
Weighted Electoral Control

Piotr Faliszewski
AGH University of Science

and Technology
Krakow, Poland

faliszew@agh.edu.pl

Edith Hemaspaandra
Rochester Institute of

Technology
Rochester, NY, USA

eh@cs.rit.edu

Lane A. Hemaspaandra
University of Rochester

Rochester, NY, USA
www.cs.rochester.edu/∼lane

ABSTRACT
Although manipulation and bribery have been extensively
studied under weighted voting, there has been almost no
work done on election control under weighted voting. This is
unfortunate, since weighted voting appears in many impor-
tant natural settings. In this paper, we study the complex-
ity of controlling the outcome of weighted elections through
adding and deleting voters. We obtain polynomial-time
algorithms, NP-completeness results, and for many NP-
complete cases, approximation algorithms. Our work shows
that for quite a few important cases, either polynomial-time
exact algorithms or polynomial-time approximation algo-
rithms exist.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Security, Theory

Keywords
algorithms, control, weighted elections

1. INTRODUCTION
In many real-world election systems the voters come

with weights. Examples range from stockholder elections
weighted by shares, to the US Electoral College, to the often-
used example of the Nassau County Board of Supervisors,
to (in effect) any parliamentary system in which the par-
ties typically vote as blocks, to Sweden’s system of wealth-
weighted voting instituted in 1866 (and no longer used)
where “the wealthiest members of the rural communities re-
ceived as many as 5,000 votes” and “in 10 percent of the
districts the weighted votes of just three voters could be
decisive” [5].

So it is not surprising that in the study of manipulative
attacks on elections, weighted voting has been given great at-
tention. For bribery and manipulation, two of the three most
studied types of manipulative attacks on elections, study of

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the case of weighted voters has been extensively conducted.
Yet for the remaining one of the three most studied types
of attacks on elections, so-called control attacks, almost no
attention has been given to the case of weighted voting; to
the best of our knowledge, the only time this issue has been
previously raised is in two M.S./Ph.D. theses [22, 18]. This
lack of attention is troubling, since the key types of con-
trol attacks, such as adding and deleting voters, certainly
do occur in many weighted elections.

We study the complexity in weighted elections of arguably
the most important types of control, adding and deleting
voters, for various election systems, with a particular focus
on t-approval and t-veto. Control by deleting (adding) vot-
ers asks whether in a given election a given candidate can
be made to win by deleting (adding) at most a certain num-
ber of the voters (at most a certain number of the members
of the pool of potential additional voters). These control
types model issues that are found in many electoral settings,
ranging from human to electronic. They are (abstractions
of) issues often faced by people seeking to steer an election,
such as experts doing campaign management, and deciding
for example which k people to offer rides to the polls.

Control was introduced (without weights) in 1992 in the
seminal paper by Bartholdi, Tovey, and Trick [1], and control
has been the subject of much attention since. That atten-
tion, and the present paper, are part of the line of work,
started by Bartholdi, Tovey, and Trick, that seeks to deter-
mine for which types of manipulative attacks on elections
the attacker’s task requires just polynomial-time computa-
tion (see the Related Work section).

Some highlights of our results: Although weighted ma-
nipulation of scoring protocols is known to almost always
be hard, Section 4.1 shows that weighted voter control for
m-candidate t-approval elections is in P. Section 4.2 shows
that weighted control by adding and deleting voters is NP-
complete for every Condorcet-consistent election system.
Earlier work of Lin [18] left open the question of at which t
the complexity of t-veto and t-approval goes from P to NP-
complete for control by adding/deleting voters in weighted
elections; Section 4.3 resolves all six open cases. Section 4.4
gives polynomial-time approximation algorithms for control
by adding and deleting voters under t-approval and t-veto
in weighted elections.

2. PRELIMINARIES
Elections. We take an election to be a pair E = (C, V ),
where C is a set of candidates and V is a collection of voters.
Each voter has a preference order over the set C. A prefer-

367



ence order is a total, linear order that ranks the candidates
from the most preferred one to the least preferred one. For
example, if C = {a, b, c} and some voter likes a best, then
b, and then c, then his or her preference order is a > b > c.

In weighted elections, each voter v also has a positive in-
teger weight ω(v). A voter of weight ω(v) is treated by the
election system as ω(v) unweighted voters.

Election Rules. A voting rule is a function R that given
an election E = (C, V ) returns a subset R(E) ⊆ C of those
candidates that are said to win the election (typically we ex-
pect to have a single winner, but sometimes ties can happen;
we assume the nonunique-winner model where all tied-for-
winning candidates are called winners).

An m-candidate scoring rule is defined through a nonin-
creasing vector α = (α1, . . . , αm) of nonnegative integers.
For each voter v, each candidate c receives αpos(v,c) points,
where pos(v, c) is the position of c in v’s preference order.
The candidates with the maximum score are the winners.
Many election rules are defined through families of scor-
ing rules, with one scoring vector for each possible num-
ber of candidates. For example, plurality uses vectors of
the form (1, 0, . . . , 0), t-approval uses vectors of the form

(

t︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0), and Borda’s rule uses vectors of the form

(m− 1,m− 2, . . . , 0), where m is the number of candidates.
By t-veto, we mean the system which for m candidates uses
the (m− t)-approval scoring vector. For t-approval (t-veto)
we will often treat each vote as an approval vector that ap-
proves of the vote’s top t (top ‖C‖ − t) candidates.

Given an election E and a voting rule R that assigns scores
to the candidates, we write scoreE(c) to denote c’s total
score in E under R. The voting rule used will always be
clear from context.

