target i according to the poste-
rior belief f(x|o) is

coi =
∑
A∈A

Ai · Pr(A|o) =

∑
A∈AAi(αA + oA + 1)∑
A∈A αA + |A|+ τ

> 0.

In the OPTS model, for any observation vector o, the attack-
er can either attack a target immediately, choosing the target that
maximizes his expected utility with respect to the posterior belief
f(x|o), or continue surveillance. If the attacker chooses to attack
a target i, he obtains the expected utility of Ua(coi , i) as his im-
mediate reward, while the defender receives the expected utility of
Ud(ci, i) (where ci is the actual coverage of i), and the game ends.
On the other hand, if he chooses to make another observation, he
has to “pay" a cost λ > 0, which represents the opportunity cost
of delaying an attack, such as increasing the probability that the
attacker is captured before an attack can be carried out.

4. ATTACKER’S DECISION PROBLEM
Since the defender decides her strategy before the surveillance

phase and the attacker will decide whether to continue to observe
after each observation, the attacker’s optimal stopping problem can
be formulated as a Markov Decision Process (MDP) in which states
are the observation vectors o. The attacker’s optimal stopping prob-
lem can be solved without knowing the defender’s true strategy x.
Therefore, we can first compute the attacker’s optimal policy, and
then use it to compute the optimal mixed strategy commitment for
the defender.

Observe that the MDP is in fact a directed acyclic graph (DAG) if
we connect states with only non-zero transition probabilities, since
there is an edge from state o to state o′ if and only if o′ = o∪{A}
for an A ∈ A. Therefore, an observation vector with observation
length τ is connected to only |A| observation vectors with length
τ + 1. (The initial state in this DAG represents the state before any
observations have been made.)

If the attacker attacks his best target ψ(o) at state with observa-
tion vector o, he will gain an immediate utility2

W (o) = Ua(o)− λ ·∆(o),

where Ua(o) = coψ(o)(P
a
ψ(o) − Raψ(o)) + Raψ(o) is the attacker’s

utility without considering observation cost, coψ(o) is the marginal
coverage of target ψ(o) according to the posterior belief f(x|o),
and ∆(o) =

∑
A∈A oA is the length of observation vector o.

The attacker can also make another τ ′ > 0 observations after
he observes o. If the attacker’s expected utility from making more
observations is lower than W (o), he will just attack his best target
ψ(o). Formally, we define a value function V (o) for each ob-
servation vector o, which represents the attacker’s expected utility
when his observation vector is o and he follows the optimal policy
afterwards. At each state, the attacker can either attack the best
2Note that the expected utility is from the attacker’s perspective and
is based on his posterior belief. The real attacker utility depends on
the defender’s strategy which is unknown to the attacker.

target ψ(o) and gain a utility W (o) or make another observation,
reaching state o′ = o ∪ {A} with probability Pr(A|o). The
optimal value function V (o) thus satisfies the following dynamic
programming recursion:

V (o) = max
{
W (o),

∑
A∈A

Pr(A|o)V (o ∪ {A})
}
.

Without loss of generality, we assume that the attacker always
chooses to attack when he is indifferent between attacking and
making another observation.

The countable-state MDP is still a challenge due to its infinite
horizon. However, we now present a series of results that demon-
strate that, in fact, it suffices to consider observations of bounded
length, which implies that we need only consider an MDP with a
finite state space and a finite horizon. The intuition behind this
result is that after many observations have been made, new obser-
vations do not change the posterior belief very much, so the value
of new information is low, whereas the cost of making additional
observations remains fixed for all time. Therefore, eventually the
value of making additional observations will fall, and permanently
remain, below the cost of making them, and the attacker will attack
once that point is reached. What we proceed to show is that there
is a uniform bound on the number of observations made by the
attacker beyond which he will always attack.

First, we bound the most that the attacker can gain by taking a
single observation and then attacking, rather than attacking imme-
diately. We call this quantity

MV(o) = max
A∈A

Ua(o ∪ {A})− Ua(o).

LEMMA 1. For any ε > 0 and for all o with ∆(o) = τ >
M
ε
−
∑
A∈A αA − |A| − 1, MV(o) < ε.

PROOF. Let τ = ∆(o) and maxj∈T (Raj −P aj) = M ≥ 0. For
any A, let ψA = ψ(o ∪ {A}) be the optimal target to attack after
observing o ∪ {A}. Define Ci =

∑
A∈AAi(αA + oA + 1) and

C̄ =
∑
A∈A αA + |A|+ τ , and note that Ci/C̄ ≤ 1.

Without loss of generality, let k = ψ(o), which implies that
Ua(o) = Ua(cok, k) ≥ Ua(coj , j) for all targets j ∈ T , i.e.,

Ua(o) = cok(P ak −Rak)+Rak =
∑
A∈A Ak(αA+oA+1)∑
A∈A αA+|A|+∆(o)

(P ak −Rak)+

Rak = Ck
C̄

(P ak −Rak) +Rak ≥
Cj
C̄

(P aj −Raj) +Raj for all j.

