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ABSTRACT
Multi-winner elections model scenarios where voters must
select a fixed-size group of candidates based on their indi-
vidual preferences. In such scenarios, it is often the case
that voters are incentivized to manipulate, i.e. misreport
their preferences in order to obtain a better outcome. In
this paper, we study the complexity of manipulating multi-
winner elections under scoring rules, with a particular focus
on the role of tie-breaking rules. We consider both lexi-
cographic tie-breaking rules, which break ties according to
a fixed ordering of the candidates, and a natural random-
ized tie-breaking rule. We describe polynomial-time manip-
ulation algorithms for several special cases of our problem.
Specifically, we show that finding a successful manipulation
is easy if the underlying voting rule is k-Approval or the
number of candidates to be elected is bounded by a con-
stant (for both types of tie-breaking rules), as well as if the
manipulator’s utility function only takes values in {0, 1} and
the ties are broken in the manipulator’s favor.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; F.2 [Theory of Computation]: Analysis of Al-
gorithms and Problem Complexity

Keywords
voting, multi-winner elections, tie-breaking rules

1. INTRODUCTION
Preference aggregation is an important component of collec-
tive decision-making, and has been actively studied by the
multi-agent research community in recent years. It is usu-
ally assumed that each agent’s preferences are represented
by a ranking of all available alternatives, and the agents
aim to select a single alternative. However, there are also
settings where the goal is to choose a fixed-size set of al-
ternatives. Perhaps the most natural example of such a
scenario is provided by parliamentary elections, where the
voters need to choose a fixed-size assembly that will repre-
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sent them in the best possible way. There are a number of
voting rules that have been designed for this purpose, such
as Single Transferable Vote (see, e.g., [1]), the Chamberlin–
Courant scheme [6], or the Monroe scheme [15]. The first
of these rules proceeds by iterative elimination, while the
second and third rule are based on the idea of proportional
representation.

However, there are many other settings where the agents
need to choose multiple winners, and the voting rules de-
signed for parliamentary elections may not be suitable for
them. Consider, for instance, what happens when a uni-
versity department advertizes several faculty positions: the
applicants are the candidates, the members of the hiring
committee are the voters, each voter has a ranking of the
candidates, but the desiderata for the voting procedure may
be quite different from those that arise in the context of
voting for the members of parliament. Another example
is selecting the recipients of a student fellowship: there is a
fixed number of fellowships to be allocated, and the selection
committee members rank the candidates, but the fellowship
recipients need not “represent” the voters. Yet another ex-
ample is a movie recommendation system [11], where the
aim is to select a set of movies for a prospective user based
on the recommendations (i.e., votes) of other users. In fact,
the “voters” need not be human: the input to the voting
rule may consist of rankings of the candidates according to
several different objective criteria, which play the role of
voters (consider, e.g., university rankings, where the criteria
may include research output, student satisfaction, and ex-
ternal funding). In many of these applications, it is natural
to select the winning set by using a simple score-based pro-
cedure: each candidate receives a certain number of points
from each voter, which is determined by his position in this
voter’s ranking, and the winners are the top ` candidates
according to the total score (where ` is the number of can-
didates to be selected). Such voting procedures are easy
to implement and understand, and they are often used in
practice in scenarios such as the ones described above.

Just as single-winner elections, multi-winner elections are
susceptible to manipulation: a voter may try to misrepre-
sent his preferences to improve the election outcome from
his perspective (we remark that it is not trivial to define
“improvement” in the context of multi-winner elections; we
discuss this issue in detail in Section 2). For single-winner
elections, this problem is known to be pervasive: the classic
result of Gibbard and Satterthwaite [12, 19] states that in
general, if a voting rule is not susceptible to manipulation, it
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is trivial in the sense that it does not depend on the agents’
preferences or does so in a very limited manner.

Bartholdi et al. [2] suggested that one can try to circum-
vent this issue by taking an algorithmic perspective, i.e.,
checking if a successful manipulation can be found in polyno-
mial time. Since then, computational complexity of voting
manipulation has been explored for many single-winner vot-
ing rules, in a variety of settings (single-voter vs. coalitional
manipulation, weighted vs. unweighted votes), see [10, 9]
for an overview. Multi-winner elections are susceptible to
manipulation, too, and, just like for single-winner elections,
it is natural to ask if a manipulative vote is easy to find.
Indeed, there are a few papers that consider this problem,
both for proportional representation rules [18, 13, 4] and for
score-based procedures [14].

Now, somewhat paradoxically, voting rules that are typ-
ically used for single-winner elections may fail to output a
single winner: e.g., if a rule works by assigning scores to can-
didates, there may be several candidates with the top score,
so the resulting tie needs to be broken; a similar issue may
arise in the context of multi-winner elections. To the best of
our knowledge, all of the existing results on the complexity
of manipulating multi-winner voting rules depend on the as-
sumption that ties among the candidates are broken either in
the manipulator’s favor or adversarially to the manipulator;
this is also the assumption made by Bartholdi et al. [2] (and
much of the subsequent literature) for single-winner rules.
However, this assumption is not as innocuous as it may seem:
for single-winner rules, it has recently been shown that the
choice of the tie-breaking rule may strongly affect the com-
putational complexity of voting manipulation [17, 16]. One
of the goals of this paper is to explore if this is also the case
for multi-winner voting rules.