Given an election E = (C, V ), a candidate c is a (weak)
Condorcet winner if for every other candidate d ∈ C − {c},
it holds that more than half (at least half) of the voters
prefer c to d. Note that it is possible that there is no (weak)
Condorcet winner in a given election.

Electoral Control. In this paper we focus on constructive
control by adding/deleting voters in weighted elections and
thus, due to space constraints, we will define only these two
control problems. We use + to denote combining collections
of voters.

Definition 1. Let R be a voting rule. In both weighted
constructive control by adding voters under rule R (R-
WCCAV) and weighted constructive control by deleting vot-
ers under rule R (R-WCCDV), our input contains a set of
candidates C, a collection of weighted voters V (with prefer-
ences over C), a preferred candidate p ∈ C, and a nonneg-
ative integer k. In R-WCCAV we also have an additional
collection W of weighted voters (with preferences over C).
In these problems we ask the following questions:

R-WCCAV. Is there a subcollection W ′ of W , of at most
k voters, such that p ∈ R(C, V+W ′)?

R-WCCDV. Is there a subcollection V ′ of V , of at most k
voters, such that p ∈ R(C, V−V ′)?

We will consider approximation algorithms for WCCAV
and WCCDV under t-approval/t-veto. In those cases we
will assume that input instances do not contain the inte-
ger k and the goal is simply to find (when success is pos-
sible at all) as small as possible a collection of voters to

add/delete such that p is a winner of the resulting election.
For a positive integer h, an h-approximation algorithm for
WCCAV/WCCDV is an algorithm that always finds a solu-
tion that adds/deletes at most h times more voters than
is necessary. For t-approval/t-veto WCCDV it is always
possible to ensure that p is a winner by deleting voters (it
suffices to delete all the voters that do not approve of p,
possibly being left with no voters at all). For t-approval/t-
veto WCCAV, it is possible to ensure p’s victory through
adding voters if and only if p is a winner after we add all the
voters that approve of p. These observations make it partic-
ularly convenient to consider approximation algorithms for
t-approval and for t-veto. For other scoring rules (and other
voting rules in general), such analysis would be much more
complicated (indeed, the reader might want to compare our
work with an attempt at creating a general election-problem
approximation framework of Brelsford et al. [4]).

For certain voting rules R, we will compare the complex-
ity of WCCAV and of the weighted coalitional manipulation
problem (WCM). In WCM we are given a weighted elec-
tion (C, V ), a preferred candidate p ∈ C, and a sequence
k1, . . . , kn of positive integers. We ask if it is possible to
construct a collection W = (w1, . . . , wn) of n voters such
that for each i, 1 ≤ i ≤ n, ω(wi) = ki, and p is a win-
ner of R election (C, V+W ). (The voters in W are called
manipulators.) WCM is similar to WCCAV in that we also
add voters, but it differs in that (a) we have to add exactly
n voters, and (b) we can pick the preference orders of the
added voters.

Due to space restrictions we omit most of the discussion of
what real-life scenarios the problems presented here model,
and instead we point the reader to the survey of Faliszewski,
Hemaspaandra, and Hemaspaandra [10].

Computational Complexity We assume familiarity with
standard notions of complexity theory. In our NP-hardness
proofs we use reductions from the following two standard
NP-complete problems.

Definition 2. An instance of Partition consists of a se-
quence (k1, . . . , kn) of positive integers. We ask whether
there is a set I ⊆ {1, . . . , n} such that

∑
i∈I ki = 1

2

∑n
i=1 ki.

Definition 3. An instance of Exact-Cover-By-3-Sets
(X3C) contains a set B = {b1, . . . , b3t} and a family S =
(S1, . . . , Sn) of 3-element subsets of B. We ask whether
there is a t-element set I ⊆ {1, . . . , n} such that

⋃
i∈I Si =

B.

3. RELATED WORK
The study of the complexity of (unweighted) elec-

toral control was initiated by Bartholdi, Tovey,
and Trick [1], who studied constructive control by
adding/deleting/partitioning candidates/voters under the
plurality and Condorcet rules. The various types of control
model at least some of the flavor of actions that occur
in the real world, such as voter suppression and targeted
get-out-the-vote drives. A major motivation for the study
of control was to obtain “complexity barrier” results, that
is, results that show that detecting opportunities for various
control attacks is computationally difficult (specifically,
Bartholdi, Tovey, and Trick focused on and obtained many
NP-hardness results).

368



This research direction was continued by Hemaspaandra,
Hemaspaandra, and Rothe [15], who studied destructive
control attacks on elections, where one’s goal is to prevent a
given candidate from being a winner through various control
actions. Since then, many authors have studied electoral
control in many varied settings and under many different
rules; we refer the reader to the survey [10]. Some recent
research, not covered in that survey, includes complexity-
of-control results for the t-approval family of rules [18], for
Bucklin’s rule (and for fallback, its extension for truncated
votes) [8, 7], for maximin [9], for range voting [19], and for
Schultze’s rule and the ranked pairs rule [20].

The complexity-barrier research line turned out to be very
successful. For most voting rules that were considered a sig-
nificant number of control attacks are NP-hard. Indeed,
it is even possible to construct an artificial election sys-
tem resistant to all types of control attacks [16]. However,
there are also a number of results that suggest that in prac-
tice the complexity barrier might not be as strong as one
might at first think. For example, Faliszewski et al. [12] and
Brandt et al. [3] have shown that if the votes are restricted
to being single-peaked, then many control problems that
are known to be NP-complete become polynomial-time solv-
able. Indeed, this often holds even if elections are just nearly
single-peaked [11], as many real-world elections seem to be.
Similarly, some initial experimental results of Rothe and
Schend [21]—published very recently—suggest that, at least
under certain distributions and settings, some NP-hard con-
trol problems can be solved in practice on many instances.
As part of a different line of research, Xia [24] has studied
the asymptotic behavior of the number of voters that have to
be added to/deleted from a randomly constructed election
in a successful control action.