MV(o) = max
A∈A

(
Ua(o ∪ {A})− Ua(o)

)
≤ max

A∈A

(
CψA
C̄ + 1

(P aψA −R
a
ψA) +RaψA − U

a(o)

)
3

≤ max
A∈A

(
CψA
C̄ + 1

(P aψA −R
a
ψA) +RaψA

−
(Ck
C̄

(P ak −Rak) +Rak

))
≤ max

A∈A

(
CψA
C̄ + 1

(P aψA −R
a
ψA) +RaψA

−
(CψA
C̄

(P aψA −R
a
ψA) +RaψA

))
≤M max

A∈A
CψA

(1

C̄
− 1

C̄ + 1

)
≤ M∑

A∈A αA + |A|+ τ + 1

3If AψA = 1, Ua(o ∪ {A}) =
CψA

+1

C̄+1
(P aψA − R

a
ψA

) + RaψA ≤
CψA
C̄+1

(P aψA − R
a
ψA

) + RaψA . If AψA = 0, Ua(o ∪ {A}) =
CψA
C̄+1

(P aψA −R
a
ψA

) +RaψA .

225

Therefore, for any ε > 0, letting τ > M
ε
−
∑
A∈A αA−|A|−1

implies that MV(o) < ε for any o with ∆(o) = τ .

The next lemma uses the bound we obtained on MV(o) for
any o to show that when the number of observations is sufficiently
large, the attacker will always attack immediately. The key is that
this bound is only in terms of the length of an observation vector, τ ,
and is therefore uniform across all observation vectors with length
at least τ .

LEMMA 2. Suppose that ∆(o) > M
λ
−
∑
A∈A αA − |A| − 1.

Then V (o) = W (o), i.e., the attacker attacks immediately.

Collecting Lemmas 1, and 2, we have proved the following the-
orem.

THEOREM 3. The infinite horizon MDP is equivalent to an MD-
P with a finite state space.

The power of this theorem is that we can now solve the bounded
observation space MDP using backward induction. The problem
that arises, however, is that the state space, though finite, is expo-
nentially large in the upper bound on the number of observations.
We consider the associated algorithmic questions in the following
section.

5. COMPUTING AN OPTIMAL ATTACKER
POLICY

Given the optimal value V (o) for each state o, we can decide
the optimal policy (i.e., stopping rule) of the attacker as follows:
with observation vector o, the attacker will make at least another
observation if and only if W (o) < V (o). The form of the optimal
attacker policy that will be useful as an input to the defender’s prob-
lem of computing the best commitment strategy is that of an obser-
vation graphO∗, which is comprised of a set of observation vectors
at which the attacker attacks. In constructing the observation graph,
we must be careful not to include any observation vectors o that
cannot be reached in the sense that the attacker already attacks at
all other, shorter, observation vectors which must precede o.

DEFINITION 4. An observation vector o is reachable if and
only if there exists a sequence of observation vectors {o1, . . . ,om}
such that 1) o1 = 〈o1

A = 0〉 and om = o; 2) for each 1 < i ≤ m,
oi = oi−1 ∪ {A} where A ∈ A; and 3) V (oi) > W (oi) for each
1 ≤ i < m. Let the set of reachable observation vectors be O∗.

To construct O∗, we initially set O∗ = {o = 〈oA = 0〉}. Then,
for each state o ∈ O∗ such that W (o) <

∑
A∈A Pr(A|o)V (o ∪

{A}) (i.e., W (o) < V (o)), add the state o′ = o ∪ {A} to O∗ for
eachA ∈ A. This process continues until no states can be added to
O∗. The height of an observation graphO∗ is the maximum length
of all the observation vectors in O∗.

5.1 Backward Induction
Computing an optimal solution to the attacker’s MDP amounts to

computing the value function for all o. Since our MDP has a finite
horizon, it can be solved using backward induction, starting at all
observation vectors with length τmax = bM

λ
−
∑
A∈A αA−|A|−

1c+ 1 computed in Lemma 2, and working backwards towards the
initial state. Then, for any observation vector o with ∆(o) > τmax,
we set V (o) = W (o).

5.2 Backward Induction with Forward Search
The bound τmax used in the naive backward induction approach

above may not be tight in practice. If in fact the attacker always

attacks even for τ < τmax, using τmax as the upper bound will
result in an exponentially larger MDP that we must solve. Here
we present an incremental algorithm which gradually considers
larger observation vectors until the optimal policy is found. The
challenge in constructing a forward search algorithm is that in order
to compute the value of a given observation vector, we need to
know the values of all observation vectors that can possibly follow
it. We resolve this challenge by constructing an upper and lower
bound on the entire value function, and using the convergence of
these functions to each other to check when an optimal solution
has been reached.

