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Abstract

Eliciting accurate information on any object (perhaps a new prod-

uct or service or person) using the wisdom of a crowd of individuals

utilizing web-based platforms such as social networks is an impor-

tant and interesting problem. Peer-prediction method is one of the

known efforts in this direction but is limited to a single level of par-

ticipating nodes. We non-trivially generalize the peer-prediction

mechanism to the setting of a tree network of participating nodes

that would get formed when the query about the object originates at

a root node and propagates to nodes in a social network through for-

warding. The feedback provided by the participating nodes must be

aggregated hierarchically to generate a high quality answer at the

root level. In the proposed tree-based peer-prediction mechanism,

we use proper scoring rules for continuous distributions and prove

that honest reporting is a Nash Equilibrium when prior probabili-

ties are common knowledge in the tree and the observations made

by the sibling nodes are stochastically relevant. To compute pay-

ments, we explore the logarithmic, quadratic, and spherical scoring

rules using techniques from complex analysis. Through detailed

simulations, we obtain several insights including the relationship

between the budget of the mechanism designer and the quality of

answer generated at the root node.
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I.2.1 [Artificial Intelligence]: Applications and Expert Systems -
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1. INTRODUCTION
Eliciting honest feedback from experts as well as lay persons is

an important problem in electronic markets and web-based plat-

forms. Decision makers often depend on feedback given by mul-

tiple individuals while making decisions. Increasingly, online ap-

plications are trying to extract knowledge from a large group of

users, which is called wisdom of the crowds [1]. The query posed

to these individuals may be objective, the answer of which can be

verified to be correct or wrong at a future point of time, for exam-

ple: which soccer team is going to win World Cup? Who is going
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to be the next president of a particular country? What will be the

stock price of product X in next month? etc. For these questions, it

is easy to compare the feedback obtained with the correct answer.

Prediction markets [2] precisely serve this purpose. The situation

becomes more interesting when the question asked is hypothetical,

that is, when the answer to the question is subjective rather than

objective. Examples of such questions include: How do you rate

the restaurant X? Is it good for government of X to adopt policy Y?,

What is the source of anomaly in this system?, etc. These type of

queries are especially relevant in online reputation systems, where

users leave feedback about quality of some product or service. In

our work, we focus on the latter type of questions. Our goal is to

use the wisdom of the crowd or a social network to elicit a high

quality answer to such a question.

The problem studied in this paper has a wide range of applica-

tions. For example if a social planner (for example, government) is

interested in collecting opinion about a new bill/policy, the planner

can use binary signals: good or bad and obtain collective feedback

from experts and citizens by incentivizing them in some appropriate

way. On the other hand it can be used to detect source of anomaly

in a system by the administrator: suppose there are M possible

sources of anomaly. Each subsystem can play the role of a node in

the tree and report a probability distribution over M sources.

The success of such a system which tries to elicit opinions from

individuals faces two challenges. Firstly it has to ensure that users

put in enough effort to get the report, because reporting feedback

does take time and effort. For example in order to provide a review

about a product, one has to first buy and use the product or at least

have enough knowledge about the product. Also the buyers have to

understand the rating scale. Again some manual effort is involved

in preparing and submitting the report. If no explicit reward is given

to the agents, then it is possible that they provide feedback only

when they have some ulterior motives, which results in a biased

feedback [3]. The second challenge is to guarantee honesty among

the agents. Rational agents try to maximize their utility and it may

not always be a best response to report the truth. To overcome the

first challenge, participating agents must be rewarded more than

their cost of reporting for giving feedback, and to overcome second

challenge an honest feedback must receive more reward than any

distorted feedback.

The peer-prediction method [4] is one of the known efforts in

this direction but is limited by its applicability to only situations

involving agents at a single level. In this paper, we non-trivially

generalize the peer-prediction mechanism to the setting of a tree

network of participating nodes that gets formed when the query

originates at a (root) node and propagates to different nodes in the

social network or crowd in a hierarchical fashion through forward-

ing. The feedback to this query received from the nodes in the tree

must be honest and accurate, and the feedback also must be aggre-

gated in a hierarchical fashion to generate a high quality answer at

the root level. In order to motivate the nodes to put in sufficient ef-
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fort and report truthfully, we propose a tree-based peer-prediction

framework using proper scoring rules for continuous probability

distributions. In this framework, we prove that honest reporting

is a Nash Equilibrium (NE) when prior probabilities are common

knowledge of the nodes in the tree and the observations made by

the sibling nodes are stochastically relevant. We investigate the

application of this mechanism using three popular proper scoring

rules namely logarithmic, quadratic, and spherical rules. We use

techniques from complex analysis to compute payments derived

from these proper scoring rules. We validate our findings through

simulations and obtain several insights. In particular, we study the

relationship between the budget of the mechanism designer and the

quality of answer generated at the root node.

1.1 Related Work
There have been several recent studies on web-based crowd-

sourcing, where the objective is to elicit opinions from a popula-

tion and incentivize them to contribute to the best of their abili-

ties. Miller, Resnick and Zeckhauser [4] propose peer-prediction

rule where a central body (information aggregator) collects feed-

back from a number of strategic agents on some particular prod-

uct/object. Then each agent is scored based on her report and the

report submitted by her reference rater. The authors prove the ex-

istence of an incentive-compatible payment scheme where honest

reporting by all the agents forms a Bayesian Nash Equilibrium.