We mention that there are many problems related to con-
trol that researchers study, but whose discussion we have
to omit due to limited space. (These problems include, e.g.,
cloning, adding candidates not included in voters’ preference
orders, and certain problems pertaining to truncated votes.)

The only papers that directly raise the issue of weighted
control are, to the best of our knowledge, the theses of Rus-
sell [22] and Lin [18]. However, we also mention the paper of
Baumeister et al. [2], where the authors consider the prob-
lem of affecting the result of an election through picking the
weights of the voters. Their problem is similar to, though
different than, simultaneous (multimode) addition and dele-
tion of voters.

4. RESULTS
This section presents our results.

4.1 Scoring Protocols
Weighted manipulation of scoring protocols is always

hard, unless the scoring protocol is in effect plurality or
triviality [14]. In contrast, weighted voter control is easy
for m-candidate t-approval.

Theorem 4. For all m and t, WCCAV and WCCDV for
m-candidate t-approval are in P.

Proof. Let (C, V,W, p, k) be an instance of WCCAV for
m-candidate t-approval. We can assume that we add only
voters who approve of p. We can also assume that we add the
heaviest voters with a particular set of approvals, i.e., if we
have added ` voters approving p, c1, . . . , ct−1, we can assume

that we added the ` heaviest voters approving p, c1, . . . , ct−1.
Since there are only

(
m−1
t−1

)
—which is a constant—different

sets of approvals to consider, it suffices to try all sequences
of nonnegative integers k1, . . . , k(m−1

t−1 ) whose sum is at most

k and for each such sequence to check whether adding the
heaviest ki voters of the ith approval collection makes p a
winner.

The same argument works for WCCDV. Here, we delete
only voters that do not approve of p, and again we delete
the heaviest voters for each approval collection.

One might think that the argument above works for any
scoring protocol, but this is not the case. For example, con-
sider the 3-candidate Borda instance where V consists of
one weight-1 voter b > p > a and W consists of a weight-2
and a weight-1 voter with preference order a > p > b. Then
adding the weight-1 voter makes p a winner, but adding the
weight-2 voter does not. And in fact, we have the following
result.

Theorem 5. WCCAV and WCCDV for Borda are NP-
complete. This result holds even when restricted to a fixed
number m ≥ 3 of candidates.

Proof. We reduce from Partition. Given a sequence
k1, . . . , kt of positive integers that sum to 2K, construct
an election with one registered voter of weight K voting
b > p > a > · · · , and t unregistered voters with weights
k1, . . . , kt voting a > p > b > · · · . Set the addition limit
to t. It is easy to see that for p to become a winner, b’s
score (relative to p) needs to go down by at least K, while
a’s score (relative to p) should not go up by more than K.
It follows that k1, . . . , kt has a partition if and only if p can
be made a winner.

We use the same construction for the deleting voters case.
Now, all voters are registered and the deletion limit is t.
Since we can’t delete all voters, and since our goal is to
make p a winner, we can’t delete the one voter voting b >
p > a > · · · . The rest of the argument is identical to the
adding voters case.

The proof above also establishes the result for the case of
control by unlimited addition of voters (i.e., no bound on the
number of additions). The analogue of the above theorem
in the different model in which we are bounding the total
weight of votes that can be added/deleted has been obtained
by Russell [22].

We conjecture that the cases of Theorem 4 are in effect
the only P cases here.

Conjecture 6. For all scoring protocols (α1, . . . , αm), if
there exists an i, 1 < i < m, such that α1 > αi > αm, then
WCCAV and WCCDV for (α1, . . . , αm) are NP-complete,
otherwise, they are in P.

The candidate control cases for scoring protocols are not
that interesting, since they are all in P by brute force (as
the number of candidates is constant). For unbounded num-
bers of candidates, the unweighted candidate control ver-
sions (destructive as well as constructive) for plurality (and
t-approval and t-veto) are already hard [1, 15, 6, 18].

WDCAV and WDCDV for scoring protocols (that is, the
destructive variants of WCCAV and WCCDV where the goal
is to ensure that a given candidate is not a winner) are easy:
Simply loop through all candidates c, c 6= p, and greedily
add or delete voters to boost the score of c relative to p as
much as possible.

369



4.2 Manipulation Versus Control
Theorem 4 gives cases where WCCAV and WCCDV are

easy, while WCM is hard. The opposite is also possible. An
election system is Condorcet consistent if whenever there
exists a Condorcet winner, he or she is the unique winner.
An election system is weakCondorcet consistent if whenever
there exist weak Condorcet winners, these are exactly the
winners.

Theorem 7. For every weakCondorcet-consistent elec-
tion system and for every Condorcet-consistent election sys-
tem, WCCAV and WCCDV are NP-complete. This result
holds even when restricted to a fixed number m ≥ 3 of can-
didates.

Proof. To show that WCCAV is NP-complete, we re-
duce from Partition. Given a sequence k1, . . . , kt of positive
integers that sum to 2K, construct an election with two reg-
istered voters, one voter with weight 1 voting p > a > b >
· · · and one voter with weight 2K voting b > p > a > · · · ,
and t unregistered voters with weights 2k1, . . . , 2kt voting
a > p > b > · · · . Set the addition limit to t. Suppose
we add unregistered voters to the election with a total vote
weight equal to 2L.

• If L < K, then b is the Condorcet winner, and thus
the unique winner of the election.

• If L > K, then a is the Condorcet winner, and thus
the unique winner of the election.

• If L = K, then p is the Condorcet winner, and thus
the unique winner of the election.