Suppose that we start backward induction from observation vec-
tors with length τ b ≤ τmax. Two issues arise: how do we set the
value V (o) for each observation o ∈ Oτb and how it will affect the
values of each o′ ∈ Oτ with τ < τ b. First, we bound the optimal
value that the attacker can receive in any state o.

LEMMA 5. V (o) ≤ Ramax−λ·∆(o) whereRamax = maxi∈T R
a
i

is the attacker’s maximum reward.

This lemma implies that for o ∈ Oτb , W (o) ≤ V (o) ≤ Ramax −
λ ·∆(o). In addition, since coi > 0 for any observation vector o, it
follows that Ua(o) < Ramax and thus W (o) < Ramax − λ ·∆(o).

Let the optimal value of observation vector o be V τ
b

min(o) when
we set V (o) = W (o) for each o ∈ Oτb . We compute the optimal
value of o ∈ O≤τb by applying backward induction as follows:

V
τb

min(o)=

{
W (o) if o ∈ O

τb

max{W (o),
∑
A∈A Pr(A|o)V τ

b

min(o ∪ {A})} if o ∈ O
<τb

Similarly, define V τ
b

max(o) as the optimal value function when
we set V (o) = Ramax − λ ·∆(o) for each o ∈ Oτb . The optimal
value V τ

b

max(o) of observation vector o ∈ O≤τb in this case can be
computed recursively by:

V
τb

max(o)=

{
Ramax − λ ·∆(o) if o ∈ O

τb

max{W (o),
∑
A∈A Pr(A|o)V τ

b

max(o ∪ {A})} if o ∈ O
<τb

It is easy to see that V ∗(o) = V τmaxmin (o) for o ∈ O≤τb since
the optimal policy can be computed by starting the backward in-
duction from observation vectors with length τmax. The following
proposition shows that for any o ∈ O≤τb , V τ

b

min(o) and V τ
b

max(o)
are in fact lower and upper bounds on V ∗(o), respectively.

PROPOSITION 6. V τ
b

min(o) ≤ V ∗(o) ≤ V τ
b

max(o) for each
observation vector o with length ∆(o) ≤ τ b.

Next, we show that as we increase τb, the above bounds become
tighter.

PROPOSITION 7. For any τ b < τ ≤ τmax, it follows that
V τ

b

min(o) ≤ V τmin(o) ≤ V ∗(o) ≤ V τmax(o) ≤ V τ
b

max(o) for any
o ∈ O≤τb .

Given the values V τ
b

min(o) and V τ
b

max(o) for all observation vec-
tors o ∈ O≤τb , we can form observation graph O∗min(τ b) and
O∗max(τ b) for O≤τb , respectively. The next lemma presents an
intuitive fact about the relationship between these.

LEMMA 8. O∗min(τ b) ⊆ O∗max(τ b).

The final two results in this section then establish that it suffices
to check whether V τ

b

min(o) = V τ
b

max(o) only at the initial state o =
〈oA = 0〉, rather than for the entire observation graph, providing
us with the final building block for the backward induction with
forward search (BI-FS) algorithm.

226

LEMMA 9. If O∗min(τ b) ⊂ O∗max(τ b), V τ
b

min(o) < V τ
b

max(o)
for the initial state o = 〈oA = 0〉.

PROOF. We first define sub-observation graphs. O∗min(τ b)’s
sub-observation graphO∗min(τ b,o) with initial state o can be con-
structed in the same way as the construction of O∗min(τ b) except
that the construction starts from state o.

We now prove the result by induction on the height of the sub-
observation graph O∗min(τ b,o), which is the maximum difference
of lengths of observation vectorsO∗min(τ b,o). Assume thatO∗min(τ b,
o) includes only one state o and O∗min(τ b,o) ⊂ O∗max(τ b,o).
The value of the initial state of O∗min(τ b,o) is W (o), which is
smaller than O∗max(τ b,o)’s initial state value V τ

b

max(o) since the
attacker decides to make more observations. Assume the result is
true for any sub-observation graphO∗min(τ b,o) with height h > 1.
Consider a sub-observation graph O∗min(τ b,o) with height h+ 1.
Since O∗min(τ b,o) ⊂ O∗max(τ b,o), it follows that O∗min(τ b,o ∪
{A}) ⊂ O∗max(τ b,o∪{A}) for some A ∈ A. It then follows that

V τ
b

min(o) =
∑
A∈A

Pr(A|o)V τ
b

min(o ∪ {A})

<
∑
A∈A

Pr(A|o)V τ
b

max(o ∪ {A}) = V τ
b

max(o),

which completes the proof.

We are also able to check whether they are the same as the
observation graph O∗.

PROPOSITION 10. If V τ
b

min(o) = V τ
b

max(o) for the initial state
o = 〈oA = 0〉, the approximate observation graph O∗min(τ b) is
the same as the observation graph O∗.

PROOF. Given Lemma 8 and Lemma 9, it follows thatO∗min(τ b)

= O∗max(τ b) since otherwise, V τ
b

min(o) < V τ
b

max(o) for the initial
state o = 〈oA = 0〉.

