
Security Games with Interval Uncertainty

Christopher Kiekintveld, Towhidul Islam, Vladick Kreinovich
Computer Science Department, University of Texas at El Paso

cdkiekintveld@utep.edu, mislam2@miners.utep.edu, vladik@utep.edu

ABSTRACT
Security games provide a framework for allocating limited secu-
rity resources in adversarial domains, and are currently used in de-
ployed systems for LAX, the Federal Air Marshals, and the U.S.
Coast Guard. One of the major challenges in security games is find-
ing solutions that are robust to uncertainty about the game model.
Bayesian game models have been used to model uncertainty, but al-
gorithms for these games do not scale well enough for many appli-
cations. We take an alternative approach based on using intervals to
model uncertainty in security games. We present a fast polynomial
time algorithm for security games with interval uncertainty, which
represents the first viable approach for computing robust solutions
to very large security games. We also introduce a methodology for
using intervals to approximate solutions to infinite Bayesian games
with distributional uncertainty. Our experiments show that inter-
vals can be an effective approach for these more general Bayesian
games; our algorithm is faster and results in higher quality solutions
than previous methods.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]

Keywords
game theory; algorithms; interval uncertainty; security games

1. INTRODUCTION
Security games [11, 22] are a general framework for modeling a

wide variety of resource allocation decisions in adversarial security
domains. These games are used to find optimal randomized strate-
gies for a defender to deploy limited security resources to protect
vulnerable targets from attacks. Recently, they have been used in a
growing number of homeland security applications, including air-
port security [19, 20], scheduling for the Federal Air Marshals [23],
and patrolling strategies for the United States Coast Guard [21].
Game theory is also used for applications in cybersecurity [3, 16].

An important concern with using game theory to model real-
world security problems is that the models require very precise and
accurate information about the capabilities and preferences of the
players. In practice, models are constructed using information pro-
vided by subject matter experts knowledgeable about the resources

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

available for protection, the security risks and vulnerabilities of dif-
ferent targets, and the motivations of possible attackers. Unfortu-
nately, there is often a high degree of uncertainty associated with
the information used to construct the models. For example, it is
difficult to know exactly what value a terrorist might perceive for
a successful attack against a given target, even through it may be
clear that some targets are more attractive to attackers than others.
This means that it may not be possible to give exact values for the
payoffs in different attack scenarios in a security game.

There is a growing emphasis on developing models and algo-
rithms for security games that are able to represent various kinds
of uncertainty about the model, with the goal of generating robust
security strategies that are not highly sensitive to modeling errors.
The existing approaches are primarily based on Bayesian Stackel-
berg games that model uncertainty about payoffs, the observation
capabilities of an attacker, and other factors [17, 18, 10, 12, 28]. All
of these approaches suffer from problems with computational scal-
ability and/or solution quality. Finite Bayesian Stackelberg games
are NP hard to solve [6], and experimental results show that they are
hard in practice as well. For infinite Bayesian Stackelberg games no
exact algorithm exist, and none of the existing methods give bounds
on solution quality [12].

The approach we take here is based on modeling uncertainty us-
ing intervals, rather than distributions. We take a worst-case opti-
mization approach with respect to the interval uncertainty. In our
model, the defender in a security game knows only that the at-
tacker’s payoffs are in some interval of possible values, and tries
to maximize the worst case outcome for any possible realization of
payoffs consistent with these intervals. Modeling uncertainty using
intervals is common in robust optimization [5], and this idea has
also been used to develop a notion of equilibrium in game theory
based on robust optimization [1]. The most closely related model
for security games is BRASS, which was introduced by Pita et al.
for robustness against human decision-makers [18]. BRASS is a
special case of our model.

The interval-based approach has advantages over Bayesian meth-
ods for modeling uncertainty. It is simpler for domain experts to un-
derstand and specify a model based on interval uncertainty because
the model does not require eliciting detailed information about prob-
ability distributions. In many cases, an interval model is a more nat-
ural and effective way to represent the game. We show in this paper
that interval models also have considerable computational advan-
tages over Bayesian models. While Bayesian models are NP-hard,
we introduce a polynomial-time approximation algorithm for inter-
val representations that provides tight bounds on solution quality.
For large security games, our algorithm may be the only computa-
tionally feasible approach for handling uncertainty.

231

The following are the primary contributions of this paper: (1)
we introduce an interval-based model of uncertainty for security
games, (2) we present a very fast polynomial algorithm for solving
interval security games, (3) we present a methodology for approx-
imating security game with distributional uncertainty using inter-
vals, which can be solved using our algorithm, and (4) we present
experimental results showing the value of the interval method for
increasing robustness, and showing that interval-based methods can
also provide fast approximations with high solution quality even
when distributional information is available.

2. RELATED WORK
One of the motivations for out work is applications of Stackel-

berg games to real-world security domains [22]. They have been
used in fielded applications at the Los Angeles International Air-
port [19], the Federal Air Marshals Service [23], and the Coast
Guard [21]. There is also work on using game theory for patrolling
strategies for robots and unmanned vehicles [7, 2, 4] and applica-
tions of game theory in network security [3, 26, 16]. Much of this
work is computational in nature, and progress on security games
has been driven by algorithmic advances that can solve larger and
more complex games [6, 17, 9].