1.1 Our Contribution
We focus on multi-winner voting procedures that are based
on scoring rules; this class of rules has been previously con-
sidered by Meir et al. [14]. We consider two types of tie-
breaking rules: lexicographic rules, which break ties accord-
ing to a predetermined ordering of the candidates, and a
natural randomized rule. For both types of rules, we iden-
tify a number of settings where the manipulator’s problem is
polynomial-time solvable. In particular, we describe efficient
algorithms for this problem for three different scenarios:

(1) the underlying voting rule is k-Approval (this result
holds for both types of tie-breaking rules);

(2) the number of candidates to be elected is bounded
by a constant (this result holds for both types of tie-
breaking rules, but the algorithm for the randomized
rule is significantly more complicated);

(3) the manipulator’s utility function (see Section 2 for the
definition of the manipulator’s utility) is binary (our
algorithm for this scenario only works when ties are
broken in the manipulator’s favor).

1.2 Related Work
Our work builds on an important paper of Meir et al. [14],
who study the problem of manipulating a multi-winner elec-
tion, for several types of voting rules and under the assump-
tion that ties are broken adversarially to the manipulator.
Just as Meir et al., we model the manipulator’s preferences

by means of a utility function, i.e., we assume that the ma-
nipulator assigns a numeric utility to each candidate and
seeks to maximize his overall utility. The most significant
difference between our work and that of Meir et al. is that
we investigate a much broader range of tie-breaking rules.
Also, Meir et al. mainly focus on approval-like scoring rules,
while we consider general scoring rules.

Another line of research that is closely related to our work
deals with the role of tie-breaking in single-winner elections.
This research agenda was initiated by Obraztsova et al. [17,
16]; some of their results were later extended by Zucker-
man and Rosenschein [21]. In particular, our polynomial-
time algorithm for manipulating an arbitrary scoring rule
under randomized tie-breaking, under the assumption that
the number of winners in bounded by a constant, is a direct
(though non-trivial) extension of the algorithm for scoring
rules that was proposed in [17].

There are several ways of defining a successful manipula-
tion under a multi-winner rule; the utility-based approach
is by far not the only one. This issue is discussed by Slinko
and White [20] in the context of proportional representation
rules, as well as by Meir et al. [14] for score-based rules.

2. PRELIMINARIES
An election is given by a set of voters V = {v1, . . . , vn},
a set of candidates C = {c1, . . . , cm}, and a vector R =
(R1, . . . , Rn), where each Ri, i = 1, . . . , n, is a linear order
over C; we write E = (V,C,R). Ri is called the preference
order (or, vote) of voter vi, and the vector R = (R1, . . . , Rn)
is called a preference profile. For readability, we will some-
times denote Ri by �i. When a �i b for some a, b ∈ C, we
say that voter vi prefers a to b. We denote by r(cj , Ri) the
rank of candidate cj in the preference order Ri: r(cj , Ri) =
|{c ∈ C | c �i cj}| + 1. We denote by R−i the preference
profile that lists the preferences of all voters other than vi:

R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn).

A voting correspondence F is a mapping that, given a pref-
erence profile R over C, selects a non-empty set of winners
F(R) ⊆ C. A voting rule is a voting correspondence that
outputs a unique winner for each preference profile. Voting
correspondences can be transformed into voting rules using
tie-breaking rules. A tie-breaking rule T for a voting corre-
spondence F is a mapping that, given a preference profile
R and the set S = F(R), outputs a single winner c ∈ S.
There are two types of tie-breaking rules that are usually
considered in the literature on single-winner elections: lex-
icographic tie-breaking rules and the uniformly random tie-
breaking rule. A lexicographic tie-breaking rule is given by
an ordering � over C: given a set S = F(R), it selects the
candidate c such that c � c′ for all c′ ∈ S \ {c}. The uni-
formly random tie-breaking rule selects each candidate in
S = F(R) with probability 1/|S|. For brevity, we will call
this tie-breaking rule the randomized tie-breaking rule.

Many different types of voting correspondences are used in
practice and have been studied in the social choice literature.
In this paper, we focus on a class of voting correspondences
known as scoring rules. A scoring rule for a set of candidates
C, |C| = m, is specified by a vector of real numbers ~α =
(α1, . . . , αm) that satisfies α1 ≥ · · · ≥ αm ≥ 0; we denote the
rule that corresponds to a vector ~α by F~α. Under this rule,
a candidate receives αj points from each voter who ranks
him in position j. A candidate’s score is his total number of
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points, and the winners are the candidates with the highest
score. As we are interested in asymptotic complexity results,
we will consider families of scoring rules, i.e., collections
of the form F = (F~αj )j≥1, where ~αj = (αj1, . . . , α

j
j). We

assume that the entries of each ~αj , j ≥ 1, are non-negative
integers, and that, given j, we can compute ~αj in polynomial
time. Classic examples of (families of) scoring rules include
Borda, which is given by ~αj = (j − 1, . . . , 1, 0), Plurality,
which is given by ~αj = (1, 0, . . . , 0), and k-Approval, which
is given by αj` = 1 if ` = 1, . . . , k and αj` = 0 otherwise. For
a given k ≥ 1, we denote the family of scoring rules that
corresponds to k-Approval by Fk.