The WCCDV case uses the same construction. Now, all
voters are registered and the deletion limit is t. Since we
can delete at most t of our t + 2 voters, and since our goal
is to make p a winner, we can’t delete the sole voter voting
b > p > a, since then a would be the Condorcet winner. The
rest of the argument is similar to the adding voters case.

Let Condorcet be the election system whose winner set is
exactly the set of Condorcet winners. Let weakCondorcet
be the election system whose winner set is exactly the set of
weak Condorcet winners.

Corollary 8. For Condorcet and weakCondorcet,
WCM is in P and WCCAV and WCCDV are NP-complete.
This result holds even when restricted to a fixed number
m ≥ 3 of candidates.

Condorcet and weakCondorcet do not always have win-
ners. For those who prefer their voting systems to always
have at least one winner, we note that 3-candidate Llull
(which is the election system where the score of each candi-
date c is the number of candidates d, d 6= c, such that at least
half of the voters prefer c to d; candidates with the highest
score are the winners) always has at least one winner, is eas-
ily seen to be weakCondorcet consistent, and WCM for this
system is in P [13].

Corollary 9. For 3-candidate Llull, WCM is in P and
WCCAV and WCCDV are NP-complete.

4.3 t-Approval with an Unbounded Number
of Candidates

Lin [18] showed that for t ≥ 4, WCCAV for t-approval
and WCCDV for t-veto are NP-complete, and that for t ≥
3, WCCDV for t-approval and WCCAV for t-veto are NP-
complete. These results hold even for the unweighted case.
It is also known that the remaining unweighted cases are in
P [1, 18] and that WCCAV and WCCDV for plurality and
veto are in P [18].

In this section, we look at and solve the remaining open
cases, WCCAV for 2-approval, 3-approval, and 2-veto, and
WCCDV for 2-approval, 2-veto, and 3-veto. We start by
showing that 2-veto-WCCAV is in P.

We will later show that a natural greedy-by-weight heuris-
tic approach can never obtain better than a 2-approximation
for 2-approval-WCCAV (see the comment about t = 2 at the
start of the proof of Theorem 17). Nonetheless, we now show
that 2-approval-WCCAV can be exactly solved in P, by an
algorithm that iteratively removes all unnecessary voters.

Theorem 10. WCCAV for 2-approval is in P.

Proof. Run the following algorithm. (In this algorithm
and the proof of correctness, whenever we speak of the r
heaviest voters in voter set X, we mean the min(r, ‖X‖)
heaviest voters in X.)

On input (C, V,W, p, k)
for all c ∈ C − {p} do

let sc = score(C,V )(c)− score(C,V )(p).
end for
Delete all voters from W that do not approve of p.
repeat

for all c ∈ C − {p} do
if the sum of the weights of the k heaviest voters in
W that do not approve of c is less than sc then

reject
{It is impossible to get score(c) ≤ score(p).}

end if
end for
for all c ∈ C − {p} and ` ∈ {1, . . . , k − 1} do

if the sum of the weights of the k− ` heaviest voters
in W that do not approve of c is less than sc then

delete all voters approving c except for the ` − 1
heaviest such voters from W .
{We need to add at least k − ` + 1 voters that do
not approve of c, and so we can add at most `− 1
voters approving c.}

end if
end for

until no more changes.
if ‖W‖ ≥ k then

accept
{We can make p a winner by adding the k heaviest
voters from W .}

end if
if ‖W‖ < k then

accept if and only if adding all of W will make p a
winner.

end if

Why does this work? It is easy to see that we never reject
incorrectly in the repeat-until. Also, it is easy to see that
if we add r voters approving {p, c}, we may assume that
we add the r heaviest voters approving {p, c} (this is also

370



crucial in the proof of Theorem 4), and so we never delete
voters incorrectly in the second for loop in the repeat-until.

If we get through the repeat-until without rejecting, and
we have fewer than k voters left in W , then adding all of W
is the best we can do (since all voters in W approve p).

Finally, if we get through the repeat-until, and we have at
least k voters left in W , then adding the k heaviest voters
from W will make p a winner. Why? Let c be a candidate
in C − {p}. Let r be the number of voters from W that are
added and that approve of c. Since we made it through the
repeat-until, we know that [the sum of the weights of the k
heaviest voters in W that do not approve of c] is at least sc.
And so if r = 0, score(c) − score(p) = sc - [the sum of the
weights of the k heaviest voters in W ] ≤ 0. If r > 0, and
there are at least r voters approving of c left in W , then [the
sum of the weights of the k− r heaviest voters in W that do
not approve of c] is at least sc. And so score(c) − score(p)
= sc - [the sum of the weights of the k − r heaviest voters
in W that do not approve of c] ≤ 0

Theorem 11. WCCDV for 2-veto is in P.

Instead of proving this theorem directly, we show a more
general relation between the complexity of t-approval/t-veto
WCCAV and WCCDV.

Theorem 12. For each fixed t, it holds that t-veto-
WCCDV (t-approval-WCCDV) many-one reduces to t-
approval-WCCAV (t-veto-WCCAV).

Proof. We give a reduction from t-veto-WCCDV to t-
approval-WCCAV. The idea is that deleting a t-veto vote
v from t-veto election (C, V ) is equivalent, in terms of net
effect on the scores, to adding a t-approval vote v′ to this
election, where v′ approves exactly of the t candidates that
v disapproves of. The problem with this approach is that
we are to reduce t-veto-WCCDV to t-approval-WCCAV and
thus we have to show how to implement t-veto scores with
t-approval votes.