Robustness and uncertainty have been recognized as important
concerns in game theory by many authors. One of the most in-
fluential models, Bayesian games, was developed early in the his-
tory of game theory by John Harsanyi [8]. Worst-case approaches
also have a history in game theory, including many approaches
that build on the pessimistic notion of minmax strategies. However,
many of these take a worst-case view with respect to opponent be-
haviors, rather than the specification of the underlying game model.
One exception is robust equilibrium [1], which takes a worst-case
approach inspired by the robust optimization literature. There are
also several works that look at varying aspects of the problem of ro-
bustness in security games, most of which adopt a Bayesian frame-
work for reasoning about uncertainty [17, 18, 10, 12, 28]. Finally,
fuzzy set theory is related to our approach, and the literature has ex-
plored a variety of methods for decision-making based on intervals
that could be explored as extensions of the model presented here in
future work [27, 15].

3. SECURITY GAMES WITH INTERVALS
We first introduce the security game model [11], and then ex-

tend the model to include interval uncertainty about the attacker’s
payoffs. A security game has two players, a defender, Θ, and an at-
tacker, Ψ. The defender is protects a set of targets T = {t1, . . . , tn}
(e.g., airport terminals or computer servers) against attacks using
a limited number of resources, with the number of available re-
sources denoted by m. We assume that all resources are identical
and can be used to protect any target. The set of pure strategies for
the attacker, denoted σΨ ∈ ΣΨ, correspond to actions attacking
exactly one target from T . Each pure strategy for the defender, de-
noted σΘ ∈ ΣΘ, corresponds to a subset of targets from T with
size less than or equal to m which the defender chooses to protect.

Following previous work on security games, we model the inter-
action as a Stackelberg game [25]. The defender first commits to
a mixed strategy δΘ that is a probability distribution over the pure
strategies from ΣΘ. The attacker then observes this mixed strategy
δΘ, and chooses a best response strategy from ΣΨ that gives the
attacker the maximum possible payoff. As in the previous work on
security games [22], we use Strong Stackelberg Equilbrium as the
standard solution concept, so ties in the attacker’s best responses

are broken in favor of the defender.1 In addition, we only need to
consider pure strategies for the attacker, since there always exists a
pure-strategy best response [17].

The payoffs for the game depend on which of the n targets is
attacked, and whether or not the target is protected (covered) by the
defender or not. Specifically, for an attack on target t, the defender
receives a payoff Uu

Θ(t) if the target is uncovered, and Uc
Θ(t) if

the target is covered. The payoffs for an attacker of type ω ∈ Ω is
Uu

Ψ(t, ω) for an attack on an uncovered target, and Uc
Ψ(t, ω) for an

attack on a covered target. We say that an attack on a covered target
is "unsuccessful" and an attack on an uncovered target is "success-
ful." In a security game we also assume that Uc

Θ(t) ≥ Uu
Θ(t) and

Uu
Ψ(t) ≥ Uc

Ψ(t) for all t ∈ T . In games with identical and uncon-
strained defender resources, we can use a compact representation
for the defenders strategies [11]. We represent the defender strate-
gies as coverage vectors which give the probability that there is a
defender resource assigned to each target. These probabilities for

each target ti are denoted by ci, with
nP

i=1

ci = m, and the full vec-

tor of probabilities is denoted by C. Once the coverage probabili-
ties are determined, the full joint security policy can be extracted
using a sampling algorithm similar to the comb sampling procedure
described in Tsai et al. [24]

Extension to Interval Uncertainty. We now introduce the In-
terval Security Games (ISG) model, which extends the standard
security game model so that the defender has uncertainty about the
attacker’s payoffs that is represented using intervals. We still as-
sume that both the attacker and defender know their own payoffs
with certainty. In addition, we do not need to model the attacker
as having uncertainty about the defender’s payoffs because the at-
tacker is able to directly observer the strategy of the defender, and
therefore does not require knowledge of the payoffs to predict the
defender’s strategy.

In the model, rather than having a single value representing the
attacker’s payoffs for the two cases of a successful and unsuccess-
ful attack (Uu

Ψ(t) and Uc
Ψ(t)), we have pairs of values that repre-

sent the maximum and minimum possible payoffs for a successful
or unsuccessful attack on target ti. We denote these values using
the notation Uu,max

Ψ (t) and Uu,min
Ψ (t) for the uncovered case, and

Uc,max
Ψ (t) and Uc,min

Ψ (t) for the covered case. The idea is that the
defender knows only that the attacker’s payoffs lie within a range
of possible values, and not the precise value. The defender does not
have information about the distribution of payoffs within these in-
tervals, and therefore cannot compute an expected payoff. There-
fore, we cannot apply the concept of Strong Stackelberg Equil-
brium. Instead, we follow the literature on robust optimization and
take a worst-case approach. The defender’s goal in our framework
is to select a coverage vector, C, that maximizes the defenders
worst-case payoff over all of the possible ways that the attacker
payoffs could be chosen from the defined intervals.