2.1 Voting for a Committee
We consider settings where the voters’ goal is to elect not
just a single winner, but a committee of size `. If we want to
use a scoring rule for these purposes, it is natural to choose
the ` candidates with the highest score. However, we may
still need to break ties. Suppose, for instance, that ` = 3 and
we have two candidates whose score is 10 and two candidates
whose score is 9. Clearly, the candidates whose score is 10
should be elected no matter what, but we need to choose one
of the candidates whose score is 9. We will now explain how
to do this using a lexicographic or randomized tie-breaking
rule. We present our framework for scoring rules; however,
it can be used for any voting correspondence that works by
assigning scores to candidates and selecting the candidates
with the highest score (this class includes such classic vot-
ing correspondences as Copeland, Maximin, or Bucklin; see,
e.g., [1] for the definitions of these rules).

Fix a scoring rule F~α with ~α = (α1, . . . , αm) and an
election E = (V,C,R) with |C| = m. Given a candidate
c ∈ C, let sc denote c’s score in E under F~α. We say
that candidates c and c′ are on the same level if sc = sc′ .
There are p ≤ m levels, denoted H1, . . . , Hp; we set s(Hj)
to be the score of the candidates in Hj , and assume that
s(H1) > · · · > s(Hp). Let Wj = ∪jq=1Hq. If |Wj | ≤ `, then
the tie-breaking rule does not apply to Wj : all candidates
in Wj are elected irrespective of the tie-breaking rule. For-
mally, let j0 = max{j | |Wj | ≤ `} and set W = Wj0 . The
set W is called the confirmed set: these are the candidates
who will definitely be in the elected committee. The set
P = Hj+1 is called the pending set: these are the candidates
to which we must apply the tie-breaking rule. Note that
|H1| > ` implies W = ∅ and P = H1, and |W| = ` implies
P = ∅. For single-winner elections (` = 1) we obtain P = ∅
if |H1| = 1 and P = H1 otherwise. Let `′ = ` − |W|. The
lexicographic tie-breaking rule associated with the ordering
� selects top `′ candidates from the set P according to �.
The randomized tie-breaking rule selects `′ candidates from
P uniformly at random.

2.2 Utilities and Manipulation
The outcomes of a multi-winner election are sets of can-
didates. Therefore, knowing a voter’s preference order is
insufficient to determine how this voter would compare two
different election outcomes. For instance, if C = {a, b, c, d},
` = 2, and vi’s preference order is a �i b �i c �i d, it is not
clear if vi would prefer {a, d} to {b, c}. To deal with this
difficulty, we assume that for each voter vi ∈ V we are given
a utility function ui : C → Z: ui(c) is the utility that vi
assigns to candidate c. We assume that ui is consistent with
�i, i.e., c �i c′ implies ui(c) ≥ ui(c

′) for all c, c′ ∈ C. Note

that this inequality is not strict: we allow a voter to assign
the same utility to two distinct candidates even though �i is
required to be a strict order. The utility function can be ex-
tended to sets of candidates by setting ui(S) =

∑
c∈S ui(c).

When randomized tie-breaking is employed, the relevant
measure of vi’s utility is his expected utility, which can be
computed as follows. Given an election E and a target com-
mittee size `, let W be the confirmed set, and let P be the
pending set. Let Ts(P) denote the random variable that
takes values in the space of all s-subsets of P, with each
subset being equally likely. Given a variable ξ, let E[ξ] de-
note its expectation. Then vi’s utility in E is

ui(W) + E[
∑

c∈T`′ (P)

ui(c)],

where `′ = `− |W|.
A voter may want to manipulate an election with respect

to a given voting rule, i.e., misrepresent his preferences so
that the election outcome under this rule improves from his
perspective. In single-winner elections the improvement is
usually determined with respect to the manipulator’s prefer-
ences order, i.e., a manipulation is deemed successful if the
outcome of non-truthful voting is ranked higher than the
outcome of truthful voting in the manipulator’s preference
order. The computational social choice literature often uses
a somewhat different model: it is assumed that the manip-
ulator wants to make a specific candidate p elected, and a
manipulation is considered successful if this candidate is the
election winner. The advantage of the latter model is that
it is easy to extend to voting correspondences: in the unique
winner variant of the manipulation problem, the manipula-
tor succeeds if p is the unique election winner, whereas in
the co-winner variant the manipulator succeeds if p is among
the election winners.

This model can be further extended to multi-winner elec-
tions under lexicographic tie-breaking: one can assume that
the manipulator has a preferred committee S, |S| = `, and
the manipulation is successful if and only if the election out-
come is exactly S. However, this approach assumes that
the manipulator is extremely inflexible, i.e., he will not be
satisfied unless the elected committee exactly matches his
vision. Further, it is not clear how to interpret it in the con-
text of randomized tie-breaking, where the election outcome
is a random variable (this issue arises even for single-winner
elections, and is discussed by Obraztsova et al. [16, 17]).
Therefore, in our work we choose a different model. Namely,
we measure the manipulator’s satisfaction by his utility (or,
in case of randomized tie-breaking, his expected utility): we
ask if the manipulator can vote so that his (expected) util-
ity exceeds a given threshold q; this approach was previously
used by Meir et al. [14] in the context of multi-winner elec-
tions and by Obraztsova et al. [16, 17] in the context of
randomized tie-breaking. We remark that this utility-based
framework can be used to model the single-minded manip-
ulator discussed earlier in this paragraph, by assigning a
utility of 1 to all candidates in S and a utility of 0 to all
other candidates, and setting q = `.