Let (C, V, p, k) be an instance of t-veto-WCCDV, where
V = (v1, . . . , vn). Let m = ‖C‖. Let ωmax be the highest
weight of a vote in V . We set D to be a set of up to t − 1
new candidates, such that ‖C‖+ ‖D‖ is a multiple of t. We

set V0 to be a collection of ‖C‖+‖D‖
t

t-approval votes, where
each vote has weight ωmax and each candidate in C ∪ D is
approved of by exactly one of the votes in V0. For each vote

vi in V we create a set Ci = {c1i , . . . , c
(t−1)(m−t)
i } and we

create a collection of voters Vi = (v1i , . . . , v
m−t
i ). Each voter

vji , 1 ≤ j ≤ m − t, has weight ω(vi) and approves of the
jth candidate approved by v and of the t − 1 candidates

c
(j−1)(t−1)+1
i , · · · , cj(t−1)

i .
We form an election E′ = (C′, V ′), where C′ = C ∪D ∪⋃n
i=1 Ci and V ′ = V0+V1+· · ·+Vn. It is easy to see that each

candidate c ∈ C has t-approval score ωmax + scoret-veto
(C,V )(c),

where scoret-veto
(C,V )(c) is the t-veto score of c in (C, V ). Fur-

ther, each candidate c ∈ C′−C has t-approval score at most
ωmax in E′.

We form an instance (C′, V ′,W, p, k) of t-approval-
WCCAV, where W = (w1, . . . , wn), and for each i, 1 ≤
i ≤ n, ω(wi) = ω(vi), and wi approves exactly of those can-
didates that vi disapproves of. It is easy to see that adding
voter wi to t-approval election (C′, V ′) has the same net ef-
fect on the scores of the candidates in C as does deleting vi
from t-veto election (C, V ).

A similar proof, though with a slightly more involved
construction of the votes in V ′, gives a reduction from t-
approval-WCCDV to t-veto-WCCAV.

All other remaining cases are NP-complete. Interestingly,
we need only a very limited set of weights in our reductions.

Theorem 13. WCCAV for 2-veto and 3-approval and
WCCDV for 2-approval and 3-veto are NP-complete.

Proof. Due to of space limitations, we will give the proof
only for WCCAV for 2-veto. This case is the simplest, but
the proofs of the other cases are quite similar in flavor. We
will reduce from X3C (exact cover by 3-sets). Let (B,S) be
our input X3C instance, where B = {b1, ..., b3t} and S =
{S1, ..., Sn} is a family of 3-element subsets of B. W.l.o.g.,
we assume that n ≥ t.

Given this instance of X3C, we construct the following
instance (C, V,W, p, k) of WCCAV for 2-veto. We set C =
{p} ∪B ∪ {si | Si ∈ S} ∪ {d} (d is a dummy candidate that
is used for padding) and V consists of the following voters:

weight preference order
3 · · · > p > d
2 · · · > bj > d for all 1 ≤ j ≤ 3t.

W consists of the following voters:
weight preference order

3 · · · > si > d for all 1 ≤ i ≤ n
1 · · · > si > bi1 and Si = {bi1 , bi2 , bi3}
1 · · · > si > bi2
1 · · · > si > bi3 .

We claim that S contains an exact cover if and only if p
can become a winner after adding at most n + 2t voters of
W to V .

(⇒): Add the (n − t) weight-3 voters corresponding to
the sets not in the cover and add the 3t weight-1 voters
corresponding to the sets in the cover. Now compute the
veto weight for each candidate (that is easier than computing
the scores): vetoes(p) = 3, vetoes(d) ≥ 5, vetoes(bj) = 3,
and vetoes(si) = 3. So, p is a winner.

(⇐): Let W be a set of at most n + 2t added voters
that make p a winner. Note that vetoesW (bj) ≥ 1 and
vetoesW (si) ≥ 3. It is easy to see that W consists of (n− t)
weight-3 voters and 3t weight-1 voters. The 3t weight-1 vot-
ers together veto each bj once and t of the si’s 3 times. But
then the weight-1 voters correspond to an exact cover.

The construction above uses only weights 1, 2, and 3. It
is even possible to use only weights 1 and 2, or 1 and 3.

4.4 Approximation and Greedy Algorithms
When problems are computationally difficult, such as be-

ing NP-complete, it is natural to wonder whether good
polynomial-time approximation algorithms exist. So, mo-
tivated by the NP-completeness results discussed earlier
in this paper for most cases of WCCAV/WCCDV for t-
approval and t-veto, this section studies greedy and other
approximation algorithms for those problems. (Recall that
WCCAV is NP-complete for t-approval, t ≥ 3, and for t-
veto, t ≥ 2, and WCCDV is NP-complete for t-approval,
t ≥ 2, and for t-veto, t ≥ 3.) Although we are primarily in-
terested in constructing good approximation algorithms, we
are also interested in cases where particular greedy strate-
gies can be shown to fail to provide good approximation
algorithms, as doing so helps one eliminate such approaches

371



from consideration and sheds light on the approach’s limits
of applicability. First, we will establish a connection to the
weighted multicover problem, and will use it to obtain ap-
proximation results. Then we will obtain an approximation
algorithm that will work by direct action on our problem.
Table 3 summarizes our results on approximation algorithms
for t-approval/t-veto WCCAV/WCCDV.

Weighted Multicover Approach. Let us first consider
the extent to which known algorithms for the Set-Cover fam-
ily of problems apply to our setting. Specifically, we will use
the following generalization of Set-Cover.

Definition 14. An instance of Weighted Multicover
(WMC) consists of a set B = {b1, . . . , bm}, a sequence
r = (r1, . . . , rm) of nonnegative integers (covering require-
ments), a collection S = (S1, . . . , Sn) of subsets of B, and
a sequence ω = (ω1, . . . , ωn) of positive integers (weights of
the sets in S). The goal is to find a minimum-cardinality
set I ⊆ {1, . . . , n} such that for each bj ∈ B, it holds that∑

i∈I∧bj∈Si
ωi ≥ rj.