4. ANALYSIS OF ISG
In security games without intervals, we define the attack set to

be the set of all targets that give the attacker the maximum expected
payoff, given some coverage strategy C. For some classes of secu-
rity games, finding the optimal coverage strategy can be reduced to
finding a coverage strategy that induces the maximum attack set,
while minimizing the attacker’s expected payoff [11]. In our model
1The tie-breaking rule is not intuitive in adversarial games. While
there are arguments to support it they rely on precise maximization
by the attacker. We view this as one more reason to develop ro-
bust solutions like the ones described in this paper that do not rely
heavily on tie-breaking rules.

232

we cannot directly apply the idea of the attack set, but we can gener-
alize it as follows. We define the potential attack set for a coverage
strategy C to be the set of all targets that could give the attacker the
maximum expected value, for any realization of attacker payoffs
consistent with the payoff intervals. For every target, the attacker
has a range of expected payoffs:

vmax(ti) = ci · Uc,max
Ψ (ti) + (1− ci) · Uu,max

Ψ (ti) (1)

vmin(ti) = ci · Uc,min
Ψ (ti) + (1− ci) · Uu,min

Ψ (ti). (2)

Observe that for a given coverage vector C the attacker can guar-
antee a payoff of at least the maximum of the minimum values over
all targets; let us denote this value by R = maxti v

min(ti). Given
the value of R we can identify the targets that could be attacked
for some realization of the payoff values. Any target ti with a max-
imum expected value vmax(ti) ≥ R could be the best target for
the attacker to attack. To see this, suppose that the the attacker’s
payoff for ti is the maximum value in the interval, and the payoffs
for all other targets is are the minimal values, so that the best possi-
ble value for attacking any target other than ti is R. Therefore, the
potential attack set, Λ(C), is defined as:

Λ(C) = {ti : vmax(ti) ≥ R} (3)

The defender’s expected payoff for each target is:

di = ci · Uc
Θ(ti) + (1− ci) · Uu

Θ(ti). (4)

The defender’s objective is to select a strategy C to maximize the
worst-case payoff over the targets in the potential attack set:

max
C

(min
ti∈Λ(C)

di) (5)

Note that this objective function specifies as worst-case approach
to uncertainty about the attacker’s payoffs, but still takes the ex-
pected payoffs with respect to the realizations of the coverage prob-
abilities. This problem cannot be solved using linear programming
because the set of targets ti ∈ Λ(C) depends on C. It can be ex-
pressed as a mixed-integer program (MIP) which is a slightly gen-
eralized version of the MIP used for BRASS [18]. We omit this
MIP due to space constraints, but it can be found in [18].

The main idea of our approach is to transform the optimization
problem specified in the equations above into a series of feasibil-
ity problems. Our first observation is that the defender’s maximum
possible expected payoff increases monotonically as the number of
available resources m is increased. This follows as consequence
of the fact that the defender’s set of possible coverage strategies is
strictly larger for larger m. Using this observation, we can frame
the problem as a binary search in the space of defender expected
payoffs. In each iteration, we test whether the defender payoff at
the midpoint is feasible or not given the number of resources avail-
able. If it is not, the maximum payoff must be smaller than the
midpoint. If it is feasible, the maximum payoff is greater than or
equal to the midpoint. Using this strategy, we can approximate the
maximum payoff to within a very small tolerance.

To implement this approach, we need to analyze the problem
to determine whether a given defender payoff (denoted by D∗) is
feasible given the resources available,m. Since we are interested in
worst-case outcomes, this means that we need to guarantee that the
defender will achieve at least D∗ for any attacker payoffs in the
known intervals. For D∗ to be guaranteed by a coverage strategy
C, one of the following two conditions must hold for every target:

1. The target is in the potential attack set Λ(C), but the de-
fender’s expected payoff if the target is attacked is at least
D∗.

2. The target is not in the potential attack set Λ(C).

We now derive conditions that satisfy these conditions for each
target using the minimum amount of resources (i.e., coverage prob-
ability). We can calculate the coverage required to satisfy condition
1 for each target (if it is in Λ) from the equation for the defender’s
payoff. The minimal coverage for target ti is given by:

c1i = max(0, 1− D∗ − Uu
Θ(ti)

Uc
Θ(ti)− Uu

Θ(ti)
). (6)

The problem now reduces to finding the potential attack set that
minimizes the overall coverage probability required to meet con-
ditions 1 and 2 for all targets. A naïve approach would be to enu-
merate all of the possible attack sets and calculate the minimum
coverage for each such set. For any given set, we can calculate the
value of R directly, and then calculate the minimal coverage re-
quired for each target in Λ from Equation 6. For a given value of
R we can also calculate the minimum coverage that would be re-
quired on each target ti so that the target is not in Λ, which requires
that the maximum possible expected payoff for the attacking ti is
less than R. We calculate the minimum coverage as follows, using
the maximum attacker payoffs from the possible intervals:

c2i = max(0, 1− R− Uu,max
Ψ (ti)

Uc,max
Ψ (ti)− Uu,max

Ψ (ti)
). (7)

By summing the values of c1i for targets in Λ and c2i for the re-
maining targets, we get the minimum coverage required to guaran-
tee D∗ for this potential attack set. Unfortunately, the number of
such sets is exponential in the number of targets, so enumerating
them is inefficient. To avoid this problem we make another obser-
vation that allows us to efficiently explore the candidate solutions.
For every set Λ there is a target, which we label t̂, that has the max-
imum minimum expected payoff, R. This is the target that defines
the value of R. Since there are only n targets, we can test each tar-
get as a candidate for t̂ and construct a coverage vector that meets
the necessary constraints using minimal resources. We present the
details of this construction in the next section. If the solution is fea-
sible for any one of the n targets that are candidates for t̂, then the
value of D∗ is feasible. In the following section we describe an al-
gorithm that uses this solution strategy to efficiently approximate
the optimal coverage vector C for the defender.

