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ABSTRACT
Nash equilibrium (NE) assumes that players always make a
best response. However, this is not always true; sometimes
people cooperate even it is not a best response to do so.
For example, in the Prisoner’s Dilemma, people often coop-
erate. We consider two solution concepts that were intro-
duced recently that try to capture such cooperation in two-
player games: perfect cooperative equilibrium (PCE) (and
an extension called maximum PCE (M-PCE)) [8] and the
coco value [11]. We show that, despite their definitions be-
ing quite different, these notions are closely related, both in
terms of axiomatization and algebraic characterization. We
also consider the problem of computing how well players do
when they cooperate according to these solution concepts,
and show that in both cases in polynomial time. In the case
of the coco value, this follows easily from the definition; in
the case of the corresponding M-PCE value, it follows from
a theorem showing that bilinear programming for a class of
2 × 2 matrices is in constant time, a result that may be of
independent interest.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Theory

Keywords
Cooperative equilibrium, PCE, M-PCE, coco value, game
theory, cooperation

1. INTRODUCTION
Standard solution concepts in game theory such as Nash

equilibrium assume that players are self-interested, and are
out to get the highest possible payoffs for themselves. How-
ever, they are not very good at predicting behavior in games
with an element of cooperation such as Prisoner’s Dilemma,
Traveler’s Dilemma [2, 3], or the Centipede Game [14]. In
this paper, we consider two solution concepts that seem to

provide better predictions in such games: perfect coopera-
tive equilibrium (PCE) (and an extension called maximum
PCE (M-PCE)) [8] and the coco (cooperative-competitive)
value, introduced by Kalai and Kalai [11]. Although the
definitions of the two notions are quite different on the sur-
face, they often make similar predictions. In this paper, we
explain this phenomenon by providing an axiomatic charac-
terization of the M-PCE value of a game (the payoff that
players obtain when they play an M-PCE), and show that
it is closely related to the axiomatic characterization of the
coco value given by Kalai and Kalai [11]. We also provide
an algebraic characterization of the the M-PCE value and
coco value in terms of some standard parameters of the game
(specifically, the maximum social welfare obtainable in the
game and the minimax value of the game), again showing
how closely related they are.

There is a subtlety involved in making this comparison:
the definition of coco value implicitly assumes that utility
transfers are possible in the game; that is, a player can make
a side payments to the other player, and players value these
payments the same way (that is, they are implicitly equating
utility with money). Side payments are not assumed when
defining M-PCE. In order to make for a better comparison,
we provide a general technique, which may be of indepen-
dent interest, for converting a 2-player game without side
payments into one with side payments. We also show that
such games have a unique M-PCE value: that is, there is a
unique payoff that players get when playing an M-PCE.

Finally, we turn to complexity-theoretic considerations.
It follows easily from the characterizations that computing
the coco value can be done in time polynomial in the de-
scription of the game (specifically, in time polynomial in the
number of strategies available in the game). This is also true
for the M-PCE value in games of transferable utility. Com-
puting the strategies that give the coco value is also easy.
Essentially, this is because the coco value is obtained by
playing the strategies that give the maximum social welfare
and then making side payments. Computing the strategies
that give the M-PCE value in a game with side payments is
easy as well. However, computing the strategies that give a
PCE (if one exists) or an M-PCE in a general game is not
so straightforward. We show that these can be computed
in polynomial time in 2-player games by using ideas from
bilinear programming [1, 15]. A key ingredient of our argu-
ment is a proof that bilinear programming for a class of 2×2
matrices is solvable in constant time, a result that may be
of independent interest.

The rest of the paper is organized as follows. In Section 2,
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we review PCE, M-PCE, and the coco value, and compare
them in a number of games of interest. In Section 3, we
compare M-PCE with the coco value, using both algebraic
and axiomatic characterizations. In Section 4, we prove that
both a PCE and an M-PCE can be computed in polynomial
time in two-player games using bilinear programming. We
conclude in Section 5.

We remark that although our focus here is on PCE and the
coco value, there have been a number of attempts to model
cooperation; see [4, 5, 6, 9, 10, 12, 16, 18]. Moreover, other
solution concepts, such as iterated regret minimization [7],
while not intended to model cooperation, often produce re-
sults similar to PCE. We discuss this work in the full paper,
which can be found at www.cs.cornell.edu/home/halpern/
papers/CoopEq.pdf. Omitted proofs can also be found there.

2. PCE, M-PCE, AND COCO VALUE: A RE-
VIEW

In this section, we review PCE, α-PCE, and M-PCE [8]
and the coco value [11]. Kalai and Kalai define the coco
value only for 2-player Bayesian games. We defined PCE
and its variants for arbitrary normal-form games, but the
definition is best motivated for 2-player games. Thus, in
this paper, we consider only 2-player normal-form games,
and review the definition only for that case.

Formally, a two player game has the form (A, u), where
A = A1 ×A2, Ai is a finite set of possible actions for player
i, u = (u1, u2), and ui is player i’s utility function, that is,
ui(a1, a2) is player i’s utility or payoff if the action profile
a = (a1, a2) is played. Players are allowed to randomize.
A strategy of player i is thus a distribution over actions
in Ai; let Si represent the set of player i’s strategies. Let
Ui(s1, s2) denote player i’s expected utility if the strategy
profile s = (s1, s2) is played. Given a profile x = (x1, x2),
let x−i denote the strategy of the player other than i.

2.1 PCE and M-PCE

Definition 1. Given a game G, a strategy si for player i in
G is a best response to a strategy s−i for the other player if
Ui(si, s−i) = sups′i∈Si

Ui(s
′
i, s−i). Let BRG

i (s−i) be the set

of best responses to s−i in game G. We omit the superscript
G if the game is clear from context.