That is, given a WMC instance we seek a smallest collection
of subsets from S that satisfies the covering requirements of
the elements of B (keeping in mind that a set of weight ω
covers each of its element ω times). WMC is an extension of
Set-Cover and is a special case of Multiset-Multicover [23].
(Even more generally, it is a special case of the Covering In-
teger Programs with Cardinality Constraints problem, see,
e.g., [17]). We first observe that for t-approval both WCCAV
and WCCDV naturally translate to equivalent WMC in-
stances.

We consider WCCAV first. Let (C, V,W, p, k) be an in-
stance of t-approval-WCCAV, where W = (w1, . . . , wn) is
the collection of voters that we may add. We assume w.l.o.g.
that each voter in W ranks p among its top t candidates (i.e.,
approves of p). This assumption is w.l.o.g. because if there
is a solution to a t-approval-WCCAV instance then there is
one that does not add voters that do not approve of p.

We form an instance (B, r,S, ω) of WMC as follows. We
set

B = {bc | c ∈ C ∧ score(C,V )(c) > score(C,V )(p)},

and for each bc ∈ B, we set its covering requirement to be
rc = score(C,V )(c) − score(C,V )(p). For each vote w ∈ W ,
let Sw be the set of candidates that w does not approve
of (by our assumptions, sets Sw never include p). We set
S = (Sw1 , . . . , Swn) and we set ω = (ω(w1), . . . , ω(wn)).
It is easy to see that if a set I ⊆ {1, . . . , n} is a solution
to this instance of WMC (that is, if I satisfies all covering
requirements), then adding the voters {wi | i ∈ I} to the
election (C, V ) ensures that p is a winner. The reason for this
is the following: If we add voter wi to the election then for
each candidate c ∈ Swi , the difference between the score of c
and the score of p decreases by ω(wi), and for each candidate
c ∈ (C − {p}) − Swi this difference does not change. The
covering requirements are set to guarantee that p’s score will
match or exceed the scores of all candidates in the election.

We stress that in the above construction we did not as-
sume t to be a constant. Indeed, the construction applies
to t-veto just as well as to t-approval. Further, based on
this construction (and an analogous one for WCCDV) and
an approximation algorithm of Kolliopoulos and Young [17]
for minimum-cost covering integer programs with multiplic-

ity constraints (a generalization of WMC), we obtain the
following results.

Theorem 15. For each fixed t ≥ 1, there is a O(logm)-
approximation algorithm for t-approval-WCCAV. For each
fixed t ≥ 2, there is O(log t)-approximation algorithm for
t-veto-WCCAV.

Theorem 16. For each fixed t ≥ 2, there is a O(log t)-
approximation algorithm for t-approval-WCCDV. For each
fixed t ≥ 1, there is O(logm)-approximation algorithm for
t-veto-WCCDV.

Direct Approach. Using algorithms for WMC, we
were able to obtain relatively strong algorithms for
WCCAV/WCCDV under t-approval and t-veto. However,
with this approach we did not find approximation algorithms
for t-approval-WCCAV and t-veto-WCCDV whose approxi-
mation ratios do not depend on the size of the election. In
the following we will seek direct algorithms for these prob-
lems. We also will observe that some greedy approaches fail
to give constant-approximation algorithms for our control
problems.

We now show that a very simple greedy approach yields a
polynomial-time t-approximation algorithm for t-approval-
WCCAV and t-veto-WCCDV. (Recall that this means that
in cases when making p win is possible, the number of vot-
ers our algorithm adds/deletes to reach victory is never
more than three times that of the optimal set of addi-
tions/deletions.)

Let GBW (greedy by weight) define the following very
simple algorithm for WCCAV. (The votes are the weighted
t-approval vectors induced by the preferences of the voters.)
(Pre)discard all unregistered votes that do not approve of
the preferred candidate p. Order the (remaining) unregis-
tered votes from heaviest to lightest, breaking ties in voter
weights in some simple, transparent way (for concreteness,
let us say by lexicographic order on the votes’ representa-
tions). GBW goes through the unregistered votes in that or-
der, and as it reaches each vote it adds the vote exactly if the
vote disapproves of at least one candidate whose score (i.e.,
total weight of approvals) is currently strictly greater than
that of p. It stops successfully when p has become a winner
and unsuccessfully if before that happens the algorithm runs
out of votes to consider. The following result says that GBW
is a t-approximation algorithm for t-approval-WCCAV (and
also for t-approval-WCCDV, using the obvious analogue of
GBW for t-veto, which we will also call GBW).

Theorem 17. Let t ≥ 3. The polynomial-time greedy al-
gorithm GBW is a t-approximation algorithm for t-approval-
WCCAV and t-veto-WCCDV; and there are instances in
which GBW’s approximation factor on each of these prob-
lems is no better than t.

Proof. Examples showing that GBW can use t times
too many additional votes are not hard to construct (and
the lower bound even holds for t = 2, though in Section 4.3
we obtained an exact solution by a different approach); due
to space we omit them. (One does have to be careful to set
the “gap” pattern created by the unregistered voters to be a
realizable one; we do this by a general trick that lets us set
up certain patterns of gaps.)

We now turn to the t-approximation claims. We will prove
the result for t = 3 and WCCAV, but it will be immedi-

372



ately clear that our proof straightforwardly generalizes to all
greater t; and the WCCDV case follows using Theorem 12.