Our work non-trivially generalizes this mechanism to a general hi-

erarchical setting. In our setting an agent who is contacted by the

central body can also make contacts to other agents who are known

to him to get the answer. Our model resembles the query incentive

network model (Kleinberg and Raghavan [5]) where request for in-

formation propagates along the paths in the network. This connects

the agents having the required information to those seeking this in-

formation. The underlying idea is to use the contact-links present

in an underlying social network to find the answer of a hypothetical

question. Figure 1 shows the network structure in the case of the

peer-prediction method and the network structure that we deal with

in this paper.

Figure 1: Generalization of the peer-prediction model

There are two major differences between our setting and the set-

ting used in peer prediction or other methods designed for reputa-

tion systems. The first difference is that, in our model, the network

will have multiple levels. In other words, the central information

aggregator can be connected to a number of nodes each of which

can be connected to another set of nodes and so on. The added

advantage with this setting is that there may be users who are not

directly reachable from the central body, but can contribute valu-

able feedback to the system. Also, some node directly connected to

the central body may not have enough information about the query

and may be willing to seek feedback from its own contacts. So, the

network in peer prediction can be thought as a special case of our

network with just one level.

Secondly, in the case of peer prediction, the role of the reputation

mechanism is signaling and each agent reports a single signal about

the product indicating his perception about the product. But there

are situations where it is easier for a user to report a distribution

on the signals. For example suppose the posed question is will

you vote in the next presidential election?, and available signals are

definitely, probably, probably not, definitely not. A user may prefer

to report definitely with 50%,probably with 25%, probably not with

25% and definitely not with 0%, instead of choosing a single signal

for answering. Clearly, reporting a single signal is a degenerate

case of reporting a distribution. So, in our model we allow users

to report a probability distribution over a set of available signals,

making it much more powerful than the peer-prediction setting.

Another issue with the peer-prediction scheme is that the scaling

of rewards can lead to arbitrarily high payments causing loss to the

reputation mechanism. Jurca and Faltings [3] addressed this issue

and proposed an automated mechanism design technique to com-

pute the optimal payments that minimize the total budget required.

It offsets both the cost of reporting and the external incentive an

agent can achieve by reporting dishonestly. They also introduce

the use of several reference raters instead of one. Another aspect

of peer-prediction is that it makes the assumption that every rater

has common knowledge of the prior probability distribution over

the types of the product. Prelec [6] presents Bayesian Truth Serum

(BTS) mechanism which relaxes this assumption. The work still

assumes that there is a common prior but the mechanism designer

need not know this. Here in addition to an information report, every

agent also has to give a prediction report, which reflects his belief

about the distribution of the information reports submitted by the

entire population. In this mechanism, an agent gets paid more when

its information report is more common than collectively predicted

or in other words when his information report is “surprisingly com-

mon”. On the other hand, when the prediction report matches with

the true distribution of the population, his reward is maximized.

One requirement for this mechanism to be incentive compatible is

that the number of participating agents should be very large. In ad-

dition, the reward received by an agent may be negative and BTS

is not numerically robust for all inputs.

Witkowski and Parkes [7] present a mechanism built on Bayesian

Truth Serum (BTS) which relaxes the requirement of very large

number of participating agents. Here, reporting scheme is same

as BTS, but with the restriction that it applies to elicit only binary

information. Using quadratic scoring rule, they propose a strictly

incentive compatible mechanism for n ≥ 3.

Jurca and Faltings [8] address reporting incentives for online

opinion polls. Here, there are only two possible answers available

for the raters, and current distribution of the submitted reports is

published to the remaining agents. This mechanism requires the

agents to report only the information report, but it is not incentive

compatible. Jurca and Faltings [9] allow a small deviation in the

prior probabilities known to the agents rather than it being com-

mon knowledge. They also prove that no reward mechanism can

be strictly incentive compatible when the mechanism designer does

not know the prior information of the participants. In [10], differ-

ent scenarios, where some or all the agents can collude are analyzed

using automated mechanism design techniques.

Kleinberg and Raghavan([5]) propose the branching process model

for query incentive networks. In this setting, a query is originated

at the root of an infinite d-ary tree where each node possesses the

answer to the query with probability 1/n, where n is the rarity of

the answer. For any general node v, if r is the reward offered by

its parent and fv(r) is the fraction of r which v offers to its chil-

dren, then the payoff for node v is (r− fv(r)− 1). They analyzed
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the Nash Equilibrium in this model and also investigated the rela-

tion between the branching factor of the network and the reward

required to find the answer with a constant probability.

Dikshit and Narahari [11] consider the issue of the quality of the

answer in query incentive networks. They define a quality con-

scious model where the incentive is modulated based on the quality

of the answer. They show the existence of a unique Nash Equilib-

rium and study the impact of quality of answer on the growth rate

of the initial reward with respect to the branching factor of the tree

network.

A fundamental difference between the model used in query in-

centive networks [11, 5] and our model is that in their model the

query has a specific answer and whenever a node is found to be

knowing the answer, searching for answer terminates and that an-

swer only is propagated to the root, so there is no need for infor-

mation aggregation. But in our model the objective is aggregate

opinions from a population while ensuring the feedback is honest,

so information aggregation plays an important role here.

Many of the studies above use proper scoring rules to set up the

mechanisms. Such scoring rules have been used in a wide variety

of ways, for example, see Boutilier [12], Bickel [13]. In our study

here, we use proper scoring rules for continuous distributions, in

particular the logarithmic, quadratic and spherical scoring rules.