Definition 2. Given a two-player game G, let BU G
i denote

the best utility that player i can obtain if the other player j
best responds; that is,

BU G
i = sup

{si∈Si,sj∈BRG(si)}
Ui(s).

(As usual, we omit the superscript G if it is clear from con-
text.)

We defined PCE for two-player games as follows [8].

Definition 3. A strategy profile s is a perfect cooperative
equilibrium (PCE) in a two-player game G if for all i ∈
{1, 2}, we have

Ui(s) ≥ BU G
i .

We showed [8] that PCE has a number of attractive prop-
erties. For example, in the Prisoner’s Dilemma, cooperation
is a PCE, as is any mixed strategy that guarantees both

players a payoff of at least what they would get if they de-
fected. More generally, players do at least as well in a PCE
as they do in any NE of the game. Unfortunately, it eas-
ily follows from this that a PCE does not always exist (see
Example 1 below).

Motivated in part by this observation, we considered α-
PCE, a more quantitative version of PCE that intuitively
takes into account the degree of cooperation exhibited by a
strategy profile.

Definition 4. A strategy profile s is an α-PCE in a game
G if Ui(s) ≥ α + BU G

i for all i ∈ N . [8]

Definition 5. The strategy profile s is an maximum-PCE
(M-PCE) in a game G if s is an α-PCE and for all α′ > α,
there is no α′-PCE in G.[8]

It is easy to see that every game is guaranteed to have
an M-PCE. Moreover, the M-PCE does well at predicting
behavior in quite a few games of interest [8]. For example,
in the Prisoner’s Dilemma, cooperation gives the unique M-
PCE. We consider other example shortly.

2.2 The coco value
The coco value is computed by decomposing a game into

two components, which can be viewed as a purely coopera-
tive component and a purely competitive component. The
cooperative component is a team game, a game where both
players have identical utility matrices, so that both play-
ers get identical payoffs, no matter what strategy profile is
played. The competitive component is a zero-sum game,
that is, one where if player 1’s payoff matrix is A, then
player 2’s payoff matrix is −A.

As Kalai and Kalai [11] observe, every game G can be
uniquely decomposed into a team game Gt and a zero-sum
game Gz, where if (A,B), (C,C), and (D,−D) are the
utility matrices for G, Gt, and Gz, respectively, then A =
C+D and B = C−D. Indeed, we can take C = (A+B)/2
and D = (A − B)/2. We call Gt the team game of G and
call Gz the zero-sum game of G.

The minimax value of game G for player i, denoted mmi(G),
is the payoff player i gets when the opponent is minimizing
i’s maximum payoff; formally,

mm1(G) = min
s2∈S2

max
s1∈S1

U1(s1, s2);

mm2(G) is defined similarly, interchanging 1 and 2.
We are now ready to define the coco value. Given a game

G, let a be the largest value obtainable in the team game Gt

(i.e., the largest value in the utility matrix for Gt), and let
z be the minimax value1 for player 1 in the zero-sum game
Gz. Then the coco value of G, denoted coco(G), is

(a + z, a− z).

Note that the coco value is attainable if utilities are transfer-
able: the players simply play the strategy profile that gives
the value c in Gt; then player 2 transfers z to player 1 (z
may be negative, so that 1 is actually transferring money
to 2). Clearly this outcome maximizes social welfare. Kalai
and Kalai [11] argue that it is also fair in an appropriate
sense.
1We use minimax rather than maximin (recall that
maxmini(G) = maxsi∈Si minsj∈Sj Ui(s)) although they are
equal in zero-sum games, because minimax characterizes the
M-PCE value even in non-zero-sum games, while maximin
does not.
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2.3 Examples
The coco value and M-PCE value are closely related in a

number of games of interest, as the following examples show.

Example 1. The Nash bargaining game [13]: In the Nash
bargaining game, each of two players suggests a number
of cents between 0 and 100. If their total demand is no
more than a dollar, then they each get what they asked
for; otherwise, they both get nothing. Each pair (x, y) with
x+y = 100 is a NE. There is clearly no strategy profile that
gives both players a higher It easily follows that the Nash
bargaining game has no PCE.

Clearly, the largest payoff obtainable in the team game
corresponding to the Nash Bargaining game is (50, 50). Since
the game is symmetric, the minimax value of each player in
the zero-sum game is 0. Thus, the coco value of the Nash
bargaining game is (50, 50); it is also the unique M-PCE
value [8]. To see this, observe that in the Nash bargaining
game, BU 1 = BU 2 = 100, so the best α-PCE that can be
obtained is a 50-PCE, which is obtained when both players
ask for 50.

Example 2. Prisoner’s Dilemma: In the Prisoner’s Dilemma,
two prisoners can choose either to defect or cooperate with
payoffs as shown in the following table:

Cooperate Defect
Cooperate (3,3) (0,5)

Defect (5,0) (1,1)

Although the only NE here is (Defect, Defect), people often
do play (Cooperate, Cooperate).

Clearly, the largest payoff obtainable in the team game
corresponding to Prisoner’s Dilemma (given the payoffs shown
in the Introduction) is (3, 3). Since the game is symmet-
ric, again, the minimax value in the corresponding zero-sum
game is 0. Thus, the coco value is (3, 3). Again, this is the
unique M-PCE value [8]: it is easy to see that for Prisoner’s
Dilemma with these payoffs, BU 1 = BU 2 = 1, so by both
cooperating, the players have a 2-PCE, which is clearly also
an M-PCE.