Claim 1: V τ
b

min(o) = V τ
b

max(o) for each o ∈ O∗min(τ b).
Proof of Claim 1: We show this by contradiction. By Proposi-

tions 6, V τ
b

min(o) ≤ V τ
b

max(o) for each o ∈ O∗min(τ b). Suppose
that V τ

b

min(o) < V τ
b

max(o) for one state o ∈ O∗min(τ b) ∩ Oτ .
For one state o′ ∈ O∗min(τ b) ∩ Oτ−1 such that o = o′ ∪ {A}
for an A ∈ A, it follows that V τ

b

min(o′) < V τ
b

max(o′) given the
backward induction definition. Continuing this process, we can get
that V τ

b

min(o) < V τ
b

max(o) for the initial state o = 〈oA = 0〉, a
contradiction. 2

Claim 2: maxo∈O∗min(τb) ∆(o) < τ b.
Proof of Claim 2: We show this by contradiction. Assume that

an observation vector o ∈ Oτb is contained in both O∗min(τ b)

and O∗max(τ b). By definition, we have V τ
b

min(o) = W (o) and
V τ

b

max(o) = Ramax − λ · ∆(o). Given Claim 1, it then follows
that W (o) = Ramax − λ ·∆(o), which contradicts to the fact that
W (o) < Ramax − λ ·∆(o). 2

Since V ∗(o) ≤ V τ
b

max(o) for each observation vector o with
length ∆(o) ≤ τ b, the observation graphO∗’s observation vectors
with length no longer than τ b should be a subset of O∗max(τ b). By
the fact that maxo∈O∗max(τb) ∆(o) < τ b, this implies that O∗ ⊆
O∗max(τ b). Similarly, we can show that O∗min(τ b) ⊆ O∗. In
consideration of the fact that O∗min(τ b) = O∗max(τ b), it is easy to
see that O∗min(τ b) = O∗max(τ b) = O∗.

Based on Proposition 10, we propose a search heuristic (Al-
gorithm 1) to iteratively increase τ b to find out the observation

graph O∗. The algorithm starts with a small τ b and checks for
convergence. If not, it increases τ b until reaching the upper bound
τmax.

Algorithm 1: Backward Induction with Forward Search

1 τb ← 1;
2 while τb < τmax do
3 if V τ

b

min(o) = V τ
b

max(o) for the initial state o = 〈oA = 0〉 then
4 returnO∗min(τb)
5 end
6 else τb ← 2τb ;
7 end
8 returnO∗min(τmax);

5.3 Approximation Approach
In the worst case, the forward search approach still needs to

start backward induction from very long observation vectors, since
the number of observation vectors (double) exponentially increases
with observation length and the number of resources and targets.
Here we propose a heuristic approach called approximate forward
search (A-BI-FS) (Algorithm 2). The key difference of this heuris-
tic from Algorithm 1 is that we only keep track of convergence of
V τ

b

min(o), which no longer guarantees optimality.

Algorithm 2: Approximate Forward Search

1 τb ← 1, τ ← dβτbe where β > 1;
2 while τ < τmax do
3 Compute V τ

b

min(o) and V τmin(o) for all o ∈ O≤τb ;

4 if maxo∈O≤τb
|V τbmin(o)− V τmin(o)| < ε then

5 returnO∗min(τb)
6 end
7 else τb ← τ , τ ← dβτe;
8 end
9 returnO∗min(τmax);

6. OPTIMAL DEFENSE STRATEGY
After solving the attacker’s optimal stopping problem, we obtain

an observation graph with statesO∗. Let the leaves of graph beO∗l
which represent the set of observation vectors for each of which the
attacker will choose to attack its best target.

We now introduce an exact (but nonconvex) mathematical pro-
gram for computing the defender’s optimal strategy x, assuming
that ψ(o) are pre-computed for all o ∈ O∗l. This is similar to the
MILP formulation for security games presented in [2] except that
in our case observation vectors in O∗l may vary in length.
DF-OPT:

max
∑

o∈O∗l

∆(o)!∏
A∈A oA!

∏
A∈A

(xA)oAdo (1)

s.t. xA ∈ [0, 1] ∀A ∈ A (2)∑
A∈A

xA= 1 (3)

ci =
∑
A∈A

xAAi ∀i ∈ T (4)

do = cψ(o)R
d
ψ(o)+(1−cψ(o))P

d
ψ(o) ∀o ∈O∗l (5)

DF-OPT computes the defender’s optimal strategy by consider-
ing all possible o ∈ O∗l and evaluating her expected utility for each

227

0

20

40

60

80

0.2 0.3 0.4 0.5 0.6

Ta
u

M
ax

Observation Cost

Figure 1: τmax

0

400

800

1200

1600

0.2 0.3 0.4 0.5 0.6

R
un

tim
e

Observation Cost

BI
BI-FS
A-FS

Figure 2: Runtime

observation. Equation (1) is the objective function which maxi-
mizes the defender’s expected payoff

∑
o∈O∗l f(o|x)do where do

is the defender’s expected utility when the attacker’s observation
vector is o. Equations (2) and (3) define the feasible strategy space
for the defender. Equation (4) defines the marginal coverage for
each target given the defender’s strategy x. Equation (5) defines the
defender’s expected payoff do = cψ(o)R

d
ψ(o) + (1− cψ(o))P

d
ψ(o)

when the attacker attacks ψ(o) for observation o.