5. ISG ALGORITHM
We now describe our algorithm for solving an ISG. The pseu-

docode is given in Algorithms 1 and 2. Algorithm 1 implements
binary search in the space of possible defender payoffs. The feasi-
bility check is presented in Algorithm 2. The goal is to construct a
solution that will guarantee the defender D∗ while using the min-
imum resources; if we can construct a solution that uses less than
the available resources m we have found a feasible solution. The
strategy is to divide the search into n possible cases, each of which
corresponds to a different assumption about which target will have
the maximum guaranteed payoff for the attacker, R. The algorithm
iterates through each choice of ti as a candidate for this special
target t̂. For each case the algorithm constructs a coverage vector
using minimal coverage probability that guarantees the defender
D∗ based on the conditions 1 and 2 above.

First, for t̂ the target is part of the potential attack set in this so-
lution based on our assumption that it will have the maximum min-
imum expected payoff. Therefore, if this target is attacked it must
give the defender an expected payoff of at least D∗, as calculated

233

in Equation 6. We take the value c1t̂ necessary to ensure D∗ and
use this to calculate the value of R. This value of R is as high as
possible because we use the minimum coverage. We do not need to
consider adding additional coverage to t̂ to decrease the value of R
because this could only increase the coverage needed for any other
target. To see this, note that the values of c1i are independent of R
and the values of c2i increase monotonically as R decreases.

Now that we have the value ofR, we calculate the value of c2i for
every other target. We calculate the minimum coverage required to
satisfy one of these two conditions by taking min(c1i , c

2
i) for each

target. There is one final condition that must be met for each target
for our initial assumption to hold: the target we are assuming is
t̂ must have the maximum minimum expected payoff. We enforce
this by adding an additional constraint on the coverage probability
assigned to each target so that the maximum attacker payoff for the
target is less than the calculated value of R for t̂:

c3i = max(0, 1− R− Uu,min
Ψ (ti)

Uc,min
Ψ (ti)− Uu,min

Ψ (ti)
). (8)

These values increase monotonically asR decreases. The overall
minimum coverage for each target is given by max(c3i ,min(c1i , c

2
i)).

We sum these coverages over all targets and compare this with
the available resources m to determine whether this selection of
t̂ yields a feasible solution. If this case does not yield a feasible
solution, the algorithm continues testing the other targets as candi-
dates for t̂. As soon as a feasible solution is found, the subroutine
terminates and the binary search continues.

The worst-case complexity of the algorithm is O(n2 · log(1/ε))
where ε is the error tolerance parameter for the binary search. Each
feasibility check requires one iteration to test each target as t̂, and
each iteration does several constant-time operations on each tar-
get to determine the minimal coverage. Therefore, the feasibility
check has complexity O(n2). Binary search requires O(log(1/ε))
iterations to converge within ε, giving the overall complexity of
O(n2 · log(1/ε)).

Algorithm 1 ISG Solver
for all ti ∈ T do
ci ← 0

end for
maxPayoff ← 0
minPayoff ← minti∈T U

u
Θ(ti)

while maxPayoff −minPayoff > ε do
midPoint← (maxPayoff −minPayoff)/2
if feasibilityCheck(midPoint, m, C) then
minPayoff ← midPoint

else
maxPayoff ←MidPoint

end if
end while
return C

In addition to our own ISG algorithm we implemented a mixed-
integer program (MIP) that computes an exact solution for interval
security games. This MIP model is used as a benchmark in the ex-
perimental evaluation. We do not described this MIP here due to
space constraints, but note that the formulation is a minor variation
of the BRASS MIP formulation presented in Pita et al. [18].

Algorithm 2 feasibilityCheck
for all ti ∈ T do
c1i ← max(0, 1− midPoint−Uu

Θ(ti)

Uc
Θ(ti)−Uu

Θ(ti)
)

end for
for all ti ∈ T do
totalCov ← c1i
ci ← c1i
if ci > 1 then
GOTO next ti

end if
R← (c1i · Uc,min

Ψ (ti)) + ((1− c1i) · Uu,min
Ψ (ti))− ε′

for all tj ∈ {T\ti} do
c2j ← max(0, 1− R−U

u,max
Ψ (tj)

U
c,max
Ψ (tj)−U

u,max
Ψ (tj)

)

c3j ← max(0, 1− R−U
u,min
Ψ (tj)

U
c,min
Ψ (tj)−U

u,min
Ψ (tj)

)

minCov ← max(c3i ,min(c1i , c
2
i))

if minCov < 0 || minCov > 1 then
GOTO next ti

end if
totalCov ← totalCov +minCov
cj ← minCov

end for
if totalCov ≤ m then

return TRUE, C
end if

end for
return FALSE

6. SECURITY GAMES WITH
DISTRIBUTIONAL UNCERTAINTY

An alternative way to model uncertainty about payoffs is to use
distributions instead of intervals to represent possible values. The
distributional security games (DSG) model introduced by Kiek-
intveld et al. [12] uses this approach, and presents several approxi-
mation algorithms for computing solutions to DSG. The DSG model
contains more information than our model because it has access to
distributional information, however, this has two significant draw-
backs: (1) The models are more problematic to accurately define,
since they require the domain expert to specify a large number of
payoff distributions. (2) It is computationally challenging to solve
infinite Bayesian Stackelberg games that represent distributional in-
formation; no exact algorithms are known for this class of games,
and even heuristic approximations are expensive.