Example 3. Traveler’s Dilemma: In the Traveler’s Dilemma
[2, 3], two travelers have identical luggage, for which they
both paid the same price. Their luggage is damaged (in an
identical way) by an airline. The airline offers to recompense
them for their luggage. They may ask for any dollar amount
between $2 and $100. There is only one catch. If they ask for
the same amount, then that is what they will both receive.
However, if they ask for different amounts—say one asks for
$m and the other for $m′, with m < m′—then whoever asks
for $m (the lower amount) will get $(m+2), while the other
traveler will get $(m − 2). A little calculation shows that
the only NE in the Traveler’s Dilemma is (2, 2).

Clearly, the largest payoff obtainable in the team game
corresponding to the Traveler’s Dilemma is (100, 100). And
again, since the game is symmetric, the minimax value for
each player in the zero-sum game is 0. Thus, the coco value
is (100, 100). Again, this is also the unique M-PCE value
[8].

As the next example shows, there are games in which the
coco value and M-PCE value differ.

Example 4. The centipede game: In the Centipede game
[14], players take turns moving, with player 1 moving at
odd-numbered turns and player 2 moving at even-numbered
turns. There is a known upper bound on the number of
turns, say 20. At each turn t < 20, the player whose move it
is can either stop the game or continue. At turn 20, the game
ends if it has not ended before then. If the game ends after
an odd-numbered turn t, then the payoffs are (2t + 1, 2t−1);
if the game ends after an even-numbered turn t, then the
payoffs are (2t−1, 2t + 1). Thus, if player 1 stops at round
1, player 1 gets 3 and player 2 gets 1; if player 2 stops at
round 4, then player 1 gets 8 and player 2 gets 17; if player
1 stops at round 5, then player 1 gets 33 and player 2 gets
16. If the game stops at round 20, both players get over
500,000. The key point here is that it is always better for
the player who moves at step t to end the game than it is
to go on for one more step and let the other player end the
game. Using this observation, a straightforward backward
induction shows the best response for a player if he is called
upon to move at step t is to end the game. Not surprisingly,
the only Nash equilibrium has player 1 ending the game right
away with a very low payoff profile (1, 3). But, in practice,
people continue the game for quite a while.

It can be computed that, in this game, BU 1 = 219 +
3×218

3×218+1
and BU 2 = 218 + 3×217

3×217+1
. Thus, any strategy

profile s where U1(s) ≥ BU 1 and U2(s) ≥ BU 2 is a PCE. A
straightforward computation shows that the unique M-PCE
s∗ in this game is one where player 1 plays through round 20
with probability β, and stops at round 19 with probability
1 − β, while player 2 plays through round 20, where β =

1
3×218+2

− 3×217

(3×218+2)(3×218+1)(3×217+1)
. This gives the M-

PCE value (219+1−β, 218+(3×218+1)β) ≈ (219+1, 218+1).
It is easy to see that the largest payoff obtainable in the

team game corresponding to the centipede game is ( 219+220+1
2

,
219+220+1

2
): both players play to the end of the game and

split the total payoff. It is also easy to compute that, in
the zero-sum game corresponding to the centipede game,
player 1’s minimax value is 1, while player 2’s minimax
value is −1, obtained when both players quit immediately.

Thus, the coco value is ( 219+220+1
2

+ 1, 219+220+1
2

− 1) =

( 219+220+3
2

, 219+220−1
2

). This value is not achievable without
side payments, and is higher than the M-PCE value.

Although, as the centipede game shows, the coco value
and the M-PCE value may differ, it is worth noting that the
coco value of a game is the sum of the M-PCE values of its
decomposed games. Clearly the largest payoff obtainable in
Gt is the unique M-PCE value of Gt, since it is the unique
Pareto-optimal payoff; moreover, the unique M-PCE value
of a zero-sum game can easily be shown to be the payoffs in
NE, which are given by the minimax values.

But we can say more. Part of the problem in the centipede
game is that the computation of the coco value assumes that
side payments are possible. The M-PCE value does not take
into account the possibility of side payments. Indeed, once
we extend the centipede game to allow side payments in an
appropriate sense, it turns out that the coco value and the
M-PCE value are the same. To do a fairer comparison of
the M-PCE and coco values, we consider games with side
payments, which we define in the next section.
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3. CHARACTERIZING THE M-PCE AND
COCO VALUES

In this section, we characterize M-PCE and coco values
using two approaches: first algebraically, then axiomatically.
The characterizations help clarify the relationship between
the two notions.

As we have observed, the coco value makes sense only if
players can make side payments. Intuitively, it is best to
think of the outcome of the game being expressed in dol-
lars, assume that money can be transferred between the two
players, and that each player values money the same way
(so if player 1 transfers $5 to player 2, then player 1’s util-
ity decreases by 5, while player 2’s increases by 5).2 The
ability to make side payments is not explicitly modeled in
the description of the games considered by Kalai and Kalai
[11]. Since the M-PCE value calculation does not assume
side payments are possible, we do need to explicitly model
this possibility if we want to do a reasonable comparison of
the M-PCE value and coco value.

3.1 Two-player games with side payments
In this subsection, we describe how an arbitrary two-

player game without payments can be transformed into a
game with side payments. There is more than one way of
doing this—we focus on one, and briefly discuss a second
alternative. Our procedure may be of interest beyond the
specific application to coco and M-PCE. We implicitly as-
sume throughout that outcomes can be expressed in dollars
and that players value the dollars the same way. The idea
is to add strategies to the game that allow players to pro-
pose “deals”, which amount to a description of what strat-
egy profiles should be played and how much money should
be transferred. If the players propose the same deal, then
the suggested strategy profile is played, and the money is
transferred. Otherwise, a “backup” action is played.