7. EXPERIMENTAL EVALUATION
We compare OPTS against SGLS (in which the attacker takes

τ observations of the defender’s strategy and the defender plan-
s accordingly) as well as the standard SSE model (in which the
attacker has full knowledge of the defender’s strategy and the de-
fender plans accordingly). We conduct experiments primarily on
randomly-generated instances of security games. Rdi and Rai are
drawn independently and uniformly from the range [0, 10]. P di
and P ai are drawn from the range [−10, 0]. All experiments are
averaged over 20 sample games. Unless otherwise specified, we
use 5 targets, 1 defender resource, λ= 0.4 as the observation cost,
and αA = 0 for every A ∈ A. We use KNITRO version 8.0.0 to
solve DF-OPT, SLGS, and SSE.

7.1 Attacker’s Decision Making
While OPTS is used to produce the optimal strategy for the de-

fender, this approach first requires the solving of optimal stop-
ping problem for the attacker. We introduced three algorithms for
solving the stopping problem (Backward Induction (BI), Backward
Induction with Forward Search (BI-FS), and Approximate Forward
Search (A-FS)), which will evaluate and compare in this section.
For A-FS, the parameters β and ε were fixed at 2.0 and 0.001,
respectively.

7.1.1 Effect of Observation Cost
The observation cost, λ, is a critical parameter in the attack-

er’s decision making process. For BI, λ directly determines τmax,
which is the maximum length of the observation vectors to be ex-
plored during backward induction. Similarly, λ influences the con-
vergence rate between V τ

b

min(o) and V τ
b

max(o) for BI-FS as well
as between V τ

b

min(o) and V τmin(o) for A-FS. Thus, we conducted
experiments to determine the impact of varying values of λ on our
three algorithms with respect to both runtime and attacker utility.
For these experiments, we tested λ values of 0.2, 0.3, 0.4, 0.5, and
0.6.

Figure 1 shows how the average value of τmax changes for the
different values of λ. These results indicate an exponential increase
in τmax as λ is decreased, which is expected given that observation
cost is the denominator for the leading term in the equation for
τmax. This initial result will help provide insight for the remaining
results in this section.

In Figure 2, we evaluate runtime for the λ values with the x-axis
indicating the observation cost and the y-axis representing the run-
time for computing the observation graph. All three algorithms are

5.14

5.19

5.24

5.29

5.34

0.2 0.3 0.4 0.5 0.6

A
tt

ac
ke

r
U

til
ity

Observation Cost

BI-FS

A-FS

Figure 3: Attacker Utility

5.4

5.5

5.6

5.7

0.1 0.2 0.3 0.4 0.5 0.6

A
tt

ac
ke

r
U

til
ity

Observation Cost

ε=0.001
ε=0.01
ε=0.1
ε=1

Figure 4: Attacker Utility

able to efficiently compute the observation graph for λ = 0.6. By
decreasing λ from 0.6 to 0.5, we observe a small runtime increase
for BI. However, for λ = 0.4, the runtime dramatically rises by
an order of magnitude which indicates that BI cannot scale up for
λ < 0.4. Given the results shown in Figure 1, this runtime increase
is to be expected, as the average τmax for λ = 0.4 is 30. By
incrementally increasing τ b, BI-FS is able to efficiently compute
the observation graph for λ = 0.3, after which point the algorithm
experiences a large runtime increase at λ = 0.2. The runtime for
A-FS remains constant for all λ values tested.

The runtime improvement is possible because A-FS does not
require either the computation of V τ

b

max(o) or the convergence of
V τ

b

min(o) and V τ
b

max(o). There are instances when BI-FS has to
compute the observation graph for an unnecessarily large τ b despite
the fact that the attacker’s utility did not increase from the previous
iteration of the algorithm, as convergence has not yet been reached,

i.e., V
τb

2
min(o) = V τ

b

min(o) but V τ
b

min(o) 6= V τ
b

max(o). In such
situations, convergence can be slow, depending on the value of λ,
as V τ

b

max(o) decreases by at most λ × τ b when going from one
iteration to the next, while V τ

b

min(o) does not increase. A-FS avoids
these unnecessarily large values of τ b by terminating as soon as
the increase in attacker utility from one iteration to the next drops
below a threshold, ε.