1.2 Contribution and Outline
The various contributions of this paper are described below.

• In Section 2, we non-trivially generalize the peer-prediction

method [4] to the case of a tree network. Further, in the pro-

posed method, we use proper scoring rules for continuous dis-

tributions to enable the participating nodes to report probability

distributions rather than discrete signal values. The key reason

to consider tree networks is the fact that when a query originates

at a (root) node and propagates to different nodes in the crowd

or social network through forwarding, a hierarchy of participat-

ing nodes gets naturally formed. In this framework, we prove

that honest reporting is a Nash Equilibrium when prior probabil-

ities are common knowledge among the nodes in the tree and the

observations made by sibling nodes are stochastically relevant.

• We pick three popular strictly proper scoring rules - logarithmic,

quadratic, and spherical rules - to investigate the application of

the proposed tree based peer prediction mechanism. In Section 3,

we develop computational procedures to compute payments de-

rived from these rules using techniques from complex analysis.

• In Section 4, we carry out detailed simulations using an under-

lying social network of 100 nodes and validate our findings. We

obtain several insights, in particular, we study the relationship

between the budget of the mechanism designer and the quality

of answer generated at the root node.

literature:

2. MODEL AND PROBLEM FORMULATION

2.1 Peer Prediction Model: A Quick Review
We first outline the peer-prediction method proposed by Miller,

Resnick and Zeckhauser [4]. Consider a product which a number

of raters have experienced and they are able to provide their feed-

back about this product. Each product has a type associated with

it and we assume the number of product types to be finite and be

indexed by t ∈ {1, . . . , T}. There is a prior probability assigned

to type t which is denoted by p(t) and it is assumed to be a com-

mon knowledge among the raters. We assume p(t) > 0 for all t.
Let S = {s1, . . . , sM} denote the set of possible signals that a rater

can observe. Si denotes the random variable representing the signal

for rater i, and sim denotes the event {Si = sm}. Let f(sm|t) =

Pr(Si = sm|t) > 0 for all sm and t and
∑M

m=1 f(sm|t) = 1 for

all t. This f(sm|t) is assumed to be common knowledge. Assume

that raters are risk neutral and seek to maximize their utility. Each

rater has a perception about the product and it is assumed to be pri-

vate information. Let τi(a) be the payment made to agent i where

a is the vector representing all the reports made by all the raters of

i. The report by any node will be a probability distribution on the

set S. We denote the report by i-th node as āi ∈ ∆(S). Miller et

al. [4] show that for any two distinct buyers i and j, Si is stochas-

tically relevant for Sj in their mechanism. That is, for any two

distinct realizations si and ŝi of Si, there exists some realization

sj of Sj such that P (Sj = sj |S
i = si) 6= P (Sj = sj |S

i = ŝi).
If Si is stochastically relevant for Sj , then rater i’s signal provides

some information about the distribution of rater j’s signal. So, if

it is known that rater j is reporting truthfully, then eliciting rater

i’s information is reduced to eliciting his belief about the distribu-

tion of j’s signal. Finally they prove that if the payments are made

according to the following rule then truthful reporting becomes a

strict Nash equilibrium of the simultaneous reporting game:

τ∗
i (āi, ār(i)) = R(ār(i)|āi)

where r(i) denotes the reference rater of rater i and r(i) 6= i, R is

a strictly proper scoring rule.

2.2 Need for Continuous Scoring Rules
In this setting, as the nodes are able to report probability vec-

tors as their report, there is a need to use the continuous analogs of

the strictly proper scoring rules for calculation of the payment for

any node (i.e., for computing τ∗
i (āi, ār(i)),∀i). In this paper, we

work with the continuous analogs of three popular and highly stud-

ied strictly proper scoring rules namely logarithmic, quadratic and

spherical rules. The continuous logarithmic, quadratic and spheri-

cal scoring rules (Matheson and Winkler [14]) are given below:

S(q(x)) = ln(q(x)) [ Logarithmic scoring rule ]

S(q(x)) = 2q(x)−
∫

u∈X
q2(u)du [ Quadratic scoring rule ]

S(q(x)) =
q(x)

√∫

u∈X
q2(u)du

[ Spherical scoring rule ]

where x is the revealed value of the variable of interest (in the con-

text of this paper, this represents a probability vector over the sig-

nals) and q(·) is the corresponding density function that is assigned

by the subject.

2.3 Problem Formulation
We have a mechanism designer who is interested to know the

rating of a particular object (product, service, person etc.) using a

network of social contacts who have experienced the product. As

explained earlier, let the number of quality ratings be finite and be

indexed by t ∈ {1, . . . , T}. Let p(t) be the prior probability for

the object of being type t. We assume that the prior probabilities

are common knowledge in the network. In this setting, it is a three-

step process for eliciting the quality of the concerned object. We

describe the three steps below.

2.4 Contract Signing
In the first step, the network is created by making contracts in the

following way. It starts from the root node representing the entity

interested to get feedback from the network. The root node agrees

to offer a reward, A, to each of its children. Now they become leaf

nodes. Then each of these children has two options: either it can
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report by itself or it can seek help from its own children by contact-

ing them and propagating the query. In order to get help from any

child, it has to promise a fraction of its own reward to that child. If

that child agrees to acquire and report feedback with offered reward

then it makes a contract with its parent. Initially, all the children of

a parent are promised equal payment. The same process contin-

ues with current leaf nodes and they may in turn become parents

of other nodes. The process stops when one of the two things oc-

cur: there is no node which wants to contact any of its children,

or when none of the contacted children agrees to sign the contract

with offered reward.

2.5 Information Propagation
After the first step, our network consists of only those nodes who

have signed the contract with their parent and the root node itself.