Given a two-player game G = ({1, 2}, A, u), let G∗ =
({1, 2}, A∗, u∗) be the game with side payments extending
G, where A∗ and u∗ are defined as follows. A∗ extends A
by adding a collection of actions that we call deal actions.
A deal action for player i is a triple of the form (a, r, a′i) ∈
A×IR×Ai. Intuitively, this action proposes that the players
play the action profile a and that player 1 should transfer r
to player 2; if the deal is not accepted, then player i plays
a′i. Given this intuition, it should be clear how u∗ extends
u. For action profiles a ∈ A, u∗(a) = u(a). For profiles
actions a ∈ (A∗1 − A1) × (A∗2 − A2), the players agree on
a deal if they both propose a deal strategy with the same
first two components (a, r). In this case they play a and r is
transferred. Otherwise, players just play the backup action.
More precisely, for a, a′ ∈ A, bi ∈ Ai, and r, r′ ∈ IR:

• u∗(a) = u(a);

• u∗1((a, r, b1), (a, r, b2)) = u1(a)− r;
u∗2((a, r, b1), (a, r, b2)) = u2(a) + r;

• u∗((a, r, b1), (a
′, r′, b2)) = u(b1, b2) if (a, r) 6= (a′, r′);

• u∗((a, r, b1), b2) = u∗(b1, (a
′, r′, b2)) = u(b1, b2).

As usual, players are allowed to randomize, and a strategy
of player i in G∗ is a distribution over actions in A∗i ; let S∗i
2Without the assumption that players value money the same
way, the intuition behind the coco value breaks down.

represent the set of player i’s strategies. Let U∗i (s) denote
player i’s expected utility if the strategy profile s ∈ S∗ is
played. We call G∗ the game with side payments extending
G, and call G the game underlying G∗.

Intuitively, when both players play deal actions, we can
think of them as giving their actions to a trusted third party.
If they both propose the same deal, the third party ensures
that the deal action is carried out and the transfer is made.
Otherwise, the appropriate backup actions are played.

In our approach, we have allowed players to propose ar-
bitrary backup actions in case their deal offers are not ac-
cepted. We also considered an alternative approach, where
if a deal is proposed by one of the parties but not accepted,
then the players get a fixed default payoff (e.g., they could
both get 0, or a default strategy could be played, and the
players get their payoff according to the default strategy).
Essentially the same results as those we prove hold for this
approach as well; see the end of Section 3.2.

3.2 Algebraic characterization
At first glance, the coco value and the M-PCE value seem

quite different, although both are trying to get at the no-
tion of cooperation. However, we show below that both have
quite similar characterizations. In this section, we charac-
terize the two notions algebraically, using two similar formu-
las involving the maximum social welfare and the minimax
value. In the next section, we compare axiomatic character-
izations of the notions.

Before proving our results, we first show that, although
they are different games, G and G∗ agree on the relevant
parameters (recall that G∗ is the game with side payments
extending G). Let MSW (G) be the maximum social welfare
of G; formally, MSW (G) = maxa∈A(u1(a) + u2(a)).

Lemma 1. For all two-player games G, MSW (G) = MSW (G∗)
and mmi(G

∗) = mmi(G), for i = 1, 2.

This proof (and all further omitted proofs) can be found
in the full paper.

We now characterize the coco value.

Theorem 2. If G is a two-player game, then coco(G) =

(MSW (G)+mm1(Gz)−mm2(Gz)
2

, MSW (G)−mm1(Gz)+mm2(Gz)
2

).3 More-
over, coco(G) = coco(G∗).

Proof. It is easy to see that the Pareto-optimal payoff

profile in Gt is (MSW (G)
2

, MSW (G)
2

). Thus, by definition,

coco(G)

= (MSW (G)
2

, MSW (G)
2

) + (mm1(Gz),mm2(Gz))

= (MSW (G)+2mm1(Gz)
2

, MSW (G)+2mm2(Gz)
2

)

= (MSW (G)+mm1(Gz)−mm2(Gz)
2

, MSW (G)−mm1(Gz)+mm2(Gz)
2

).

The last equation follows since Gz is a zero-sum game, so
mm1(Gz) = −mm2(Gz).

The fact that coco(G) = coco(G∗) follows from the char-
acterization of coco(G) above, the fact that MSW (G) =
MSW (G∗) (Lemma 1), and the fact that (Gz)

∗ = (G∗)z,
which we leave to the reader to check.

3Note that mm1(Gz) = −mm2(Gz) by von Neumann’s min-
imax theorem [17] (which says that in every two-player zero-
sum games, there is an equilibrium where both players play
a minimax strategy). We write the expression in the form
above to better compare it to the M-PCE value.
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The next theorem provides an analogous characterization
of the M-PCE value in two-player games with side payments.
It shows that in such games the M-PCE value is unique
and has the same form as the coco value. Indeed, the only
difference is that we replace mmi(Gz) by mmi(G).

Theorem 3. If G is a two-player game, then the unique
M-PCE value of the game G∗ with side payments extending

G is (MSW (G)+mm1(G)−mm2(G)
2

, MSW (G)−mm1(G)+mm2(G)
2

).

Proof. We first show that BU G∗
1 = MSW (G)−mm2(G)

and BU G∗
2 = MSW (G)−mm1(G). For BU G∗

1 , let a∗ be an
action profile in G that maximizes social welfare, that is,
U1(a

∗) + U2(a
∗) = MSW (G), and let (s′1, s

′
2) be a strat-

egy profile in G such that s′2 ∈ BRG(s′1) and U2(s
′
1, s

′
2) =

mm2(G). (Thus, by playing s′1, player 1 ensures that player
2 can get no more utility than mm2(G), and by playing
s′2, player 2 ensures that she does get utility mm2(G) when
player 1 plays s′1.)