For these reasons, it is often preferable to use an interval model
to represent uncertainty instead of a distributional model. We also
show in this paper that we can use our interval algorithm as an
efficient way to approximate solutions even when distributional in-
formation is available. We begin by introducing the DSG model,
and then show how we can transform a DSG into an interval game
which we can solve with our efficient interval algorithm. In the ex-
perimental results we compare the approximation results using in-
tervals with the best known approximation methods for DSG games.

A distributional security game extends the security game model
(see Section 3) in a similar way to ISG. The difference is that the
attacker’s payoffs are represented by continuous probability den-
sity functions (e.g., uniform distributions or Gaussian distributions)
instead of intervals. Formally, this becomes an infinite Bayesian
Stackelberg game with an infinite number of attacker types, and
the game unfolds as follows: (1) the defender commits to a mixed
strategy (2) nature chooses a random attacker type ω ∈ Ω with

234

probability Pb(ω), (3) the attacker observes the defender’s mixed
strategy, and (4) the attacker responds to the mixed strategy with a
best-response that provides the attacker (of type ω) with the high-
est expected payoff. We define the type distribution by replacing
the payoffs values Uc

Ψ(t, ω), Uu
Ψ(t, ω) for each target t ∈ T with

two continuous probability density functions that represent the de-
fender’s beliefs about the attacker payoffs:

fc
Ψ(t, r) =

Z
ω∈Ω

Pb(ω)Uc
Ψ(t, ω)dω (9)

fu
Ψ(t, r) =

Z
ω∈Ω

Pb(ω)Uu
Ψ(t, ω)dω (10)

For example, the defender expects with probability fc
Ψ(t, r) that the

attacker receives payoff r for attacking target t when it is covered.
For some coverage vector C, let Xt(C) be a random variable that
describes the expected attacker payoffs for attacking target t, given
C. We then define the probability that the attacker will choose tar-
get t for each target t ∈ T as follows:

at(C) = Pb[Xt(C) > Xt′(C) for all t′ ∈ T \ t] (11)

because the attacker acts rationally. Conceptually, this gives the
probability that the attacker will choose to attack each target for a
given coverage vector C and the probability distributions of the at-
tacker’s payoffs. Using these probabilities, we can calculate the ex-
pected payoff for the defender. The original paper presents a deriva-
tion of an analytic formula for these probabilities, but it cannot be
solved directly. Instead, Monte Carlo simulation is used to estimate
the attack probabilities. We generate one sample attacker type by
sampling payoffs from each of the payoff distribution; these are
the payoff values assigned to that type. Using those payoff values
we can calculate the best-response for this attacker type against the
coverage strategyC. We sample a large number of types to estimate
the expected value of a coverage strategy for a DSG.

In our experiments, we benchmark again the Greedy Monte Carlo
(GMC) algorithm introduced by Kiekintveld et al [12]. This was
found to be the method that was fastest and had the highest quality
solutions for instances of DSG, especially when scaling up to large
games. The GMC method is based on sampling a large number
of attacker types (thousands) using Monte-Carlo sampling. It uses
a greedy heuristic to approximate the optimal defender coverage
strategy against the sampled attacker types.

To apply our interval algorithm to distributional security games
we translate the distribution for each payoff to an interval. There
are many ways to do this but we use a simple method that cen-
ters the interval around the mean of the distribution and determines
the size of the interval based on the standard deviation of the in-
terval and a multiplier. The multiplier is a parameter of the algo-
rithm, and allows us to have intervals that include a larger or smaller
fraction of the possible payoff values in the distribution. The min-
imum value for the interval is calculated as mean − (StdDev ·
multiplier) and the maximum values is calculated as mean +
(StdDev ·multiplier). Figure 1 shows this visually.

7. EXPERIMENTAL EVALUATION
We begin by evaluating the runtime and solution quality of the

ISG solver on interval security games, and then present results on
distributional security games.

7.1 Interval Game Experiments
First, we tested the speed of the ISG solver against an exact MIP

formulation based on BRASS. We tested the algorithms on 30 ran-

Figure 1: A payoff interval for a Gaussian distribution.

domly generated sample games with defender payoffs for success-
ful attacks drawn uniform random between 0 and −100, and the
attacker payoffs for successful attacks drawn uniformly between 0
and 100. We modify the attacker payoffs to be intervals by using the
first value drawn as the minimum value and setting the maximum
value by adding a uniform random value between 0 and 20. The
payoffs for unsuccessful attacks are 0 for both players. We fixed
the number of resources at 20% of the number of targets.