Propagation of reported signal starts from the leaf nodes. Each leaf

node reports its observation to its parent, then the parent “appropri-

ately” aggregates all the reports from its children to a single report

which becomes its observation (belief about the object). The exact

way of aggregation is discussed later. Then this parent also reports

back to its parent. Finally the root node receives reports from its

first level children and aggregates them to the final answer of the

query. Our objective is to make this final result close to a distribu-

tion which reflects the true type of the object concerned.

2.6 Reward Propagation
In step 1, only contract signing was involved and there was no

monetary transfer. Payment is done in a top-down manner starting

from the root node. It is not possible for the root node to reach

out to every node in the tree and make payment, so payment is

done in a decentralized manner where a node gets paid by only its

parent. When we make actual payments, we would like to do it in

a way that honest reporting results in more reward than dishonest

reporting. So, we have to ensure that for every parent node, all its

children are reporting truthfully. The payments are computed by

the parent using the scores received by the children based on their

reports. This is discussed later in detail.

We make the assumption about the network that one node can

be child of at most one parent, which prevents formation of any

cycle in the network. Under the above setting, the only source of

raw information is the leaf nodes, because parent nodes are only re-

sponsible for aggregating information received from their children.

But this restriction can be relaxed by making the following small

change to the setting. We assume every parent node also wants

to contribute information, and it does so by having a dummy child

which will report that information as perceived by the parent. The

only difference between this dummy child and any other child is

that a dummy child does not take part in contract signing and it

does not have to be rewarded by the parent, though during aggre-

gation of reports its report is taken into account.

3. TREE-BASED PEER PREDICTION

MECHANISM
We now describe the proposed tree-based peer-prediction mecha-

nism.

3.1 Reporting Scheme
Let S = {s1, s2, . . . , sM} be the set of signals that a node can

observe about the object’s type. The report by any node will be

a probability distribution on the set S. We denote the report of

i-th node by āi ∈ ∆(S). Let f(ā|t) > 0 denote the probabil-

ity density of a node reporting ā given that true type of the ob-

ject is t. So, we need following property to be satisfied: ∀t ∈
{1, 2, . . . , T},

∫

ā∈∆(S)
f(ā|t) = 1,

3.2 Payment Scheme
Let us consider any parent node having I children, indexed 1 to

I . We employ the peer-prediction method at each parent to ensure

truthful reporting by children. So, the score given to i-th child is

τi(āi, ār(i)) = R(ār(i)|āi)

where R(p|r) is a function derived from any strictly proper scoring

rule (such as given in Section 2.2) and r(i) is the reference function

given by r : {1, 2, . . . , I} → {1, 2, . . . , I}.

Theorem 1. The above mentioned payment ensures that all the

children reporting their true feedback is a strict Nash Equilibrium

when, for every parent,

• For any child x of that parent r(x) 6= x.

• If i is a child of this parent, f(āi|t) is a common knowledge

among the siblings of i.
• If i and j are any two children of this parent, and their observa-

tions are āi and āj , then āi is stochastically relevant for āj .

PROOF. Assume that, except the i-th child, all the other children

are truthful, and for any j-th child, its observation (either obtained

directly from the experience with the object or by aggregating ob-

servations of children) is given by āj . The i-th child reports b̄. As

āi is stochastically relevant for r(i)’s report, the expected payoff

for the i-th child will be

Eār(i)
[τ (b̄, ār(i))] =

∫

ār(i)∈∆(S)
R(ār(i)|̄b)g(ār(i)|āi) (1)

g(ār(i)|āi) denotes the probability that r(i) reports ār(i) given that

i has reported āi, and g(ār(i)|āi) can be computed with the knowl-

edge of f(ār(i)|t), f(āi|t) and p(t) for all t ∈ {1, 2, . . . , T}. RHS

of expression in Equation 1 can be written in the following form:
∫

x∈X
S(q(x))h(x)dx (2)

where x = ār(i), X = ∆(S), q(·) = g(·|̄b), h(·) = g(·|āi) and

R is such that S(q(x)) = R(ār(i)|̄b), and S is a strictly proper

scoring rule in continuous probability distribution of x (such as

given in Section 2.2). From the property of proper scoring rule,

we get
∫

x
S(q(x))h(x)dx is uniquely maximized when q(x) =

h(x),∀x ∈ X . Hence, the expected payoff will be uniquely maxi-

mized when b̄ = āi, i.e., when i-th child reports truthfully.

4. COMPUTATIONAL ISSUES
In this section, we discuss some computational issues and de-

velop computational procedures for calculating payments based on

the proposed tree-based peer-prediction mechanism. To recall, Ta-

ble 1 presents the relevant notation used in the paper.

4.1 Computation of g(ār(i)|āi)
For this computation, we can assume the index does not matter

i.e., g(āi|āj) does not depend on i or j, it only depends on the

values of āi and āj .