We are now ready to define the computational problems
associated with manipulating a multi-winner election un-
der lexicographic or randomized tie-breaking with respect
to a family of scoring rules F = (F~αj )j≥1; we will refer
to these problems as F-LexMultManipulation and F-
RandMultManipulation, respectively. To simplify no-
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tation, we always assume that the manipulator is the last
voter, i.e., vn, and write un(c) = u(c).

An instance of F-LexMultManipulation is given by an
election E = (V,C,R) with |C| = m, a committee size `,
a preference order �, the manipulator’s utility function u :
C → Z, which satisfies u(c) ≥ u(c′) if and only if c �n c′,
and a non-negative rational number q. It is a “yes”-instance
if there exists a vote L such that the manipulator’s utility in
the election (V,C, (R−n, L)) is at least q, assuming that the
winning committee is selected by applying F and breaking
ties lexicographically according to �. Otherwise, it is a“no”-
instance.

Similarly, an instance of F-RandMultManipulation is
given by an election E = (V,C,R) with |C| = m, a com-
mittee size `, the manipulator’s utility function u : C → Z,
which satisfies u(c) ≥ u(c′) if and only if c �n c′, and a non-
negative rational number q. It is a “yes”-instance if there
exists a vote L such that the manipulator’s expected utility
in (V,C, (R−n, L)) is at least q, assuming that the winning
committee is selected by applying F and using the random-
ized tie-breaking rule. Otherwise, it is a “no”-instance.

3. K-APPROVAL
For k-Approval, we can efficiently solve the manipulator’s
problem under both lexicographic and randomized tie-break-
ing.

Theorem 3.1. The problems Fk-LexMultManipulati-
on and Fk-RandMultManipulation can be decided in
polynomial time for every k ≥ 1.

Proof. Fix a k ≥ 1. Consider a (n − 1)-voter election
E′ = (V \ {vn}, C,R−n). Let P ′ and W ′ be, respectively,
the pending set and the confirmed set in E′. Set X ′ =
C \ (P ′∪W ′). Let s+ be the lowest k-Approval score among
the candidates inW ′ (set s+ = +∞ ifW ′ = ∅), let s− be the
highest k-Approval score among the candidates in X ′ (set
s− = −∞ if X ′ = ∅), and let s be the k-Approval score of the
candidates in P ′ (if P ′ = ∅, s remains undefined). LetW ′− ⊆
W ′ be the set of candidates whose k-Approval score is s+,
and let X ′+ ⊆ X ′ be the set of candidates whose k-Approval
score is s−; also, set W ′+ = W ′ \ W ′− and X ′− = X ′ \ X ′+.
Note that s− < s+, and if P ′ 6= ∅, we have s− < s < s+.

LetE be the election obtained after the manipulator votes,
and suppose that in E the confirmed set isW and the pend-
ing set is P; also, set X = C \ (W ∪ P). We will now
argue that, no matter how the manipulator votes, we have
W ′+ ⊆ W and X ′− ⊆ X , i.e., points allocated to candidates
in W ′+ ∪ X ′− do not affect the election outcome. Indeed, in
E the score of every candidate inW ′+ will be at least s+ +1,
and there can be at most |W ′| ≤ ` candidates with such
score, so every candidate in W ′+ will end up in W. Further,
in E the score of every candidate in X ′− will be at most s−,
and there are at least |P ′|+ |W ′| ≥ ` candidates whose score
is at least s− + 1, so the score of s− will be insufficient for
being placed in P. This observation is useful, as it allows us
to “dump” extra points by assigning them to X ′− ∪W ′+.

Now, suppose that the manipulator has decided to ap-
prove kw candidates in W ′−. Then, to maximize his utility,
he has to approve kw candidates in W ′− with the highest
utility. A similar argument works for P ′ and X ′+. As for
the candidates in W ′+ ∪ X ′−, it does not matter which ones
he chooses to approve, since, as argued above, his vote will

not change the status of these candidates. Thus, the out-
come of the election is completely determined by a triple of
non-negative integers (kw, kp, kx), where kw, kp, and kx are,
respectively, the number of candidates in W ′−, P ′, and X ′+
that the manipulator approves. Hence, the manipulator can
go over all triples of integers (kw, kp, kx) ∈ {0, . . . , k}3, and,
for each triple, check if it corresponds to a valid vote and
compute the (expected) utility that he obtains from approv-
ing kw highest-utility candidates fromW ′−, kp highest-utility
candidates from P ′, and kx highest-utility candidates from
X ′+, and distributing the remaining points (if any) among
the rest of the candidates. The manipulator can then check
if the expected utility from the best such triple is at least q.
Clearly, (kw, kp, kx) corresponds to a valid vote if and only
if

• 0 ≤ kw ≤ |W ′−|,

• 0 ≤ kp ≤ |P ′|,

• 0 ≤ kx ≤ |X ′+|, and

• 0 ≤ k − kw − kp − kx ≤ |X ′−|+ |W ′+|,

and the manipulator’s (expected) utility from any such vote
can be computed in time O(k). Thus, the overall running
time of our algorithm is O(k4). Since we can assume that
k ≤ m, this running time is polynomial in the input size.

By refining the analysis in the proof of Theorem 3.1, we
can prove that both Fk-LexMultManipulation and Fk-
RandMultManipulation can be solved in time O(m2).
We will now provide a brief overview of the O(m2) algo-
rithm, omitting details due to space constraints.

We use the same notation as in the proof of Theorem 3.1.
Abusing notation, we denote by u(R) the manipulator’s (ex-
pected) utility given the preference profile R.