Clearly GBW is a polynomial-time algorithm. Consider a
given input instance of t-approval-WCCAV, with preferred
candidate p. W.l.o.g. assume all unregistered voters approve
of p. We will say a candidate “has a gap” (under the cur-
rent set of registered voters and whatever unregistered voters
have already been added) if that candidate has strictly more
weight of approvals than p does. For each candidate d who
has a gap, d 6= p, define id to be the minimum number of
unregistered voters one has to add to remove d’s gap; that is,
if one went from heaviest to lightest among the unregistered
voters, adding in turn each that disapproved of d, id is the
number of voters one would add before d no longer had a
gap. If for any candidate d it holds that no integer realizes
id, then control is impossible using the unregistered voter
set. Clearly, any successful addition of voters must add at
least maxd id voters (the max throughout this proof is over
all candidates initially having a gap).

Let us henceforth assume that control is possible in the
input case. We will show that after having added at most
3 ·maxd id voters GBW will have made p a winner, and so
GBW is a 3-approximation algorithm. By way of contradic-
tion, suppose that after 3·maxd id additions some candidate,
z, still has a gap.

Case 1 [In at least maxd id of the first 3 · maxd id votes
added by GBW, z is not approved]. Since for the last one
of these to be added z must still have had a gap before
the addition, each earlier vote considered that disapproved
z had a gap for z when it was considered and so would
have been added when reached. So, keeping in mind that
iz ≤ maxd id, we in fact must have added the iz heaviest
voters disapproving of z, and so contrary to the assumption,
z no longer has a gap after these additions.

Case 2 [Case 1 does not hold]. So z is approved in at least
1 +2 ·maxd id of the added voters. What made the final one
of the added votes, call it v′, eligible for addition? It must
be that some candidate, say y, still had a gap just before v′

was added.
Case 2a [y is disapproved in at least maxd id of the

2 · maxd id votes added before v′ that approved z]. Then,
since until y’s gap was removed no unregistered voters dis-
approving of y would be excluded by GBW, y’s iy heaviest
voters will have been added. So contrary to Case 2’s as-
sumption, y is not a gap when we get to adding vote v′.

Case 2b [Case 2 holds but Case 2a does not]. Then y is
approved in at least 1+maxd id of the 2·maxd id votes before
v′ that GBW added that approve z. So we have 1 + maxd id
votes added approving of exactly z and y. But then who
made the last of those 1 + maxd id votes, call it v′′, eligible
to be added? It must be that some candidate w had a gap
up through v′′. But at the moment before adding v′′ we
would have added maxd id ≥ iw votes approving exactly z
and y and so disapproving w, and since w allegedly still had
a gap, we while doing so under GBW would have in fact
added the iw heaviest voters disapproving of w, and so w’s
gap would have been removed before v′′, so contrary to our
assumption w was not the gap that made v′′ eligible.

Given that for each t, the greedy by weight (GBW) heuris-
tic gives a constant-approximation algorithm for t-approval-
WCCAV, it might be natural to hope that GBW might give
us a constant-approximation algorithm for t-veto-WCCAV.
However, we have constructed a family of examples that es-

tablishes that even for the 2-veto WCCAV problem, GBW
does not yield any constant approximation.

Theorem 18. GBW is not an O(1)-approximation algo-
rithm for 2-veto-WCCAV.

One might wonder whether other greedy approaches
will provide constant-approximation algorithms for 2-veto-
WCCAV. We have studied seven other natural greedy al-
gorithms, and for each of those, we have proven that the
algorithm does not provide a constant-approximation algo-
rithm for 2-veto-WCCAV. Among those seven other algo-
rithms are such approaches as “greedy by maximum gap
before” (the next vote to add is a heaviest vote among the
remaining unregistered votes that both approve of p and
veto someone whose current advantage over p is maximum),
“greedy maximum gap after (the addition),”“greedy by max-
imum gap before, tie-breaking the selection based on mini-
mizing the maximum gap after (the addition),” GBW mod-
ified in ways to “shake it up” by trying when possible to
avoid having adjacent additions being identical in who-is-
vetoed, or even by trying to have them avoid intersections
in adjacent who-is-vetoed sets (this type of approach may
seem a strange thing to do, but an approval analogue of it
yielded our first O(1)-approximation algorithm in one of the
t-approval cases), and various others. We don’t define these
approaches in detail here since we have concrete examples
showing all of them fail to yield O(1)-approximation algo-
rithms (and even somewhat stronger claims hold as to their
failure to approximate well). Our planned full version will
give more clearly these greedy approaches, and go over the
related counterexample constructions. However, we men-
tion one greedy heuristic for which we could not prove the
lack of O(1)-approximation performance. That heuristic is
the attractive approach of adding next an unregistered vote
that induces the largest decrease in the sum of the gaps,
by which we mean the sum over all candidates with strictly
more weight of approvals than p of how much more weight of
approvals than p they have. Not only do we not have a proof
that that is not an O(1)-approximation for 2-veto-WCCAV,
but also it is a strong candidate for giving an even better
approximation algorithm for 3-approval-WCCAV than the
3-approximation algorithm given by GBW. For 3-approval-
WCCAV, we can show that the sums-of-gaps approach can-
not yield a (3/2 − ε)-approximation algorithm, but this is
just a weak first step toward understanding that heuristic,
which we commend as an interesting open direction.

5. CONCLUSIONS
We have studied voter control under a number of voting

rules, including t-approval, t-veto, Borda, and the family of
(weak) Condorcet-consistent rules. We have completed the
classification of the complexity of weighted voter control for
t-approval and t-veto, and we have shown that the complex-
ity of voter control can be quite different than the complex-
ity of weighted coalitional manipulation: there are natural
voting rules for which weighted coalitional manipulation is
easy but weighted voter control is hard, and there are nat-
ural rules where the opposite is the case. Further, we have
shown that for weighted voter control under t-approval and
t-veto, there are good, natural approximation algorithms.
Our results for voter control in weighted elections are sum-
marized in Tables 1, 2, and 3.