We calculate g(ā|̄b) as g(ā|̄b) =
∑T

t=1 f(ā|t)Pr(t|̄b) where

Pr(t|̄b) = f(b̄|t)p(t)

f(b̄)
and f(b̄) =

∑T

t=1 f(b̄|t)p(t)

4.2 Computation of f(ā|t)
This f(ā|t) is a common knowledge and it needs to satisfy

∫

ā∈∆(S)
f(ā|t) = 1 for all t because this quantity represents a
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Symbol Meaning

∆(S) Set of all possible probability distributions over signal set S

āi Report by agent i

ā, b̄ Elements from the set ∆(S)

p(t) Prior probability for the object to be of type t

f(ā|t) Probability density of reporting ā given that true type of object is t

r(i) Reference Rater of i-th child

Table 1: Important Notations

probability density function. We assumed that it follows Dirich-

let distribution. But the problem of directly using Dirichlet dis-

tribution is it assigns probability 0 to any event having 0 at some

component of ā, but some rater may prefer to assign zero probabil-

ity to some component(s) of their reported distribution. To avoid

this problem we first transform the probability vector ā to c̄ where

c̄i = eā
i

∑
M
j=1 eā

j where c̄i represents the ith component of c̄. This

mapping can easily be verified to be one-to one, and it ensures c̄ is

a probability distribution having all positive entries. The only place

where we need to use f(ā|t) is computation of g(ār(i)|āi), so here

we first transform both ār(i) and āi, then use them for calculation.

4.3 Computation of Scoring Rules
As we can see from the definitions in Section 2.2, computing the

strictly proper scoring rules involves two parts:

• Computation of q(x)

• Computation of
∫

x∈X
q2(x)dx

We will examine how to compute these terms in the next section.

4.3.1 Computation of q(x)
From the proof of Theorem 1, we know that q(x) = g(x|̄b).

q(x) = g(x|̄b) =
∑T

i=1

(
f(x|ti)Pr(ti|̄b)

)

=
∑T

i=1

[

f(x|ti)
( f(b̄|ti)p(ti)
∑T

i=1 f(b̄|ti)p(ti)

)

︸ ︷︷ ︸

Constant (denote as c(ti))

]

=
∑T

i=1 (f(x|ti)c(ti))

4.3.2 Computation of
∫

x∈X

q2(x)dx

∫

x∈X

q2(x)dx =
∫

x∈X

[
∑T

i=1 (f(x|ti)c(ti))
]2

dx

=
∫

x∈X

∑T

i=1 (f(x|ti)c(ti))
2 dx

+ 2
∫

x∈X

∑

i<j
(f(x|ti)f(x|tj)c(ti)c(tj)) dx

=
∑T

i=1

∫

x∈X

(
f2(x|ti)c

2(ti)
)
dx

+ 2
∑

i<j

∫

x∈X
(f(x|ti)f(x|tj)c(ti)c(tj)) dx

(3)

From our assumption, ∀i, f(x|ti) follows a Dirichlet distribution.

The expression for probability density function of a Dirichlet dis-

tribution is given by f(x|ti) =
1

B(αi)

(
∏K

i=1 x
αi
j−1

i

)

where αi is

a vector of length K which represents the parameters of Dirichlet

distribution f(x|ti) corresponding to type ti. α
i
j represents the jth

component of the vector αi. By the definition of Dirichlet distri-

bution, we need αi
j > 0, ∀i,∀j. Note that K represents the length

of the probability vector reported by a node in the network which

is also equal to the number of possible signals that can be observed

by the nodes in the network. B(αi) is the normalizing constant

which is defined to be the multinomial Beta function, which can be

expressed as B(αi) =

( ∏K
j=1 Γ(αi

j)

Γ(
∑

K
j=1 αi

j)

)

where Γ(·) is the Gamma

function. n is an integer and z is a complex number with a positive

real part. The (complete) gamma function Γ(n) is defined to be an

extension of the factorial to complex and real number arguments.

Substituting in Equation 3,

∫

x∈X
q2(x)dx =

∑T

i=1

((
c2(ti)

B2(αi)

) ∫

x∈X

(
∏K

j=1 x
(2×(αi

j−1))
j

)

dx

︸ ︷︷ ︸

(i)

)

+2
∑

i<j

(( c(ti)c(tj)

B(αi)B(αj)

) ∫

x∈X

(
∏K

k=1 x
(αi

k+α
j
k
−2)

k

)

︸ ︷︷ ︸

(ii)

dx
)

So, in order to compute the LHS, we need to evaluate (i) and (ii)
which are basically integrals over a (K − 1) dimensional simplex.

In order to do this, we will use some techniques from complex

analysis to get a closed form expression for (i) and (ii). To keep

the analysis simple, we will consider the case where K = 3 and

evaluate the integral
∫

x1

∫

x2

∫

x3

xα1−1
1 xα2−1

2 xα3
3 dx1dx2dx3 (4)

where α1, α2, α3 > 0 and (x1, x2, x3) ∈ X where X is the 2
dimensional simplex i.e., x1, x2, x3 ≥ 0 and x1 + x2 + x3 = 1.

It can been easily seen that (i) and (ii) can be basically reduced to

the above form (i.e., when K = 3) and hence, evaluating the above

integral will help us to evaluate
∫

x∈X

p2(x)dx which, in turn, solves

the problem of evaluating the quadratic and spherical scoring rules

given in Section 2.2.