Suppose first that P ′ 6= ∅. The key observation is that any
vote L submitted by vn must fall into one of the following
four cases.

Case 1: The pending set P is empty after L is submitted;
let us call this set L1. We observe that one can easily
find a vote L1 such that L1 = arg maxL∈L1 u(R−n, L).
This can be done simply by assigning `−|W ′| approval
points to vn’s favorite candidates in P ′, and assigning
the rest of the approval points to X ′ ∪W ′ arbitrarily.
If this can be done, then L1 6= ∅, and L1 exists.

Case 2: ∅ 6= P ⊆ P ′, and the score of each candidate in P
is s+1 < s+. We denote the set of votes of this type by
L2; again, one can find an L2 = arg maxL∈L2 u(R−n, L)
by trying, for all r = ` − |W ′| + 1, . . . , k, to assign
a point to r of the manipulator’s favorite candidates
in P ′ and “dumping” the k − r remaining points on
X ′ ∪ W ′. The utility from this assignment should be
computed for all r, and L2 corresponds to a choice of
r that maximizes this utility.

Case 3: The score of each candidate in P is s+. This means
that s = s+ − 1 and that some of the candidates in P ′
were approved by vn, and together with W ′− form the
pending set P. For the set of votes satisfying these con-
ditions, L3, we have W ⊇ W ′+. In this case, finding
an optimal vote L3 requires going over all possible ap-
provals of the top kp candidates from P ′ (to be moved
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to P) and kw candidates from W ′− (to be moved from
P to W). In contrast with the method for finding L1

and L2, finding L3 requires O(m2) time.

Case 4: The score of each candidate in P after vn votes is
s. We call the set of these votes L4. This can occur
only if a sufficiently small number of candidates from
P ′ were approved (so as not to be in Case 3), and if any
candidates from X ′+ are now in P, then s− = s − 1.
In order to maintain the score of P at s, we must
have that P ′ 6= ∅; moreover, we must consider the case
where X ′+ has a score of s− 1 and the case where it is
strictly less than s−1. In the former case, it is possible
to make some of the candidates in X ′+ part of P. In
the latter case, no candidate in X ′ can be part of P.
In either case, an optimal vote can be found in O(m2)
time.

Finally, having computed L1, . . . , L4, we can find an op-
timal manipulation by picking the best of these four votes,
i.e., setting L∗ = arg maxi=1,...,4 u(R−n, Li).

The case P = ∅ can be analyzed similarly, except that
we only have two cases to consider. This completes the
description of our O(m2) algorithm.

4. SMALL COMMITTEES
In this section we consider the setting where the committee
size ` is bounded by a constant. Our first result for this
case is a polynomial-time algorithm for finding a successful
manipulation, under the assumption that ties are broken
lexicographically.

Theorem 4.1. For any family of scoring rules F the prob-
lem F-LexMultManipulation admits an algorithm that
runs in time O(nm`+2).

Proof. Fix the non-manipulators’ preference profileR−n.
We will go over all committees of size `; for each such com-
mittee D we will check if the manipulator vn can vote so
that the election outcome is D. We will then choose the
highest-utility committee for which the answer is positive.
It remains to show how to determine this for a specific com-
mittee D.

Fix a committee D = {d1, . . . , d`} ⊆ C. First, observe
that if vn can vote so that the election outcome is D, then
he has a manipulative vote such that the election outcome is
D and the candidates in D are placed in the top ` positions
in his vote. We will go over all possible ways of ordering the
candidates in D in the top ` positions in the vote.

Fix one such ordering π, and assume without loss of gen-
erality that π places di in position i for i = 1, . . . , `. We
will use a greedy algorithm to fill the bottom m − ` posi-
tions. That is, we order the candidates in C \D according
to the number of points they receive from the first n − 1
voters (from the smallest to the largest); if c and c′ have the
same score and our lexicographic tie-breaking rule favors c
over c′, then c′ appears before c in our ordering. We then
place these candidates in positions `+ 1, . . . ,m in vn’s vote
according to our ordering.

We claim that π can be completed to a successful manipu-
lation if and only if the resulting vote makes D the winning
set. The “if” direction is obvious. For the “only if” direction,
suppose that there is some assignment of voters in C \D to
the last m − ` slots that makes D the winning set, and let

L denote the set of all such assignments. Let us denote by
LG the greedy assignment described above, and let LM be
an assignment in L that shares the longest common prefix
with LG.

Suppose for the sake of contradiction that LG 6= LM , and
let j be the first position where LG and LM differ. Suppose
that the j-th position contains candidate c under LG and
candidate d under LM . Then d can be placed in position
j without becoming a winner. Since the greedy method
did not place d in positions 1, . . . , j, we conclude that d
either has a higher score than c or is prefered to c by the
tie-breaking rule. Thus, c, too can be placed in position j
without becoming a winner. On the other hand, moving d
from position j to a position j′ with j′ > j would not make
him a winner either. This means that we can swap c and d
in LM and still obtain an assignment in L. Moreover, the
resulting assignment shares a strictly longer prefix with LG,
a contradiction with the definition of LM .

For each committee D, the score of each candidate in C\D
can be computed in time O(n); sorting the candidates ac-
cording to these scores takes O(m logm) steps. For each
committee D and each way of ordering the candidates in D
in the top ` positions, our greedy algorithm runs in linear
time. There are

(
m
`

)
committees to consider; for each com-

mittee, there are `! ways to order its members. Thus, the
running time of our algorithm is O(

(
m
`

)
(`! + nm logm)) =

O(nm`+2).