Let s = (s1, s2) be such that, in s1, player 1 plays deal
action (a∗,mm2(G)− u2(a

∗), a′1) with the same probability
that she plays a′1 in s′1 (where s′1 is as defined above) for
all a′1 ∈ A1; and s2 = (a∗,mm2(G) − u2(a

∗), a2) for some
fixed a2 ∈ A2. Intuitively, s1 does the following: if player 2
agrees to the deal in s1, then a∗ is carried out, and player
1 transfers mm2(G)− u2(a

∗) to player 2; otherwise player 1
plays the mixed strategy s′1. s2 is a deal action that agrees to
s1. Thus, U∗1 (s) = u1(a

∗)− (mm2(G)− u2(a
∗)) = U1(a

∗) +
u2(a

∗) − mm2(G) = MSW (G) − mm2(G), and U∗2 (s) =
mm2(G). On the other hand, if player 2 plays an action
a2 ∈ A2, then

U∗2 (s1, s2) = U2(s
′
1, a2) ≤ U2(s

′) = mm2(G).

Thus, player 2 gets at most mm2(G) when player 1 plays s1,

so s2 ∈ BRG∗
2 (s1). This shows that BU G∗

1 ≥ MSW (G) −
mm2(G).

To see that BU G∗
1 ≤ MSW (G) − mm2(G), consider a

strategy profile s′′ = (s′′1 , s′′2 ) ∈ S∗ with s′′2 ∈ BRG∗
2 (s′′1 ).

Since mm2(G
∗) = mm2(G), it follows that U∗2 (s′′) ≥ mm2(G).

Since MSW (G∗) = MSW (G) by Lemma 1, it follows that
U∗1 (s′′) + U∗2 (s′′) ≤ MSW (G). Thus, U∗1 (s′′) ≤ MSW (G)−
mm2(G), so BU G∗

1 ≤ MSW (G)−mm2(G). Thus, BU G∗
1 =

MSW (G)−mm2(G), as desired.

The argument that BU G∗
2 = MSW (G)−mm1(G) is sim-

ilar.
Now suppose that we have a strategy s+ ∈ S∗ such that

U1(s
+) ≥ BU G∗

1 + α and U∗2 (s+) ≥ BU G∗
2 + α. Since

MSW (G∗) = MSW (G), it follows that BU 1(G
∗)+BU 2(G

∗)+
2α ≤ MSW (G). Plugging in our characterizations of BU 1(G

∗)
and BU 2(G

∗), we get that α ≤ −MSW (G)+mm1(G)+mm2(G)
2

.

Taking β = −MSW (G)+mm1(G)+mm2(G)
2

, we now show that we
can find a β-PCE. It follows that this must be an M-PCE.

Let a∗ be the action profile in G defined above that max-
imizes social welfare, and let a′ ∈ A. Let s+ = (s+

1 , s+
2 ),

where s+
1 = (a∗, u1(a

∗) − MSW (G)+mm1(G)−mm2(G)
2

, a′1) and

s+
2 = (a∗, u1(a

∗) − MSW (G)+mm1(G)−mm2(G)
2

, a′2). It is also

easy to check that U1(s
+) = MSW (G)+mm1(G)−mm2(G)

2
, and

U2(s
+) = MSW (G)−mm1(G)+mm2(G)

2
.

It can also easily be checked that Ui(s
+) = BU i + β for

i = 1, 2, so s+ is indeed a β-PCE. Therefore, s+ is an M-
PCE, and its value is an M-PCE value, as desired. Since

U1(s
+) + U2(s

+) = MSW (G), it follows that the M-PCE
value is unique.

As Theorems 2 and 3 show, in a two-player game G∗ with
side payments, the coco value and M-PCE value are charac-
terized by very similar equations, making use of MSW (G∗)
and minimax values. The only difference is that coco value
uses the minimax value of the zero-sum game Gz, while the
M-PCE value uses minimax value of G. It immediately fol-
lows from Theorem 2 and 3 that the coco value and the
M-PCE value coincide in all games where

mm1(Gz)−mm2(Gz) = mm1(G)−mm2(G).

Such games include team games, equal-sum games (games
with a payoff matrices (A, B) such that A + B is a constant
matrix, all of whose entries are identical), symmetric games
(games where the strategy space is the same for both players,
that is, S1 = S2, and U1(s1, s2) = U2(s2, s1) for all s1, s2 ∈
S1), and many others.

We can also use these theorems to show that the M-PCE
value and the coco value can differ, even in a game where
side payments are allowed, as the following example shows.

Example 5. Let G be the two-player game described by
the payoff matrix below, and let G∗ be the game with side
payments extending G.

a b
c (3,2) (1,0)

Let player 1 be the row player, and player 2 be the column
player. It is easy to check that MSW (G) = 5, mm1(G) = 1,
and mm2(G) = 2, Thus, by Theorem 11, the M-PCE value
of G∗ is ( 5+1−2

2
, 5−1+2

2
) = (2, 3). On the other hand, it is

easy to check that coco(G) = coco(G∗) = (3, 2).
It seems somewhat surprising that the M-PCE here should

be (2, 3), since player 1 gets a higher payoff than player 2
no matter which strategy profile in G is played. Moreover,
BU G

1 = 3 and BU G
2 = 2. But things change when transfers

are allowed. It is easy to check that it is still the case that
BU G∗

1 = 3; if player 1 plays c, then player 2’s best response
is to play a. But BU G∗

2 = 4; if player 2 plays ((c, a), 2, b),
offering to play (c, a), provided that player 1 transfers an
additional 2, then player 1’s best response is to agree (for
otherwise player 2 plays b), giving player 2 a payoff of 4.
The possibility that player 2 can “threaten” player 1 in this
way (even though the moves are made simultaneously, so no
actual threat is involved) is why mm2(G) ≥ mm1(G).