4.3.3 Computation of
∫

x1

∫

x2

∫

x3

xα1−1
1 xα2−1

2 xα3
3 dx1dx2dx3

As noticed above, this computation requires an evaluation of an

integral over a simplex. We use some techniques from complex

analysis ([15]) to evaluate this integral. We define a Delta function

as follows δ(1−x1−x2−x3) = 1 if (1− x1 − x2 − x3 = 0), δ(1−
x1 − x2 − x3) = 0 otherwise

(4) =
∞∫

x1=0

∞∫

x2=0

∞∫

x3=0

xα1−1
1 xα2−1

2 xα3
3 δ(1−x1−x2−x3)dx1dx2dx3

We know that the delta function can be expressed as a Fourier trans-

position in the following way

δ(x) =
1

2π

∞∫

−∞

eiaxda where a is the Fourier variable

Applying this and simplifying, we get

(4) =
1

2π

∞∫

−∞

eia
∞∫

x1=0

xα1−1
1 eiax1dx1

∞∫

x2=0

xα2−1
2 eiax2dx2

∞∫

x3=0

xα3
3 eiax3dx3da

Making the substitution ia = −τ and simplifying we get

(4) =
1

2πi

i∞∫

−i∞

eτt
∞∫

x1=0

xα1−1
1 eiax1dx1

∞∫

x2=0

xα2−1
2 eiax2dx2

∞∫

x3=0

xα3
3 eiax3dx3dτ

∣
∣
∣
∣
∣
t=1

283



We know that Laplace Transform (LT) for a function f(t) is

L(f(t)) =
∞∫

0

f(t)e−stdt = F (s) where s is the L.T. variable

By substituting s = −ia where a is the Fourier variable, we get

(4) =
1

2πi

i∞∫

−i∞

eτtL
(

x
(α1−1)
1

)

L

(

x
(α2−1)
2

)

L

(

x
(α3)
3

)

dτ

∣
∣
∣
∣
∣
t=1

We know that L
(
pβ
)
= Γ(β+1)

sβ+1 where s is the L.T. variable. Sub-

stituting in the above expression and using the property of Gamma

functions namely Γ(β + 1) = (β × Γ(β)), we get

(4) = α3

∏3
i=1 Γ (αi)

1

2πi

i∞∫

−i∞

eτt
1

τα1+α2+α3+1
dτ

∣
∣
∣
∣
∣
t=1

︸ ︷︷ ︸

(a)

(a) can be identified as the inverse Laplace Transform of

F (τ ) = 1

τ(α1+α2+α3+1) . We know that

L
−1 (F (τ )) =

1

2πi

i∞∫

−i∞

eτtF (τ ) dτ

By using properties of Laplace Transforms, it can be shown that

L
−1

(
1

τ (α1+α2+α3+1)

)

=
1

Γ
(
1 +

∑3
i=1 αi

)

Substituting the above, we get the final expression for (4) as below

(4) =

((

α3
∑3

i=1 αi

)

×

(∏3
i=1 Γ (αi)

Γ
(∑3

i=1 αi

)

))

Note that the above result can be extended to any finite value of K.

4.4 Rank Order Aggregation of Answers
Our method ensures that every parent will truthfully report its

belief which is formed after aggregating reports from children. So,

a parent is free to use any aggregation method as long as it correctly

captures its true belief. The aggregation method used in our imple-

mentation is the following: While evaluating every child, the parent

assigns a score based on a continuous scoring rule to every child.

If this score is high it in some sense means that this current child’s

report is helping to make consensus among reports (since the ref-

erence of this child is selected randomly from other children). So,

we assign higher weightage to a report with higher score than a re-

port with a low score. One approach is to simply take the weighted

average based on the score values of all the reports. But there is

an issue that needs to be carefully handled. Some of the standard

scoring rules like the logarithmic and quadratic scoring rules can

provide scores which are negative. To circumvent this problem, we

generate a rank order among the children which is induced by the

scores generated. If there are m children whose reports need to

be aggregated, then the highest ranked child gets the highest rank

count of m, the next highest child gets a rank count of m − 1 and

so on. Now, we take a weighted average of the reports generated

by the children based on the squares of the rank counts of the chil-

dren. We do the squaring of the rank count in order to induce a

non-linear importance to the children. In general, any such mono-

tone function can be used for computing the rank counts of the

children. Thus, the resulting weighted average vector is guaranteed

to be a probability distribution as this vector is essentially obtained

by take linear combinations of probability vectors from a M − 1
dimensional simplex where M is the number of possible signals

that a node can observe. Note that the assumption of every node

(including parent nodes) contributing information and every parent

node having a dummy child ensures that every parent node has at

least two children. Hence it is always possible to find a reference

rater for every rater.

5. EXPERIMENTAL RESULTS

5.1 Setup
We assume a social network of size n which is modeled as a ran-

dom network with edge density γ. For all our simulations, we fix

n = 100, γ = 0.2. This means that there is a social network of 100
nodes which has roughly 20% of the possible edges in it. We des-

ignate a root node which acts as the mechanism designer interested

in an accurate answer to a query. The root has a budget amount

which it is willing to pay to its children. This is the total amount

of money distributed throughout the entire network. We call this

amount initialReward. As explained earlier, a tree sub-network is

generated from the social network starting with the root during the

contract signing phase. Basically, this tree consists of all the nodes

who are interested in providing an answer to the query of the root in

return for some payment promised by their corresponding parents.

We also define a quantity called confidence for every node ex-

cept the root node. This confidence denotes how certain a node is

about its answer for the query. We assume confidence is normally

distributed with mean µc and variance σ2
c . There is a threshold for

confidence denoted by tc, such that if a node has confidence greater

than or equal to tc then it prefers to answer by itself instead of for-

warding the query to its children, in which case it does not have

to share any reward with children. In order to simulate contract

signing, we assume every node has an expectation from its parent

which is modeled as a normal random variable with mean equal

to a parameter basicThrFee and variance which is inversely related

to the confidence of the node. We set basicThrFee = 50 in our

simulations. This ensures that the expectation amount of a node

monotonically increases with its confidence. When the amount of-

fered to a child node is greater than or equal to its expected amount

it signs the contract. The excess amount that a node has after sub-

tracting expected reward from reward promised by its parent node,

is, in turn, offered to its children. A node becomes a leaf node when

either it decides not to forward the query further or it does not have

enough excess reward to hire any children.