In Figure 2(a) we present results for the MIP (solved using GLPK
version 4.36) and ISG with three different tolerance settings. The
tolerance settings control the accuracy of the binary search. All
three ISG instances are much faster, even with an error tolerance
of just 0.0001. Figure 2(b) shows results for the three ISG settings
on much larger games. Here we see a modest increase in solution
time with increasing accuracy. Even for 10000 targets and the high-
est accuracy setting, ISG solves the game in half the time required
by the MIP to solve games with only 300 targets.

We also ran experiments to test the impact of interval uncer-
tainty on solution quality under varying assumptions about the at-
tacker strategy. For this experiment we used 200 randomly gen-
erated games with defender payoffs for successful attacks drawn
from the range −20 to −10, and attacker payoffs between10 and
20. Payoffs for unsuccessful attacks were 0 for both players. The
baseline case has no uncertainty about the attacker’s payoffs. We
solved these games using an existing linear-time solver for secu-
rity games [14]. We then added increasing amounts of interval un-
certainty to the attacker’s payoffs, and solved the resulting games
using the ISG solver.

The results are shown in Figure 2(c). On the x-axis is the size of
the intervals for the attacker’s payoffs. On the y-axis is the expected
payoff for the defender. The four lines represent four different as-
sumptions about the attacker. The Nash attacker always plays the
optimal attacker strategy computed in the case with no uncertainty
(in this case, the Stackelberg equilibrium strategy is the same as the
Nash strategy [13]). The Stackelberg attacker is able to observe the
exact coverage strategy and chooses a best-response, as in a Strong
Stackelberg Equilibrium. The worst case attacker always chooses
the worst possible target for the defender, without regard to the at-
tacker’s own payoffs. Finally, the guaranteed payoff is the payoff
that the ISG method is able to guarantee against any rational at-
tacker with payoffs that lie within the given intervals.

In the results there is a small decrease in the payoffs for the so-
lutions to the interval games against the Nash and Stackelberg at-
tackers. This is expected, and can be interpreted as the price of
robustness to payoff uncertainty. The advantage of the ISG method
is seen in the guaranteed and worst case payoffs. There is an in-

235

(a) Comparison of solution time for ISG and
the MIP solved using CPLEX.

(b) The effect of varying the tolerance on ISG
solution time.

(c) Impact of interval uncertainty on solution
quality and robustness

Figure 2: Runtime and solution quality analysis for ISG.

creasing trend in the worst-case payoffs for ISG, with the strongest
results for larger intervals. More importantly, the method is able to
guarantee high payoffs for smaller amounts of possible variation in
the attacker’s payoffs, anywhere within the specified intervals.

7.2 Distributional Game Experiments
Our next set of experimental results evaluates the potential for

ISG to be used as a fast approximation algorithm for distributional
security games. We compare the performance of ISG using our
methodology for transforming distributional security games into
approximate versions based on intervals to the best existing meth-
ods for DSG, Greedy Monte Carlo (GMC) [12] and BRASS [18].
We run experiments on the same three classes of distributional
games used by Kiekintveld et al., games with Uniform payoffs dis-
tributions games with Gaussian distributions with the same stan-
dard deviation for every payoff, and games with Gaussian distribu-
tions with varying standard deviations.

We generated 300 random instances of each class of games. The
games were generated by first drawing random rewards and penal-
ties for both players. All rewards were drawn from U[6; 8] and
penalties were drawn from U[2; 4]. We then generated distributions
of the correct type for the attacker’s payoff, using the values from
the first stage as the mean. In uniform games we vary the length of
the uniform interval to increase or decrease uncertainty. For Gaus-
sian games we vary the standard deviation, and all payoffs have
the same amount of uncertainty. Gaussian variable games have a
different standard deviation for each payoff distribution, which are
drawn from U[0; 1] in our experiments.

All three of the algorithms we tested have parameters. For GMC
the two main parameters that control the solution time and qual-
ity are the number of sample attacker types used in the calcula-
tion, and the size of the increment used in the greedy allocation of
coverage probability. Solution quality improves with a larger num-
ber of types and a smaller increment, but solution time increases.
We include both a "low" and "high" quality set of parameters for
GMC; the specific settings are given in Table 1. The parameter for
BRASS is ε, and reflects how far attackers may be from choosing
the optimal target. The parameters for ISG are the multiplier used
to generate the interval game from the distributional game, and the
tolerance. The tolerance does not have a large effect on the solution
quality (because we can always get very small error), so we fix this
at 0.0001 in our experiments.

The BRASS epsilon parameter and the ISG multiplier can both
have a significant effect on the solution quality, and there is no ob-
vious way to set the value of these parameters. The best value can
depend on the size of the game, the type of uncertainty, and the
amount of uncertainty (e.g., the standard deviation of the distribu-

Table 1: Parameter settings for the algorithms.
Parameter Values
ISG Multipliers 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
BRASS Epsilons 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
GMC Low increment 0.05,1000 types
GMC High increment 0.01,10000 types

tion). We tested a variety of parameter settings to select the ones
that gave the best results. The set of candidate values for each al-
gorithm is shown in Table 1. Figure 3(g) shows an example of an
experiment to find the best parameters games with Gaussian un-
certainty for the ISG algorithm. The amount of uncertainty (i.e.,
standard deviation) varies along the x-axis, the value of the best
parameter setting is given on the y-axis, and each line represents
a class of games with a different number of targets. In general, the
best multipliers are smaller for smaller games and games with more
uncertainty. The need to do some experimentation to find a good pa-
rameter setting for ISG is not a significant practical concern. These
settings could be used based on known values for similar games,
and the algorithm is fast enough that testing a few different param-
eter settings on a specific game would not be prohibitive. In all of
our experiments, we tested all of the values in the table for both
BRASS and ISG, and selected the one that gave the best result for
the specific setting.