For the same set of λ values, we then compared the attacker util-
ity obtained by the generated observation graphs. Figure 3 shows
the results with the x-axis representing the observation cost and
the y-axis indicating the attacker’s utility, i.e., V τ

b

min(o) for initial
state o = 〈oA = 0〉. From these results, two observations can be
made. First, the attacker’s utility monotonically increases as the
value of λ is decreased. This is resulting from the attacker taking
additional observations and gaining a more accurate belief about
the defender’s strategy. Second, at each value of λ, the attacker’s
utility is equivalent for both BI-FS and A-FS.

Given the orders of magnitude runtime improvement, it is non-
intuitive that A-FS produces no loss in solution quality. To better
understand these results, we conducted another set of experiments
in which we varied the ε parameter for the A-FS algorithm. This
parameter specifies the maximum tolerance for determining an ap-
proximately optimal solution, |V τ

b

min(o)−V τmin(o)| < ε. In Figure
4, the x-axis indicates the observation cost, while the y-axis repre-
sents the attacker utility for A-FS using different ε values. Due to
the efficiency of the approximate approach, we included additional
data points with λ = 0.1 These results indicate the A-FS can be
suboptimal, and the degree of suboptimality is exaggerated as λ is
decreased and ε is increased.

7.1.2 Effect of the number of Pure Strategies
Another important factor in the attacker’s decision making pro-

cess is the number of pure strategies for the defender, which is
equivalent to the number of observation vectors reachable from any
given observation vector o. Thus, as the number of pure strategies
is increased, it becomes more difficult to compute the observation

228

0

100

200

300

400

500

5 10 15 20 28

R
un

tim
e

Pure Strategies

BI
BI-FS
A-FS

Figure 5: Runtime

-2

0

2

4

6

8

0.2 0.3 0.4 0.5 0.6

D
ef

en
de

r
U

til
ity

Observation Cost

OPTS
SGLS
SSE

Figure 6: Defender Utility

-2

0

2

4

6

5 6 7 8 9 10 11 12D
ef

en
de

r
U

til
ity

Observations

OPTS SGLS SSE

Figure 7: Defender Utility

-2
-1
0
1
2
3
4
5

0 0.01 0.05 0.1 0.25 0.5 1 2 5

D
ef

en
de

r
U

til
ity

Alpha Prior

OPTS SGLS SSE

Figure 8: Defender Utility

graph. In Figure 5, we confirm this result by calculating the runtime
needed to compute the observation graph with λ = 0.6 for 5 (5
targets, 1 resource), 10 (5 targets, 2 resources), 15 (6 targets, 2 re-
sources), 20 (6 targets, 3 resources), and 28 (8 targets, 2 resources)
pure strategies. While all three algorithms have similar runtimes for
5 pure strategies, BI sees a significant runtime increase at 10 pure
strategies and is unable to scale up to 15 pure strategies. BI-FS has
a similar runtime increase at 15 pure strategies and cannot reach 20
pure strategies. However, A-FS is able to scale all the way up to 28
pure strategies with minimal runtime increase. As described early,
the relative efficiency of A-FS is achieved because it terminates at
smaller values of τ b. As the number of pure strategies increases, the
number of states in the finite-state MDP, for a given τ b, increases
exponentially. Thus, by A-FS avoiding larger values of τ b, the
disparty in runtime is even further exaggerated as the number of
pure strategies is increased.

7.2 Defender’s Decision Making
In Section 7.1, we evaluated three algorithms for solving the

attacker’s stopping problem. We now consider the defender’s op-
timization problem and compare the performance of OPTS using
BI-FS against both SGLS and the standard SSE model.

In Figure 6, we compare OPTS, SGLS, and SSE with respect to
defender utility, with the x-axis indicating the observation cost λ
and the y-axis representing the defender’s utility when playing a-
gainst an attacker who is considering the optimal stopping problem.
Based on these results, we see that SGLS consistently outperforms
SSE, which in turn is consistently outperformed by OPTS. The
constant ordering is indicative of how accurately these differen-
t approaches are modeling the type of attacker presented in this
paper. The SSE model relies on a number of strong assumptions
including that an attacker has perfect knowledge of the defender’s
strategy. SGLS shows improvement by modeling that the attacker
samples the defender’s strategy by taking observations. However,
by assuming a fixed number of observations, the defender achieves
a lower utility by optimizing against observation vectors which are
not reachable. In contrast, OPTS determines and optimizes against
the exact set of observation vectors which lead to attacks, resulting
in significantly higher defender utility.