5.2 Parameters and Metrics
In all our simulations, we used T = 2 i.e., there are two types for

the object say High and Low, and M = 4 i.e S = {s1, s2, s3, s4}.

As explained earlier, S represents the possible signals that a node

can observe. So, every report ā is an element from ∆(S) (sim-

plex of dimension 3). We set p(High) = 0.7 and p(Low) = 0.3
which denotes the prior probabilities on the product type which is

assumed to be common knowledge. We assume there is a mapping

from set S to the set {High, Low}, such that corresponding to ev-

ery element in S there is a unique element in {High, Low}. We

assume, under this mapping, s1 and s2 correspond to High, and s3
and s4 correspond to Low. So, if the true type of the object is High

then the correct answer at the root would be a vector whose first

two components sum up to 1 and other two components are zero.

Similarly, for true type Low, the correct outcome would be a vector

whose last two components sum up to 1 and other two components

are zero.

With respect to report generation by the individual nodes, we

note that nodes in the tree network perceive the object with some

noise and this noise is assumed to follow multivariate normal dis-

tribution with mean [0, 0, 0, 0] and covariance matrix K ∗ nc ∗ I4,
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where I4 is the 4× 4 identity matrix, K is a constant denoting the

noise level and nc depends on the confidence of the node (the more

confident a node is the smaller will be the value of its nc).

We define a metric, prediction Accuracy ∈ [0, 1], as the sum

of the components of the final report received by the root node

corresponding to the true type. For example, if the true type is

High and the final answer received at the root is the distribution

[0.3, 0.4, 0.2, 0.1], then accuracy of this answer is 0.7.

In all our simulations, initialReward is increased from 100 to

1000 in steps of 100, next it is increased from 1000 to 10000 in

steps of 1000 and finally, 10000 to 100000 in steps of 10000. Due

to space constraints, we will provide only a selected portion of the

results. The rest of the results follow in fact exhibit similar trends.

5.3 Contract Signing
We vary initialReward to simulate the process of generation of

a tree keeping other parameters fixed. We set µc = 0.5, σc =
0.5, tc = 0.8. We generate 1000 tree samples for every value of

initialReward and measure the average of these three quantities:

total number of nodes, number of leaf nodes and height of the tree.

We provide 95% confidence interval (CI) guarantees on the plotted

values. The details are shown in Figure 2. As per intuition, we

can observe that all these three parameters are monotonically in-

creasing with initialReward. This is due to the fact that if the root

node has more budget then it can (i) hire more children and/or (ii)

give higher amount of money to each child so that the children in

turn can form larger subtrees. This relationship between the size

of the network and budget (also termed as initialReward in the rest

of the paper) can help the mechanism designer (i.e., the root node)

to get an estimate of the total number of participants who might be

willing to undertake the task. We now examine the important simu-

lation parameters and metrics which are relevant to the information

generation and aggregation process on the generated tree network

of participating nodes.

Figure 2: Growth of the tree with initialReward

5.4 Information and Reward Propagation
First, we increase initialReward keeping other parameters fixed.

We set µc = 0.5, K = 1. We run our simulations for various

values of initialReward as explained earlier. For every value of ini-

tialReward, we simulate the three steps mentioned in Section 2.3.

We run the tree generation (or contract signing), information prop-

agation and reward propagation 1000 times and take the average

of the predictionAccuracy at each run. As we are dealing with ran-

dom processes, we need to compute the confidence interval for each

(initialReward, predictionAccuracy) pair. Figure 3(a) plots the pre-

dictionAccuracy obtained for different values of initialReward (or

budget) for (σc = 0.1). Note that this figure is a double axis plot

with a main outer axis and an inner inset axis. The outer axis plots

values of predictionAccuracy for initialReward from 100 to 10000.

However, as the behavior at lower values is not clearly observable

from this plot, we use the inner inset axis to zoom in to the range

of low initialReward values from 100 to 1000. Figure 3(b) is also

plotted in a similar way but changing the variance (σc = 0.2) pa-

rameter of the confidence random variable. We now make the fol-

lowing some observations based on these figures.

• As observed from the outer axis of the two figures, the predic-

tionAccuracy initially increases with initialReward and saturates

for higher values of initialReward. The saturation can be at-

tributed due to the noise perceived by the nodes of the network

which is representative of the inherent ‘wisdom’ of the social

network of the mechanism designer.

• The predictionAccuracy level is higher for higher value of σc for

some fixed value of initialReward. This is observed clearly for

lower initialReward values as given in the inset figures of Fig-

ure 3(a) and Figure 3(b). This observation can be explained as

follows. We keep the threshold for not hiring children tc fixed.

So, as σc increases, there will be more number of nodes not hav-

ing any children by choice. These nodes will report all by them-

selves and the noise present in their report is less as their con-

fidence high. The predictionAccuracy of the answer is higher

when number of such nodes is higher. Thus, when the crowd is

heterogeneous i.e., there are both experts and laypersons in the

crowd, increasing initialReward causes higher increase in pre-

dictionAccuracy than in case of a homogeneous crowd.

• The rate of increase of predictionAccuracy with initialReward is

high when σc is high for lower initialReward values as shown in

the inset figures of Figure 3(a) and Figure 3(b). We have seen

that number of nodes in the tree is monotonic in initialReward

(Figure 2). So, when the root has low initialReward, the total

number of nodes in the tree is low. Thus, there is an increased

risk for the root and there is a good chance that a fair percentage

of nodes are reporting with high noise and the quality of the final

answer is low. This risk will increase when σc is high. But when

total number of nodes is larger effect of higher σc diminishes

resulting in reduced risk and predictionAccuracy increases.