The first three plots, 3(a), 3(b), and 3(c) compare the solution
qualities achieved by the algorithms on games with 15 targets and
3 resources. For the Uniform and Gaussian games we vary the
amount of payoff uncertainty on the x-axis by varying the stan-
dard deviations of the attacker’s payoff distributions. For Gaussian
Variable games we use only a single setting, since the amount of
uncertainty varies on a per-payoff basis in these games. In all cases,
the defender’s expected payoff for the solution is plotted on the y-
axis. This is evaluated after the algorithms return solutions by using
a very large number of Monte-Carlo sample types (100000) to give
a very accurate estimate of the expected payoff for the proposed
coverage solution. We also include a final baseline called "Mean"
that solves the game optimally by assuming that the mean of the
distribution is the exact payoff value (in other words, it ignores the
uncertainty in payoffs and solves it as a standard security game).

The mean baseline performs poorly in all cases. For uniform
games, ISG has the highest solution quality, followed closely by
BRASS. For Gaussian and Gaussian variable games ISG performs
slightly worse than the GMC methods, particularly when there is
a large amount of uncertainty, but the performance is still com-
petitive. In the second set of plots, 3(d), 3(e), and 3(f), we fix the

236

(a) Solution quality results for small games
with uniform attacker payoff distributions.

(b) Solution quality results for small games
with Gaussian attacker payoff distributions.

(c) Solution quality results for small games
with Gaussian variable attacker payoff distri-
butions.

(d) Solution quality results scaling to larger
games for uniform attacker payoff distribu-
tions.

(e) Solution quality results scaling to larger
games for Gaussian attacker payoff distribu-
tions.

(f) Solution quality results scaling to larger
games for Gaussian variable attacker payoff
distributions.

(g) Parameter optimization for ISG on games
with Gaussian distributions.

(h) Comparison of solution times for solving
large Gaussian games.

Figure 3: Solution quality and computation time comparisons.

amount of uncertainty for each the classes of games and vary the
number of targets to assess performance on larger games. The stan-
dard deviation for uniform and Gaussian games is fixed at 0.5, and
Gaussian variable games use the same distribution of standard de-
viations as before. BRASS is not included because it required too
much memory to complete for the larger problems. The pattern of
results is similar to the smaller games. In uniform games there is
a greater separation, with ISG outperforming GMC. On Gaussian
and Gaussian variable games, GMC has higher solution quality, but
the overall difference between GMC and ISG is small.

The final result is presented in Figure 3(h). This plot compares
the runtimes for computing solutions on the large Gaussian games
(results for the other classes of games are very similar. Here we
see that the solution times for both BRASS and GMC high rapidly
increase as the size of the game increases. The solution times for
GMC low and mean grow more reasonably. However, ISG is by
far the fastest algorithm. It is fast enough to scale well beyond 100
targets, as seen in the previous set of results. Overall, ISG offers
very fast solutions and either superior or competitive solution qual-
ity for approximating distributional games, depending on the type
of uncertainty. It is a particularly good choice for accounting for

uncertainty in very large games or situations where very fast perfor-
mance is needed; in these cases it may be the only feasible method
from a computational perspective that can account for uncertainty.

8. CONCLUSION
Security games have important real-world applications, but one

of the critical questions is how to account for uncertainty and error
in building the analyzing the game models. If the solutions are not
robust to the kinds of errors and uncertainties that arise in mod-
eling real problems, then they will not be useful in many situa-
tions. However, many of the standard approaches for handling un-
certainty, such as Bayesian games, are very challenging from both
a model elicitation standpoint and a computational standpoint.

We have introduced a new model of security games with uncer-
tainty that is based on using intervals to represent possible payoffs,
and takes a worst-case approach to uncertainty. This approach is
motivated in part by the literature on robust optimization and more
recently work on robust game theory concepts. We show that mod-
eling uncertainty using intervals has distinct computational advan-
tages. We present a highly efficient polynomial algorithm for ap-
proximating solutions to interval security games within very small

237

(negligible) error bounds. Our experiment results show that this al-
gorithm is much faster than equivalent MIP formulations.

In addition, we show that intervals can be used to approximate
infinite Bayesian games with distributional uncertainty. We develop
a methodology for modeling the infinite games using games with
intervals, which can then be solved using our fast algorithm for
ISG. In our experiments, the solutions found using this interval-
based approach are surprisingly good–in all cases they are compet-
itive with the best known methods for directly approximating the
solutions to the Bayesian games, and in some cases the quality is
even better. In addition, the speed of the solutions is much faster,
and we can scale to extremely large games using this approach.
This provides a computationally feasible way to account for uncer-
tainty even in very challenging cases of security games. Our suc-
cess in applying interval-based models in this case also suggests
interesting directions for future work in applying these principles
to manage uncertainty in more general classes of games.