In Figure 7, instead of changing the observation cost, we evaluate
defender utility while varying the number of observations taken
in SGLS. The process for incrementing τ b in BI-FS remains the
same. We again observe the same consistent ordering of the three
approaches, with OPTS performing the best. For both SGLS and
SSE, there is a slight decrease in defender utility as τ is increased

-0.4
-0.2

0
0.2
0.4
0.6
0.8

0.2 0.3 0.4 0.5 0.6

C
ov

er
ag

e
D

iff
er

en
ce

(O

PT
S

-S
SE

)

Observation Cost

Target 1 Target 2 Target 3 Target 4 Target 5

Figure 9: SSE Comparison

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0.2 0.3 0.4 0.5 0.6

C
ov

er
ag

e
D

iff
er

en
ce

(O

PT
S

-S
G

L
S)

Observation Cost

Target 1 Target 2 Target 3 Target 4 Target 5

Figure 10: SGLS Comparison

because the attacker’s belief about the defender’s strategy becomes
more accurate. The defender utility for OPTS remains constant, as
the algorithm and its performance is independent of the number of
observations assumed by SGLS.

We performed one last comparison of defender utility for the
three approaches, in which we varied the strength of the attacker’s
prior, represented through the α vector. In these experiments, we
assumed a uniform α vector. Figure 8 presents the results for these
experiments, in which the x-axis indicates the value assigned to
each αA and the y-axis presents the defender’s utility. While OPTS
is the top performing approach for all α values tested, its advantage
over SGLS diminishes as the value for each αA is increased. When
the weight is high, the attacker will learn very slowly, thus the
attacker will start to attack earlier for both OPTS and SGLS in con-
sideration of surveillance cost and thus, the difference is smaller.

In order to better understand the results from Figures 6, 7, and
8 we wanted to analyze the difference in the underlying strategies
generated by OPTS, SGLS, and SSE. To accomplish this, we bor-
rowed an experimental setup from [2], in which the defender and
attacker are playing a zero-game in which the payoffs for the targets
are sorted such that Targets 1 through 5 are valued in decreasing
order. If λ = 0, the attacker would take an infinite number of
observations and acquire full knowledge of the defender’s strategy.
In this situation, the strategies returned by OPTS and SSE would be
identical. As λ approaches 0, the attacker will take an increasing
number of observations and obtain a more accurate belief about the
defender’s strategy. Thus, we want to understand how the OPTS
strategy converges to the SSE strategy as a function of λ. Figure 9
shows the rate of convergence, with the x-axis indicating the obser-
vation cost, while the y-axis represents the difference in coverage
between the strategies generated by OPTS and SSE for the five
targets. We observed that at λ = 0.6 there were noticeable differ-
ences between the two strategies, with OPTS placing significantly
more coverage on the most valuable target, Target 1. However,
as λ is decreased we see a noticeable trend toward convergence.
We performed a similar set of experiments in Figure 10, where we
compared the strategies for OPTS and SGLS. For λ = 0.6 we still
observe differences in the two strategies, though less pronounced
than when comparing OPTS and SSE. By λ = 0.2, the strategies
have become quite similar to each other, with OPTS placing more
coverage on Target 1 rather than placing it on Targets 2 or 3.

7.3 Robustness Analysis
Up to this point, we have assumed the λ used by OPTS to com-

pute the defender’s strategy is, in fact, the true cost of observation
incurred by the attacker. However, it is unlikely that this informa-
tion would be available to the defender and thus would have to be
estimated. Therefore, it is important to understand how robust our
approach is in the face of this uncertainty over the true value of
λ. We perform this analysis by computing the defender strategy
(whether produced by OPTS, SGLS, or DOBSS) with a noisy es-
timation of λ. That strategy is then evaluated against the attacker
strategy produced by OPTS using λ (because it is the defender who
has uncertainty about the observation cost, not the attacker). The

229

-1
0
1
2
3
4
5
6

0.2 0.3 0.4 0.5 0.6
D

ef
en

de
r

U
til

ity
Observation Cost

OPTS 0

OPTS 0.1

OPTS 0.2

SGLS 0

SGLS 0.1

SGLS 0.2

SSE 0

SSE 0.1

SSE 0.2

Figure 11: Observation Cost Noise

noisy observation cost, λn, is sampled from the uniform distribu-
tion [λ, λ + p], where p is the noise. Only overestimations of λ
were considered to avoid the significant runtimes associated with
solving OPTS for λn ≤ 0.2. We conducted experiments with the
three approaches of defender decision making for three values of
p (0, 0.1, 0.2) while varying λ. From the results in Figure 11,
we again observe that OPTS outperform SGLS and DOBSS for
all settings tested. For larger values of λ, the amount of noise
has limited impact on the defender utility of OPTS because the
attacker is already choosing to attack after minimal observation.
As λ is decreased, the presence of noise leads to a decrease in
defender utility and this effect is amplified by increased values of p.
Since λn ≥ λ, noise causes the defender to overestimate the value
of λ and thus underestimate the amount of observation conducted
by the attacker, leading to lower defender utility. So while noisy
estimations of λ may hinder OPTS, the algorithm is robust enough
to noise such that it surpasses both SGLS and DOBSS even when
the latter algorithms have no noise.