We conclude this subsection by considering what happens
if a default strategy profile is used instead of backup actions
when defining games with side payments. Let the default
payoffs be (d1, d2). Then a similar argument to that above
shows that the M-PCE value becomes

„
MSW (G) + d1 − d2

2
,
MSW (G)− d1 + d2

2

«
.

Thus, rather than using the minimax payoffs in the formula,
we now use the default payoffs. Note that if the default
payoffs are (0, 0), then the M-PCE amounts to the players
splitting the maximum social welfare. We leave the details
to the reader.
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3.3 Axiomatic comparison
In this section, we provide an axiomatization of the M-

PCE value and compare it to the axiomatization of the coco
value given by Kalai and Kalai [11]. Before jumping into
the axioms, we first explain the term “axiomatize” in this
context. Given a function f : A → B, we say a set AX
of axioms axiomatizes f in A, if f is the unique function
mapping A to B that satisfies all axioms in AX. Recall that
every two-player normal form game has a unique coco value.
We can thus view the coco value as a function from two-
player normal form games to IR2. Therefore, a set AX of
axioms axiomatizes the coco value if the coco value is the
unique function that maps from the set to IR2 that satisfies
all the axioms in AX.

Kalai and Kalai [11] show that the following collection of
axioms axiomatizes the coco value. We describe the axioms
in terms of an arbitrary function f . If f(G) = (a1, a2), then
we take fi(G) = ai, for i = 1, 2.

1. Maximum social welfare. f maximizes social wel-
fare: f1(G) + f2(G) = MSW (G).

2. Shift invariance. Shifting payoffs by constants leads
to a corresponding shift in the value. That is, if c =
(c1, c2) ∈ IR2, G = ({1, 2}, A, u) and Gc = ({1, 2}, A, uc),
where uc

i (a) = ui(a) + ci for all a ∈ A, then f(Gc) =
(f1(G) + c1, f2(G) + c2).

3. Monotonicity in actions. Removing an action of
a player cannot increase her value. That is, if G =
({1, 2}, A1×A2, u), and G′ = ({1, 2}, A′1×A2, u|A′1×A2),

where A′1 ⊆ A1, then f1(G
′) ≤ f1(G), and similarly if

we replace A2 by A′2 ⊆ A2.

4. Payoff dominance. If, for all action profiles a ∈ A,
a player’s expected payoff is strictly larger than her
opponent’s, then her value should be at least as large
as the opponent’s. That is, if ui(a) ≥ uj(a) for all
a ∈ A, then fi(G) ≥ fj(G).

5. Invariance to replicated strategies. Adding a mixed
strategy of player 1 as a new action for her does not
change the value of the game; similarly for player 2.
That is, if G = ({1, 2}, A1 × A2, u), t ∈ S1, and G′ =
({1, 2}, A′1 × A2, u

′), where A′1 = A1 ∪ {t}, u′(t, a2) =
U(t, a2) for all a2 ∈ A2, and u′(a) = u(a) for all a ∈ A
(so that G′ extends G by adding to A1 one new ac-
tion, which can be identified with a mixed strategy in
S1). Then f(G) = f(G′). The same holds if we add a
strategy to A2.

Theorem 4. [11] Axioms 1-5 characterize the coco value in
two-player normal-formal games.4

Proof. See [11].

Note that, following Kalai and Kalai [11], we have stated
the axioms for the coco value in terms of the underlying

4Kalai and Kalai actually consider Bayesian games in their
characterization, and have an additional axiom that they
call monotonicity in information. This axiom trivializes in
normal-form games (which can be viewed as the special case
of Bayesian games where players have exactly one possible
type). It is easy to see that their proof shows that Axioms
1-5 characterizes the coco value in normal-form games.

game G. Since, as we have argued, Kalai and Kalai are as-
suming there are side payments, we might consider stating
the axioms in terms of G∗. We could certainly replace all
occurrences of fi(G) by fi(G

∗); nothing would change if we
did this, since, by Theorem 2, coco(G) = coco(G∗). But
we could go further, replacing G, A, and u uniformly by
G∗, A∗, and u∗. For example, Axiom 1 would say f1(G

∗) +
f2(G

∗) = MSW (G∗); Axiom 2 would say that f((G∗)c) =
(f1(G

∗) + c1, f2(G
∗) + c2). It is not hard to check that the

resulting axioms are still sound. Moreover, for all axioms
but Axiom 4 (payoff dominance), the resulting axiom is es-
sentially equivalent to the original axiom. (In the case of
shift invariance, this is because (G∗)c = (Gc)∗.) However,
the version of Axiom 4 for G∗ is vacuous. No matter what
the payoffs are in G, it cannot be the case that a player’s
expected payoff is larger than his opponent’s for all actions
in G∗, since players can always agree to a deal action that
results in the opponent getting a large transfer. Thus, we
must express payoff dominance in terms of G in order to
prove Theorem 4.