As shown by Obraztsova et al. [16, 17], manipulating
single-winner elections when the randomized tie-breaking
rule is used may require techniques that are fundamentally
different from those that work for lexicographic tie-breaking.
It turns out that this is also the case for multi-winner elec-
tions. Indeed, our next result is a direct analogue of Theo-
rem 4.1; however, its proof is substantially more complicated
than that of Theorem 4.1.

Theorem 4.2. For any family of scoring rules F the prob-
lem F-RandMultManipulation is in P when ` is bounded
by a constant.

Proof. Consider an election (V,C,R) with |C| = m and
an m-candidate scoring rule F~α ∈ F with a scoring vec-
tor ~α = (α1, . . . , αm), Let s = (s1, . . . , sm) be the vector
of the candidates’ scores in (V,C,R−n). For each k ≤ `
and each subset Wk ⊆ C of size k, we check if the manip-
ulator can vote so that the confirmed set is Wk. If this is
indeed the case, we find the best set of ` − k pending win-
ners for this choice of Wk; that is, we identify a set Pk with
|Pk| > `− k such that after the manipulator’s vote the con-
firmed set is Wk, the (identical) scores of the candidates in
Pk are strictly less than those of any c ∈ Wk, and the manip-
ulator’s expected utility from Pk is maximized. Notice that
the requirement |Pk| > `−k is necessary; otherwise, Pk∪Wk

are the confirmed winners, which contradicts our objective
of having Wk as the confirmed winners. We then compute
the manipulator’s expected utility from having the candi-
dates in Wk as the confirmed winners and the candidates in
Pk as the pending winners, and select a triple (k,Wk,Pk)
that maximizes the manipulator’s expected utility.

The candidate set C has at most
∑`
k=1

(
m
k

)
∈ O(m`) sub-

sets of size at most `; thus, it remains to show that for each
subset of size at most ` the procedure described in the previ-
ous paragraph can be implemented in polynomial time. Fix
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a k ≤ ` and a setWk. First, we pick k entries of ~α; these are
the scores that we will assign to candidates in Wk. There
are

(
m
k

)
= O(m`) ways of choosing such a set of scores; we

go over all possible choices. We then order the candidates
in Wk by decreasing order of scores under s, and assign the
lowest among the selected k scores to the first candidate, the
second lowest to the second candidate and so on. If Wk can
be made confirmed winners under some assignment of the
k scores selected, then in particular they can be made con-
firmed winners under this assignment. Now, let H1, . . . , Hp

be the levels of the candidates in C \ Wk. We renumber
the candidates in C \ Wk so that for all i ∈ 1, . . . , p− 1, all
candidates in Hi are before the candidates in Hi+1. Given a
level Hi, we order the candidates in Hi so that if c, c′ ∈ Hi
and the manipulator prefers c to c′, then c′ precedes c. Let
~α′ = {αi1 , . . . , αim−k} be the remainingm−k scores that the
manipulator needs to assign; we assume αi1 ≤ · · · ≤ αim−k .

We assign αi1 , . . . , αi|H1|
to H1 in that order. Similarly,

we assign αi|H1|+1
, . . . , αi|H1|+|H2|

to H2 and so on until
all scores are assigned. This assignment, denoted σ0, en-
sures that at each level, the manipulator’s favorite candi-
dates from that level receive the highest scores. Let Φ be
the highest score of any candidate in C \Wk under σ0. Ob-
serve that for every score assignment to candidates in C\Wk

the score of some candidate in C \ Wk after the manipula-
tor’s vote is at least Φ. Thus, if Φ is greater than or equal
to the score of some c ∈ Wk, then Wk cannot be made con-
firmed winners using this score assignment, and we proceed
to check a different assignment of scores to Wk. Therefore,
from now one we assume that the score of each candidate in
Wk is greater than Φ.

Let P0 be the set of candidates whose score is Φ after sub-
mitting σ0. We can try to modify σ0 in order to increase
the manipulator’s utility, by swapping some candidates in
the vote. We claim that reassigning scores given to members
of P0 will either result in a non-tied outcome, or decrease
the manipulator’s expected utility from the set of tied can-
didates. Indeed, suppose that a candidate c ∈ P0 received a
score of β and now receives a higher score β′; this increases
his score to be strictly more than Φ. If this results in a
strictly higher utility for the manipulator, this means that
the manipulator can strictly increase his utility by greed-
ily assigning the highest scores in ~α′ to the candidates he
prefers the most, with no ties formed. On the other hand,
if we assign a lower score to c, this means that some other
candidate in a higher level receives a higher score, and the
same argument applies. Thus, any swap we make will only
involve candidates not in P0. However, note that the ma-
nipulator’s utility is unaffected by candidates whose score is
less than Φ. Thus, for any candidate c not in P0, we can
just check if there is some score that will give him a total
score of Φ. If such c ∈ (C \Wk) \ P0 exists, and adding c to
P0 increases the manipulator’s expected utility, we can add
c to P0. Having done so for each candidate, we denote the
resulting set by P1.

We claim that P1 is indeed the set of pending candidates
we require. To show this, we will now argue that if |P1| ≤
`− k then one of the following two cases holds:

Case 1: Given Wk and the scores we assign to members of
Wk, it is impossible to find a score assignment such
that Wk are confirmed winners.