8.1 Acknowledgments
This work was supported in part by the National Science Founda-

tion grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Cen-
ter of Excellence) and DUE-0926721, by Grants 1 T36 GM078000-
01 and 1R43TR000173-01 from the National Institutes of Health,
and by a grant on F-transforms from the Office of Naval Research.

9. REFERENCES
[1] M. Aghassi and D. Bertsimas. Robust game theory.

Mathematical Programming, 107:231–273, 2006.
10.1007/s10107-005-0686-0.

[2] N. Agmon, S. Kraus, G. A. Kaminka, and V. Sadov.
Adversarial uncertainty in multi-robot patrol. In IJCAI-09,
2009.

[3] T. Alpcan and T. Basar. A game theoretic approach to
decision and analysis in network intrusion detection. In Proc.
of the 42nd IEEE Conference on Decision and Control,
pages 2595–2600, 2003.

[4] N. Basiloco, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, 2009.

[5] A. Ben-Tal and A. Nemirovski. Robust optimization –
methodology and applications. Mathematical Programming,
92:453–480, 2002. 10.1007/s101070100286.

[6] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In ACM EC-06, pages 82–90, 2006.

[7] N. Gatti. Game theoretical insights in strategic patrolling:
Model and algorithm in normal-form. In ECAI-08, pages
403–407, 2008.

[8] J. C. Harsanyi. Games with incomplete information played
by Bayesian players (parts i–iii). Management Science, 14,
1967–8.

[9] M. Jain, E. Kardes, C. Kiekintveld, M. Tambe, and
F. Ordonez. Security games with arbitrary schedules: A
branch and price approach. In AAAI-10, 2010.

[10] M. Jain, M. Tambe, and C. Kiekintveld. Quality-bounded
solutions for finite bayesian stackelberg games: Scaling up.
In AAMAS-11, 2011.

[11] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordonez, and
M. Tambe. Computing optimal randomized resource
allocations for massive security games. In AAMAS-09, 2009.

[12] C. Kiekintveld, J. Marecki, and M. Tambe. Approximation
methods for infinite Bayesian Stackelberg games: Modeling
distributional payoff uncertainty. In AAMAS-11, 2011.

[13] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, , and
M. Tambe. Stackelberg vs. Nash in security games: An
extended investigation of interchangeability, equivalence,
and uniqueness. Journal of AI Research (JAIR) (to appear),
2011.

[14] O. Lerma, V. Kreinovich, and C. Kiekintveld. Linear-time
resource allocation in security games with identical fully
protective resources. In Proceedings of the AAAI Workshop
on Applied Adversarial Reasoning and Risk Modeling
(AARM), 2011.

[15] W. Ma, X. Luo, and W. Xiong. A model for decision making
with missing, imprecise, and uncertain evaluation of multiple
criteria. International Journal of Intelligent Systems, 20(1),
2013.

[16] K. C. Nguyen and T. A. T. Basar. Security games with
incomplete information. In Proc. of IEEE Intl. Conf. on
Communications (ICC 2009), 2009.

[17] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez,
and S. Kraus. Playing games with security: An efficient exact
algorithm for Bayesian Stackelberg games. In AAMAS-08,
pages 895–902, 2008.

[18] J. Pita, M. Jain, F. Ordóñez, M. Tambe, S. Kraus, and
R. Magori-Cohen. Effective solutions for real-world
Stackelberg games: When agents must deal with human
uncertainties. In AAMAS-09, 2009.

[19] J. Pita, M. Jain, C. Western, C. Portway, M. Tambe,
F. Ordonez, S. Kraus, and P. Parachuri. Depoloyed ARMOR
protection: The application of a game-theoretic model for
security at the Los Angeles International Airport. In
AAMAS-08 (Industry Track), 2008.

[20] J. Pita, M. Tambe, C. Kiekintveld, S. Cullen, and
E. Steigerwald. GUARDS - game theoretic security
allocation on a national scale. In AAMAS-11 (Industry
Track), 2011.

[21] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. Direnzo,
G. Meyer, C. W. Baldwin, B. J. Maule, and G. R. Meyer.
PROTECT : A Deployed Game Theoretic System to Protect
the Ports of the United States. AAMAS, 2012.

[22] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[23] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe.
IRIS - A tools for strategic security allocation in
transportation networks. In AAMAS-09 (Industry Track),
2009.

[24] J. Tsai, Z. Yin, J. young Kwak, D. Kempe, C. Kiekintveld,
and M. Tambe. Urban security: Game-theoretic resource
allocation in networked physical domains. In National
Conference on Artificial Intelligence (AAAI), 2010.

[25] H. von Stackelberg. Marktform und Gleichgewicht. Springer,
Vienna, 1934.

[26] K. wei Lye and J. M. Wing. Game strategies in network
security. International Journal of Information Security,
4(1–2):71–86, 2005.

[27] W. Xiong, X. Luo, and W. Ma. Games with ambiguous
payoffs and played by ambiguity and regret minimising
players. In Australasian Conference on Artificial
Intelligence, pages 409–420, 2012.

[28] Z. Yin and M. Tambe. A unified method for handling
discrete and continuous uncertainty in Bayesian Stackelberg
games. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2012.

238