We now characterize the M-PCE value axiomatically. The
M-PCE value of G is not equal to that of G∗ in general.
Since we want to compare the M-PCE value and coco value,
it is most appropriate to consider games with side payments.
Thus, in the axioms, we write fi(G

∗) rather fi(G). We start
by considering the extent to which the M-PCE value satisfies
the axioms above for coco value (with fi(G) replaced by
fi(G

∗), a change which, as we noted, has no impact for coco
value). Example 5 shows that the M-PCE value does not
satisfy payoff dominance. The following result shows that it
satisfies all the remaining axioms.

Theorem 5. The function mapping 2-player games with
side payments to their (unique) M-PCE value satisfies max-
imum social welfare, shift invariance, monotonicity in ac-
tions, and invariance in replicated strategies.

Proof. We consider each property in turn:

• The fact that the function satisfies maximum social
welfare is immediate from the characterization in The-
orem 3.

• It is easy to see that MSW (Gc) = MSW (G)+ c1 + c2,
mm1(G

c) = mm1(G)+ c1 and mm2(G
c) = mm2(G)+

c2. It then follows from Theorem 3 that the M-PCE
value of (Gc)∗ is the result of adding c to the M-PCE
value of G∗.

• Let G′ be as in the description of Axiom 3 (Mono-
tonicity in actions). It is almost immediate from the
definitions that MSW (G′) ≤ MSW (G), mm1(G

′) ≤
mm1(G), and mm2(G

′) ≥ mm2(G). The result now
follows from Theorem 3.

• Let G′ be the result of adding a replicated action to S1,
as described in the statement of Axiom 5 (Invariance to
replicated strategies). Clearly MSW (G′) = MSW (G),
mm1(G

′) = mm1(G), and mm2(G
′) = mm2(G). Again,

the result now follows from Theorem 3.

Our goal now is to axiomatize the M-PCE value in games
with side payments. Since the M-PCE value and the coco
value are different in general, there must be a difference
in their axiomatizations. Interestingly, we can capture the
difference by replacing payoff dominance by another simple
axiom:
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6. Minimax dominance. If a player’s minimax value
is no less than her opponent’s minimax value, then
her value is no less than her opponent’s. That is, if
mmi(G) ≥ mmj(G), then fi(G

∗) ≥ fj(G
∗).

It is immediate from Theorem 3 that the M-PCE value
satisfies minimax dominance; Example 5 shows that the coco
value does not satisfy it. We now prove that the M-PCE
value is characterized by axioms 1, 2, and 6. (Although ax-
ioms 3 and 5 also hold for the M-PCE value, we do not need
them for the axiomatization.) Interestingly, for all these ax-
ioms, we can replace G, A, and u by G∗, A∗, and u∗ to get
an equivalent axiom; it really does not matter if we state
the axiom in terms of G or G∗ (although the argument to f
must be G∗).

Theorem 6. Axioms 1, 2, and 6 characterize the M-PCE
value in two-player games with side payments.

Proof. Theorem 5 shows that the M-PCE value satisfies
axioms 1 and 2. As we observed, the fact that the M-PCE
value satisfies axiom 6 is immediate from Theorem 3.

To see that the M-PCE value is the unique mapping that
satisfies axioms 1, 2, and 6, suppose that f is a mapping
that satisfies these axioms. We want to show that f(G∗) is
the M-PCE value for all games G. So consider an arbitrary
game G such that the M-PCE value of G∗ is v = (v1, v2).
By shift invariance, the M-PCE value of (G−v)∗ is (0, 0). By
axiom 1, MSW (G) = v1 + v2. and MSW (G−v) = 0. Note
that it follows from Theorem 3 that 0 = MSW (G−v) +
mm1(G

−v)−mm2(G
−v). Since MSW (G−v) = 0, it follows

that mm1(G
−v) = mm2(G

−v). Suppose that f((G−v)∗) =
(v′1, v

′
2). By axiom 1, we must have v′1 + v′2 = 0. By axiom

6, since mm1(G
−v) = mm2(G

−v), we must have v′1 = v′2.
Thus, f((G−v)∗) = (0, 0). By shift invariance, f(G∗) =
f((G−v)∗) + v = (v1, v2), as desired.

Again, we conclude this subsection by considering what
happens if a default payoff is used instead of backup ac-
tions when defining games with side payments. It is still the
case that the M-PCE value satisfies axioms 1, 2, 3, and 5,
and does not satisfy axiom 4 (payoff dominance). To get
an axiomatization of the M-PCE value in such games with
side payments, we simply need to change the minimax dom-
inance axiom to a default value dominance axiom: if the
default value of a player is no less than the default value
of the opponent, then the player’s value is no less than the
opponent’s value. Thus, variations in the notion of games
with side payments lead to straightforward variations in the
characterization of the M-PCE value.

4. THE COMPLEXITY OF COMPUTING A
COOPERATIVE EQUILIBRIUM

In this section, we consider the complexity of computing
the M-PCE value and the coco value, and the corresponding
strategy profiles.

It follows easily from the characterization in Theorem 2
that in a two-player game G with (or without) side pay-
ments, the coco value is determined by MSW (G), mm1(Gz),
and mm2(Gz). Gz can clearly be determined from G in poly-
nomial time (polynomial in the number of strategies), and
MSW (G) can be determined in polynomial time (simply by
inspecting the payoff matrix for G). It can be proved that
the minimax value of a game can be computed in polynomial

time. (See the full paper for details.) Thus, the coco value
can be computed in polynomial time. Moreover, if (c1, c2)
is the coco value of G, and s∗ is a pure strategy profile that
obtains MSW (G), the strategy profile that gives players the
coco value is ((s∗, U1(s

∗) − c1), (s
∗, U1(s

∗) − c1)), which is
simply the deal strategy profile in which both players agree
to play s∗, and agree that player 1 pays player 2 (U1(s

∗)−c1)
so that they eventually get (c1, c2).