8. CONCLUSIONS
This paper provides five key contributions to security games con-

sidering attackers’ dynamic surveillance decision: (1) We intro-
duce a model of security games with limited surveillance in which
attacker dynamically decides when to attack. (2) We show that
the attacker’s optimal stopping problem can be formulated as a
discrete state space MDP. (3) We show an upper bound on the
maximum number of observations the attacker can make and thus
the stopping problem is equivalent to a finite state MDP. (4) We give
mathematical programs to compute optimal attacker and defender
strategies. (5) Experimental results show that the defender can gain
significantly higher utility by considering the attacker’s optimal
stopping decision, validating the motivation of our work.

9. ACKNOWLEDGMENTS
We thank David Kempe, Christopher Kiekintveld, Eric Shieh,

Satinder Singh, and Xiaoming Sun for their very helpful sugges-
tions. This research was supported by MURI grant W911NF-11-1-
0332, National Natural Science Foundation of China (No.61202212,
61035003, 60933004), National Program on Key Basic Research
Project (973 Program) (No.2013CB329502), National High-tech
R&D Program of China (863 Program) (No.2012AA011003, 2013-
AA01A606,), National Science and Technology Support Program
(No.2012BA107B02).

10. REFERENCES
[1] B. An, M. Jain, M. Tambe, and C. Kiekintveld.

Mixed-initiative optimization in security games: A
preliminary report. In AAAI Spring Symposium on Help Me
Help You: Bridging the Gaps in Human-Agent
Collaboration, pages 8–11, 2011.

[2] B. An, D. Kempe, C. Kiekintveld, E. Shieh, S. Singh,
M. Tambe, and Y. Vorobeychik. Security games with limited
surveillance. In AAAI, pages 1241–1248, 2012.

[3] B. An, M. Tambe, F. Ordóñez, E. Shieh, and C. Kiekintveld.
Refinement of strong Stackelberg equilibria in security
games. In AAAI, pages 587–593, 2011.

[4] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, pages 500–503, 2009.

[5] J. P. Dickerson, G. I. Simari, V. S. Subrahmanian, and
S. Kraus. A graph-theoretic approach to protect static and
moving targets from adversaries. In AAMAS, pages 299–306,
2010.

[6] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, M. Tambe, and
F. Ordóñez. Computing optimal randomized resource
allocations for massive security games. In AAMAS, pages
689–696, 2009.

[7] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of
computing optimal Stackelberg strategies in security
resource allocation games. In AAAI, pages 805–810, 2010.

[8] D. Korzhyk, V. Conitzer, and R. Parr. Solving Stackelberg
games with uncertain observability. In AAMAS, pages
1013–1020, 2011.

[9] J. Morgan and F. Vardy. The value of commitment in
contests and tournaments when observation is costly. Games
and Economic Behavior, 60(2):326–338, 2007.

[10] J. Pita, M. Jain, M. Tambe, F. Ordóñez, and S. Kraus. Robust
solutions to Stackelberg games: Addressing bounded
rationality and limited observations in human cognition.
Artificial Intelligence, 174(15):1142–1171, 2010.

[11] J. Pita, M. Jain, C. Western, C. Portway, M. Tambe,
F. Ordóñez, S. Kraus, and P. Parachuri. Deployed ARMOR
protection: The application of a game-theoretic model for
security at the Los Angeles International Airport. In AAMAS,
pages 125–132, 2008.

[12] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin,
J. DiRenzo, B. Maule, and G. Meyer. PROTECT: A
deployed game theoretic system to protect the ports of the
United States. In AAMAS, 2012.

[13] E. Southers. LAX - terror target: the history, the reason, the
countermeasure, chapter Security and Game Theory:
Algorithms, Deployed Systems, Lessons Learned, pages
27–50. Cambridge University Press, 2011.

[14] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[15] A. Tversky and D. J. Koehler. Support thoery: A
nonextensional representation of subjective probability.
Psychological Review, 101:547–567, 1994.

[16] E. van Damme and S. Hurkens. Games with imperfectly
observable commitment. Games and Economic Behavior,
21(1-2):282–308, 1997.

[17] B. von Stengel and S. Zamir. Leadership with commitment to
mixed strategies. Technical Report LSE-CDAM-2004-01,
CDAM Research Report, 2004.

[18] Z. Yin, M. Jain, M. Tambe, and F. Ordóñez. Risk-averse
strategies for security games with execution and
observational uncertainty. In AAAI, pages 758–763, 2011.

[19] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, , and
M. Tambe. Stackelberg vs. nash in security games:
interchangeability, equivalence, and uniqueness. In AAMAS,
pages 1139–1146, 2010.

230

	Introduction
	Stackelberg Security Games
	Optimal Stopping Security Games
	Attacker's Decision Problem
	Computing An Optimal Attacker Policy
	Backward Induction
	Backward Induction with Forward Search
	Approximation Approach

	Optimal Defense Strategy
	Experimental Evaluation
	Attacker's Decision Making
	Effect of Observation Cost
	Effect of the number of Pure Strategies

	Defender's Decision Making
	Robustness Analysis

	Conclusions
	 Acknowledgments
	References