• It requires more initialReward to saturate predictionAccuracy

when σc is higher. This indicates that more investment is re-

quired on the part of root node to get optimal solution when the

heterogeneity in the crowd is more.

• All the three scoring rules behave similarly in terms of predic-

tionAccuracy. As explained earlier, the aggregation by the par-

ent node depends on the rank orders induced by the scoring rules

and the similarity in performance can be attributed to obtaining

similar rank orders during the aggregation by the parent nodes

after the children send their reports to the parent. The similarity

of rank order observation has also be seen in several empirical

studies (For eg:,Bickel [13]) where it has been reported that all

three scoring rules yielded similar rankings when averaged over

several assessment tasks.

We now provide detailed results for two initialReward values namely

200 (low budget) and 10000 (high budget) in Table 2. We can make

the following observations from the table.

• Lower initialReward value results in lower predictionAccuracy

as there is not enough participation from the nodes.

• Another interesting observation is that for a fixed initialReward

and fixed σc, it can be observed that the three rules behave sim-

ilarly in terms of predictionAccuracy. However, on a closer ob-

servation, we see that the predictionAccuracy of logarithmic and

spherical rules are higher than that of the quadratic rule. Hence,

as a design choice, it may be better to choose spherical scoring

rule since spherical rule has the property that the scores gen-

erated are guaranteed to be non-negative unlike the logarithmic

scoring where the scores can be unbounded below.
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(a) (b)

Figure 3: Change of predictive accuracy with initialReward with varying degree of skills.
Figure 4: Change of predictive accu-

racy with noise level

Initial Continuous Confidence Pred Acc. Pred. Acc. 95% CI

Reward Scoring Rule (Std. Dev. ) (Mean) (Std. Dev.)

200

Logarithmic

0.10 0.0501 0.1824 [ 0.0388, 0.0614 ]

0.20 0.4748 0.3244 [ 0.4547, 0.4949 ]

0.30 0.6415 0.1968 [ 0.6293, 0.6537 ]

Quadratic

0.10 0.0503 0.1831 [ 0.0390, 0.0617 ]

0.20 0.4731 0.3237 [ 0.4531, 0.4932 ]

0.30 0.6370 0.1996 [ 0.6246, 0.6494 ]

Spherical

0.10 0.0501 0.1824 [ 0.0388, 0.0614 ]

0.20 0.4747 0.3245 [ 0.4546, 0.4948 ]

0.30 0.6414 0.1966 [ 0.6292, 0.6536 ]

Initial Continuous Confidence Pred Acc. Pred. Acc. 95% CI

Reward Scoring Rule (Std. Dev. ) (Mean) (Std. Dev.)

10000

Logarithmic

0.10 0.7004 0.0555 [ 0.6970, 0.7039 ]

0.20 0.7181 0.0696 [ 0.7138, 0.7225 ]

0.30 0.7498 0.0899 [ 0.7442, 0.7553 ]

Quadratic

0.10 0.6923 0.0594 [ 0.6886, 0.6960 ]

0.20 0.7118 0.0725 [ 0.7073, 0.7163 ]

0.30 0.7407 0.0948 [ 0.7348, 0.7466 ]

Spherical

0.10 0.7003 0.0556 [ 0.6968, 0.7037 ]

0.20 0.7180 0.0697 [ 0.7137, 0.7223 ]

0.30 0.7496 0.0899 [ 0.7441, 0.7552 ]

Table 2: Comparison among different scoring rules [ Number of Samples: 1000]

• We also observe that the standard deviation of the predictionAc-

curacy is higher for low values of initialReward. At low budgets,

there may be many runs of the simulations where no nodes will

be willing to participate and in such runs, the predictionAccuracy

is given a value of zero. However, due the the underlying random

nature of the expectation amount of the nodes, the root node may

be able to hire some nodes even at a low budget in some runs of

the simulations. In such runs, we will get a much better value

of predictionAccuracy which explains the high variance of the

samples. At higher budget value of 10000 (which represents the

saturated region as shown in Figure 3), the standard deviation is

low as the budget is enough to hire enough nodes to achieve a

very good predictionAccuracy in all runs of the simulation.

5.5 Tolerance to Noise
Next, we vary the noise level by changing the value of K, and

study the effect on the predictionAccuracy for fixed value of initial-

Reward. We vary K from 1 to 4 in steps of 0.5 keeping all other

parameters fixed, and we repeat the same experiment with three dif-

ferent values of initialReward. The result is shown in Figure 4. We

observe that increase in the noise level of the environment results

in reducing the predictionAccuracy which is on expected lines.

6. DISCUSSION
The Nash equilibrium discussed in Section 3 is not a unique equi-

librium. Also, in our analysis, the effect of collusion among nodes

was not considered. If the scenario is such that one child does not

know about the identities of other children or their communication

is limited then the chance of collusion is reduced. But in order to

ensure there is no collusion we can either: (a) design a payment

mechanism where honest reporting is the unique Nash equilibrium,

or (b) design a payment scheme where honest reporting is Pareto-

optimal Nash equilibrium, so that some of the colluding agents will

receive less payoff than what he would have received in honest re-

porting equilibrium. So, designing collusion resistant mechanism

is an interesting task. It would also be interesting to study the pro-

posed mechanism using real-world crowdsourcing networks.
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