Similarly, we can compute an M-PCE in a two-player
game with side payments in polynomial time.

Theorem 7. In a two-player game G∗ with side payments,
we can compute the M-PCE value and a strategy profile that
obtains it in polynomial time.

Proof. Let G be the game underlying G∗. By Theo-
rem 3, the M-PCE value of G is determined by MSW (G),
mm1(G), and mm2(G). It can be proved that the mini-
max value of a two-player game can be computed in poly-
nomial time using linear programming (see the full paper
for details). It then follows that the M-PCE value can be
computed in polynomial time.

Let the M-PCE value be (m1, m2), and let s∗ be a pure
strategy profile that obtains MSW (G). Then the following
must be an M-PCE: ((s∗, U1(s

∗) −m1), (s
∗, U1(s

∗) −m1)),
which is simply the deal strategy profile in which both play-
ers agree to play s∗, and agree that player 1 pays player 2
U1(s

∗)−m1 so that they eventually get payoffs (m1, m2) –
their M-PCE value.

Moving to arbitrary games (not necessarily ones with side
payments), it is much less obvious how the M-PCE value
or the strategies that achieve it can be computed efficiently.
We now show that in two-player games (without side pay-
ments), a PCE can be found in polynomial time if one exists;
moreover, determining whether one exists can also be done
in polynomial time. Similarly, in two-player games, an M-
PCE can always be found in polynomial time. The first
step in the argument involves showing that in two-player
games, for all strategy profiles s, there is a strategy profile
s′ = (s′1, s

′
2) that Pareto dominates s such that both s′1 and

s′2 have support at most two pure strategies (i.e., they give
positive probability to at most two pure strategies). We
then show that both the problem of computing a PCE and
an M-PCE can be reduced to solving a polynomial number
of “small” bilinear programs, each of which can be solved in
constant time. This gives us the desired polynomial time
algorithm for PCE and M-PCE. We then use similar tech-
niques to show that a Pareto-optimal M-PCE, and thus a
CE, can be found in polynomial time,

Notation: For a matrix A, let AT denote A transpose, let
A[i, ·] denote the ith row of A, let A[·, j] denote the jth
column of A, and let A[i, j] be the entry in the ith row, jth
column of A. We say that a vector x is nonnegative, denoted
x ≥ 0, if its all of its entries are nonnegative.

We start by proving the first claim above. In this discus-
sion, it is convenient to identify a strategy for player 1 with
a column vector in IRn, and a strategy for player 2 with a
column vector in IRm. The strategy has a support of size at
most two if the vector has at most two nonzero entries.

Lemma 8. In a two-player game, for all strategy profiles
s∗, there exists a strategy profile s′ = (s′1, s

′
2) that Pareto

dominates s∗ such that both s′1 and s′2 have support of size
at most two.
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The rest of the section makes use of bilinear programs.
There are a number of slightly different variants of bilinear
programs. For our purposes, we use the following definition.

Definition 6. A bilinear program P (of size n × m) is a
quadratic program of the form

maximize xT Ay + xT c + yT c′

subject to xT B1y ≥ d1

B2x = d2

B3y = d3

x ≥ 0
y ≥ 0,

where A and B1 are n×m matrices, x, c ∈ IRn, y, c′ ∈ IRm,
B2 is a k× n matrix for some k, and B3 is a k′ ×m matrix
for some k′. P is simple if B2 and B3 each has one row,
which consists of all 1’s. (Thus, in a simple bilinear program,
we have a bilinear constraint xT B1y ≥ d1, non-negativity
constraints on x and y, and constraints on the sum of the
components of the vectors x and y; that is, constraints of
the form

Pn
i=1 x[i] = d′ and

Pm
j=1 y[j] = d′′.)

Lemma 9. A simple bilinear program of size 2 × 2 can be
solved in constant time.

We can now give our algorithm for finding a PCE. The
idea is to first find BU 1 and BU 2, which can be done in
polynomial time. We then use Lemma 8 to reduce the prob-
lem to (n

2 )(m
2 ) = O(n2m2) smaller problems, each of a which

is a simple bilinear program of size 2×2. By Lemma 9, each
of these smaller problems can be solved in constant time,
giving us a polynomial-time algorithm.

Theorem 10. Given a two-player game G = ({1, 2}, A, u),
we can compute in polynomial time whether G has a PCE
and, if so, we can compute a PCE in polynomial time.

The argument that an M-PCE can be found in polynomial
time is very similar.

Theorem 11. Given a two-player game G = ({1, 2}, A, u),
we can compute an M-PCE in polynomial time.

5. CONCLUSION
In this paper, we considered two solution concepts that

are intended to capture cooperative behavior: PCE (and
M-PCE) and the coco value. As we show, M-PCE value
and the coco value coincide in many games of interest. We
examined the two solution concepts by characterizing them
both algebraically and axiomatically. Our characterizations
shows that, despite the apparent differences in their defini-
tions, the two notions are closely related. In the process,
we define a technique for converting a 2-player normal-form
game to a game with side payments. The fact that these two
notions turn out to be so similar gives us hope that they are
getting at deep intuitions regarding cooperation.

We also consider the complexity of the two notions. In
both two-player games with and without side payments, we
show that the coco value and its corresponding strategy pro-
file can be computed in polynomial time. While the same
holds for M-PCE in games with side payments, it is far from
obvious in games without side payments. We used bilinear
programming to show that in two-player games without side
payments, both a PCE and an M-PCE can be computed in
polynomial time. We also show that bilinear programming
for a class of 2× 2 matrices is solvable in constant time.
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