Case 2: Even if there is a set Pk of pending winners, there

is a set P ′ of candidates of size exactly ` − k such
that the manipulator’s utility from Wk ∪P ′ is at least
his expected utility from having W as the confirmed
winners and Pk as the pending winners.

Observe that both cases imply that if |P1| ≤ ` − k we can
just move on to another score assignment toWk, and ignore
the current assignment: it is either impossible to have Wk

as the confirmed winners, or there is another candidate set
with the same utility that can be made confirmed winners
and will be found in some other iteration. We must show
that indeed one of these two cases holds.

If neither case holds, there exists a vote σ′ such that if the
manipulator submits σ′, the set of confirmed winners isWk,
the set of pending winners is Pk, and for any set P ′ ⊆ C\Wk

such that |P ′| = `−k and the setWk∪P ′ is a feasible set of
winners it holds that the manipulator’s expected utility from
having W as the confirmed winners and Pk as the pending
winners is greater than his utility from Wk ∪ P ′.

First, consider the case where both confirmed and pending
candidates receive more than Φ points. Let cj1 , . . . , cj`−k be
the manipulator’s most preferred `− k candidates in Pk; by
assumption, we must have that the manipulator’s expected
utility from P ′ is at most

∑`−k
p=1 u(cjp). Let S be the set

consisting of these ` − k candidates and Wk. Consider any
candidate cj ∈ S and suppose the manipulator grants αj′
points to cj . The score of cj after the manipulator votes is
strictly more than Φ; thus j′ < j. We set S ′ = {cj′ ∈ C |
αj′ is assigned to some cj under σ′}.

Now, consider the vote obtained from σ0 by swapping the
votes given to cj and its corresponding candidate cj′ . Ob-
serve that some candidates can be in two such swaps—once
acting as cj and once as cj′—in this case we begin from the
swap which uses the candidate as cj and afterwards we use
the candidate who was put into his place for the next swap.
All candidates in C \S \S ′ do not have their scores changed,
so they still get at most Φ points; more importantly, all can-
didates in S now get strictly more than Φ points. Further,
all candidates in S ′ \ S get less than Φ points. Thus, in
this case S are the confirmed winners and the manipulator’s
expected utility is at least as high as that from having Wk

as the confirmed winners and Pk as the pending winners,
a contradiction. The other case is when the candidates in
Wk have more than Φ points, but the candidates in Pk have
exactly Φ points. This case is handled similarly; we omit
the details to avoid repetition.

5. BINARY UTILITIES
We will now show that if the manipulator’s utilities are bi-
nary, i.e., u(c) ∈ {0, 1} for all c ∈ C, then for any family
of scoring rules F the problem F-LexMultManipulation
is in P, assuming that ties are broken in the manipulator’s
favor. Binary utilities imply that a voter who wishes to ma-
nipulate the election has a considerably easier problem: he
needs to maximize the number of desirable candidates in the
committee. We will argue that this can be done in polyno-
mial time when ties are broken in the manipulator’s favor.
We remark that Meir et al. [14] prove a similar result for
adversarial tie-breaking; however, our argument is different
from the one presented in [14].

Theorem 5.1. Fix a family of scoring rules F . If u(c) ∈
{0, 1} for all c ∈ C and the ordering � used by the lexi-
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cographic tie-breaking rule coincides with Rn, then F-Lex-
MultManipulation is in P.

Proof. Consider a candidate set C, let m = |C|, and let
F~α, ~α = (α1, . . . , αm), be the m-candidate scoring rule in
F . We divide the candidate set into G = {c ∈ C | u(c) = 1}
and B = {c ∈ C | u(c) = 0}. First we note that it is never
beneficial for the manipulator to rank a member of B above
a member of G. Thus, vn assigns the |G| highest scores to
G and the |B| lowest scores to B. Note that this means
that vn votes truthfully, in the sense that he never ranks a
candidate with utility 0 above a candidate with utility 1. We
sort B in decreasing order according to score. If c, c′ ∈ B
have the same score, we arrange them so that the candidate
who is ranked lower by � is first. Set |B| = k; we assign
αm to the first candidate in B according to our reordering,
αm−1 to the second and so on, until the last candidate in
B gets the highest score αm−k+1. Let t be the maximum
score of a candidate in B after the manipulator assigned
αm−k+1, . . . , αm to B. Then t is the minimum score any
candidate in B will get under any scoring rule. It is the
“score to beat” for the candidates in G; any candidate in
G who can get at least t points will be either a confirmed
winner or a pending winner. Following Obraztsova et al. [17]
we check all possible winning scores achievable by B that are
greater than t; as observed in [17], there are polynomially
many such scores. We denote the set of all possible winning
scores achievable by B by W (B).

Now, given such a score t′ ∈W (B), we check what is the
best that the manipulator can do. Observe that since ties
are always broken in G’s favor, all of G’s members benefit vn
equally. We sort G according to the score. Let H1, . . . , Hp

be the levels of G’s members, where sj is the score of Hj .
We assume that s1 < · · · < sp. Given a score sj and t′, we
set Aj = {α` ∈ ~α | sj + α` ≥ t′}; Aj is the set of all scores
for which the members of Hj can be made winners, given t′.