373



WCCAV WCCDV
t-approval P (Thm. 4) P (Thm. 4)
Borda NPC (Thm. 5) NPC (Thm. 5)
(weak)Condorcet- NPC NPC
consistent rules (Thm. 7) (Thm. 7)

Table 1: Our results for the complexity of control
by adding/deleting voters in weighted elections for
any fixed number of candidates, m ≥ 3.

WCCAV WCCDV
t-approval
t = 2 P (Thm. 10) NPC (Thm. 13)
t = 3 NPC (Thm. 13) NPC [18]
t ≥ 4 NPC [18] NPC [18]

t-veto
t = 2 NPC (Thm. 13) P (Thm. 11)
t = 3 NPC [18] NPC (Thm. 13)
t ≥ 4 NPC [18] NPC [18]

Table 2: The complexity of control by adding and
deleting voters for t-approval and t-veto with an un-
bounded number of candidates.

t-approval t-veto
WCCAV O(logm) [Thm. 15]

t [Theorem 17]
O(log t) [Thm. 15]

WCCDV O(log t) [Thm. 16] O(logm) [Thm. 16]
t [Theorem 17]

Table 3: Approximation ratios of our algorithms for
WCCAV and WCCDV under t-approval and t-veto.

Acknowledgments. Supported in part by grants
AGH-11.11.120.865, NCN’s DEC-2011/03/B/ST6/01393,
and NSF-CCF-{0915792,1101452,1101479}, and two Bessel
Awards.

6. REFERENCES
[1] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is

it to control an election? Mathematical and Computer
Modeling, 16(8/9):27–40, 1992.

[2] D. Baumeister, M. Roos, J. Rothe, L. Schend, and
L. Xia. The possible winner problem with uncertain
weights. In Proc. of ECAI-12, pages 133–138, Aug.
2012.

[3] F. Brandt, M. Brill, E. Hemaspaandra, and
L. Hemaspaandra. Bypassing combinatorial
protections: Polynomial-time algorithms for
single-peaked electorates. In Proc. of AAAI-10, pages
715–722, July 2010.

[4] E. Brelsford, P. Faliszewski, E. Hemaspaandra,
H. Schnoor, and I. Schnoor. Approximability of
manipulating elections. In Proc. of AAAI-08, pages
44–49. AAAI Press, July 2008.

[5] R. Congleton. The Swedish transition to democracy
(Chapter 14). In Perfecting Parliament. Cambridge
University Press, 2011.

[6] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in
elections: Finding the possible winners. JAIR,
42:529–573, 2011.

[7] G. Erdélyi, L. Piras, and J. Rothe. The complexity of

voter partition in Bucklin and fallback voting: Solving
three open problems. In Proc. of AAMAS-11, pages
837–844, May 2011.

[8] G. Erdélyi and J. Rothe. Control complexity in
fallback voting. In Proc. of 16th Australasian Theory
Symposium, pages 39–48, Jan. 2010.

[9] P. Faliszewski, E. Hemaspaandra, and
L. Hemaspaandra. Multimode attacks on elections. In
Proc. of IJCAI-09, pages 128–133, July 2009.

[10] P. Faliszewski, E. Hemaspaandra, and
L. Hemaspaandra. Using complexity to protect
elections. Commun. ACM, 53(11):74–82, 2010.

[11] P. Faliszewski, E. Hemaspaandra, and
L. Hemaspaandra. The complexity of manipulative
attacks in nearly single-peaked electorates. In Proc. of
TARK-11, pages 228–237, July 2011.

[12] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra,
and J. Rothe. The shield that never was: Societies
with single-peaked preferences are more open to
manipulation and control. Information and
Computation, 209:89–107, 2011.

[13] P. Faliszewski, E. Hemaspaandra, and H. Schnoor.
Copeland voting: Ties matter. In Proc. of AAMAS-08,
pages 983–990, May 2008.

[14] E. Hemaspaandra and L. Hemaspaandra. Dichotomy
for voting systems. Journal of Computer and System
Sciences, 73(1):73–83, 2007.

[15] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Anyone but him: The complexity of precluding an
alternative. Artificial Intelligence, 171(5–6):255–285,
2007.

[16] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Hybrid elections broaden complexity-theoretic
resistance to control. Mathematical Logic Quarterly,
55(4):397–424, 2009.

[17] S. Kolliopoulos and N. Young. Approximation
algorithms for covering/packing integer programs.
Journal of Computer and System Sciences,
71(4):495–505, 2005.

[18] A. Lin. Solving Hard Problems in Election Systems.
PhD thesis, Rochester Institute of Technology,
Rochester, NY, 2012.

[19] C. Menton. Normalized range voting broadly resists
control. Technical Report arXiv:1005.5698 [cs.GT],
arXiv.org, May 2010. Revised June 2012.

[20] D. Parkes and L. Xia. A
complexity-of-strategic-behavior comparison between
Schulze’s rule and ranked pairs. In Proc. of AAAI-12,
pages 1429–1435, July 2012.

[21] J. Rothe and L. Schend. Control complexity in
Bucklin, Fallback, and Plurality voting: An
experimental approach. In Proc. of SEA-12, pages
356–368, June 2012.

[22] N. Russell. Complexity of control of Borda count
elections. Master’s thesis, Rochester Institute of
Technology, 2007.

[23] V. Vazirani. Approximation Algorithms. Springer,
2003.

[24] L. Xia. How many vote operations are needed to
manipulate a voting system? In Proc. of
COMSOC-12, pages 443–454, Sept. 2012.

374