We now proceed as follows: We assign members of H1 the
scores in A1; if |H1| > |A1|, we arbitrarily assign |A1| scores
to |A1| members of H1. If |H1| ≤ |A1|, we assign the |H1|
highest scores in A1 to the members of H1. We denote the
scores assigned to H1 by Z1. We repeat the process for H2,
but only assign A2 \Z1 in a similar manner, and denote the
set of assigned scores to H1 and H2 by Z2. In general, let
Zj be the set of assigned scores to H1, . . . , Hj , we assign the
scores Aj+1 \ Zj to Hj+1 in the same manner and set Zj+1

to be the set of assigned scores.
This process terminates with the maximum number of

candidates in G getting a score of at least t′. Indeed, let us
denote our allocation Greedy and consider some optimal
score allocation Opt. We denote by Greedyj the number
of candidates in levels H1, . . . , Hj who were given a score of
at least t′ under Greedy, and we similarly define Optj .

Lemma 5.2. For any j we have Greedyj ≥ Optj.

Proof. We proceed by induction on j. For j = 1, the
number of candidates that are given a score of more than t′

cannot exceed min{|A1|, |H1|} under any vote by vn. Since
Greedy assigns at least |A1| candidates a score of at least
t′, we are done. We now assume that the statement of
the lemma is true for j − 1 and show that it holds for j.
Again, note that the number of candidates in Hj who get
a score of more than t′ is no more than min{|Aj |, |Hj |}.
Greedy assigns less than min{|Aj |, |Hj |} candidates a win-
ning score only if some scores from Aj were assigned to

⋃j−1
r=1Hr. Similarly, if Hj has more winners under Opt than

under Greedy, it must be because some of the scores in Aj
that were assigned by Greedy to members of

⋃j−1
r=1Hr are

now assigned to members of Hj . Let us observe the scores
that Opt did assign to H1, . . . , Hj−1; we note that if we
assign the weights used by Opt according to the Greedy
method, we will get by the induction hypothesis a better
result for H1, . . . Hj−1. Moreover, observe that every score
that Opt has assigned to Hj instead of some Hr with r < j,
can be assigned to a candidate in H1, . . . , Hj−1 according to
Greedy; indeed, if that score was not assigned by Greedy
toHj , and could make a member ofHj winning, it must have
been assigned to some member of H1, . . . , Hj−1, otherwise it
means all members of Hj have been assigned scores to push
them over a score of t′. Thus, every winning candidate in
Hj under Opt that was not winning under Greedy can be
matched to a candidate that is winning under Greedy, but
not under Opt. This implies that for j we have Greedyj ≥
Optj .

Lemma 5.2 implies that the number of candidates in G
that receive a score of at least t′ is maximized by using
Greedy. Note that we do not consider ties in this scenario;
candidates in G who have a score of exactly t′ will always be
chosen over candidates in B by our assumption on the tie-
breaking rule. Also, since the manipulator assigns the same
utility to all candidates in G, we only need to maximize
the number of candidates in G with a score of more than
t′, which can be achieved by using Greedy according to
Lemma 5.2.

After calculating the maximum utility that the manipula-
tor can get for every minimum winning score t′ ∈W (B), we
choose a vote which guarantees the manipulator the maxi-
mum utility; this is the optimal vote for vn.

6. CONCLUSIONS AND FUTURE WORK
We have explored some of the computational aspects of ma-
nipulation in multi-winner elections, with a particular focus
on the role of tie-breaking rules. Our work can be viewed
as a merge of two recent lines of enquiry: the complexity
of manipulation in multi-winner elections [14] (under adver-
sarial tie-breaking, i.e., in the unique-winner model) and the
complexity of manipulation in single-winner elections under
lexicographic and randomized tie-breaking [16, 17]. Our re-
sults show that the manner in which ties are broken plays
an important role in the analysis of voting manipulation.

The most obvious open problem suggested by our work is
determining the exact complexity of finding a manipulative
vote under general scoring rules when the committee size
is not bounded by a constant and the manipulator’s utility
function can be arbitrary. We conjecture that this problem
is NP-hard.

Further, we have shown that the manipulation problem is
in P if the committee size is bounded by a constant, both
for lexicographic and for randomized tie-breaking (see The-
orems 4.1 and 4.2, respectively). However, the running time
of our algorithms for small committees is of the form Ω(m`),
where ` is the target committee size and m is the number of
candidates. Thus, while our results place the computational
problems considered in this paper in the complexity class
XP with respect to `, they do not imply that these problems
are fixed-parameter tractable, i.e., belong to the complexity
class FPT (see, e.g., [7] for the definitions of these complex-
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ity classes). It would be interesting to verify if this is indeed
the case.

One can also explore the impact of tie-breaking rules on
the complexity of other forms of dishonest behavior in multi-
winner elections, such as control [3] or bribery [8]; while the
complexity of control in multi-winner elections has been con-
sidered by Meir et al. [14] (under adversarial tie-breaking),
to the best of our knowledge, there has been no work on
bribery in such elections.

We remark that we have briefly discussed why we chose
to model the manipulator’s preferences by an additive util-
ity function. However, in the context of committee elections
voters may have preferences that are not additive. For in-
stance, a voter may strongly believe that the set of winners
should include at least one candidate from the set {a, b} as
well as at least one candidate from the set {c, d}; it can be
shown that these preferences cannot be captured by an ad-
ditive utility function. To model such scenarios, we need
a framework that enables us to succinctly represent pref-
erences over entire committees and to reason about such
preferences. While there is a significant body of research on
representing preferences over sets of alternatives (see, e.g.,
[5]), to the best of our knowledge the problem of manipula-
tion with respect to such preferences has not been analyzed
in the literature.
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