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ABSTRACT
Axioms that govern our choice of voting rules are usually de-
fined by imposing constraints on the rule’s behavior under
various transformations of the preference profile. In this pa-
per we adopt a different approach, and view a voting rule as
a (multi-)coloring of the election graph—the graph whose
vertices are elections over a given set of candidates, and
two vertices are adjacent if they can be obtained from each
other by swapping adjacent candidates in one of the votes.
Given this perspective, a voting rule F is characterized by
the shapes of its “monochromatic components”, i.e., sets of
elections that have the same winner under F . In particular,
it would be natural to expect each monochromatic compo-
nent to be convex, or, at the very least, connected. We
formalize the notions of connectivity and (weak) convexity
for monochromatic components, and say that a voting rule
is connected/(weakly) convex if each of its monochromatic
components is connected/(weakly) convex. We then inves-
tigate which of the classic voting rules have these proper-
ties. It turns out that while all voting rules that we con-
sider are connected, convexity and even weak convexity are
much more demanding properties. Our study of connectiv-
ity suggests a new notion of monotonicity, which may be of
independent interest.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems
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1. INTRODUCTION
In many multi-agent systems and human collectives, agents
have to work together and make group decisions, despite
having different preferences over possible outcomes. Such
decisions are traditionally made by means of voting, and
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therefore a thorough understanding of voting rules and their
properties is important for the design and analysis of multi-
agent systems. Many such studies have been undertaken
in the past, with the focus on either axiomatic or com-
putational properties of voting rules (see, e.g., [19, 1] for
overviews of classic social choice topics and [7, 16] for a
discussion of computational aspects of voting). The for-
mer strand of research identifies desirable properties of vot-
ing rules; usually such properties specify how a voting rule
should behave under various transformations of the prefer-
ence profile (such us, e.g., merging two preference profiles
that are identical or that have the same winner, shifting
the winner upwards in some votes, etc.). The latter strand
focuses, e.g., on efficient winner determination or on modi-
fications of the profile that lead to a desired change of the
election outcome (this description encompasses several forms
of malicious behavior, such as manipulation [2, 9], control [3,
17] or bribery [15], as well as more benign actions such as
campaign management [12, 24]).

In this paper, in contrast to the previous work, we adopt
a bird’s-eye view of elections and voting rules. Our ap-
proach is geometric in nature and is motivated by recent
work on distance-based interpretation of voting rules [18,
14, 13]. Specifically, we view the set of all elections (with a
fixed set of candidates C and a fixed number of voters) as
the vertex set of a giant graph where we connect two ver-
tices by an edge if they can be obtained from each other by
swapping two adjacent candidates in some vote. As a result,
the shortest path distance in our graph is the so-called swap
distance. Now, each voting rule F can be viewed as a multi-
coloring of this graph with elements of C: the set of colors
assigned to a vertex E is the set of winners in the election E
under the rule F (we allow rules with multiple winners, i.e.,
voting correspondences). One can then ask which properties
we would expect this coloring to have for a voting rule to be
considered “reasonable”. For instance, we would expect each
“blob”of color to have the same size; this property is implied
by (but not equivalent to) voting rule neutrality. However,
perhaps a more immediate requirement is for each “blob” to
consist of elections that are grouped together in the graph.
At a minimum, we would want each “blob” to be connected,
that is, to induce a connected subgraph of our graph. More
ambitiously, we might ask whether each “blob” is convex,
i.e., whether it is the case that for every two vertices that
have the same color there is a shortest path between them
in the graph that only goes through vertices of that color.
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In this paper, we study connectivity and convexity (in
the above-defined sense) of a variety of voting rules. We
start by investigating the weaker of these two properties,
namely, connectivity (Section 3). We first give a simple ar-
gument which establishes that every weakly monotone rule
is connected. We then identify a more relaxed monotonicity
criterion, which we call feeble monotonicity, which turns out
to be sufficient for connectivity, and may be of independent
interest. We illustrate the power of this criterion by show-
ing that three well-known voting rules that are not weakly
monotone—Single Transferable Vote (STV), Coombs, and
Dodgson—are feebly monotone. In contrast, Baldwin and
Nanson, two sequential elimination rules that are based on
the Borda score, are not even feebly monotone. Neverthe-
less, even for these rules we manage to show connectivity,
by using a somewhat more subtle argument.

We then move on to the study of convexity (Section 4).
We establish that a natural definition of convexity, which
parallels the definition of connectivity used in Section 3, is
so stringent that even the most basic voting rules do not
satisfy it. We then consider a somewhat more permissive
definition of convexity and demonstrate that it is satisfied by
the Plurality rule. But even this relaxed definition turns out
to be too demanding: we show that it is failed by Borda (and
a large class of other scoring rules), Maximin and Copeland.
On the other hand, we show that several natural consensus
classes (classes of elections with a single, undisputed winner;
e.g., elections where each votes ranks the same candidate
first) do satisfy convexity. We also provide another example
of a convex set of elections, namely, elections that are single-
peaked with respect to a given axis (see Section 4.3 for a
definition of single-peaked elections). Further, we argue that
for a large class of voting rules, which includes all common
rules, convexity implies feeble monotonicity.

2. PRELIMINARIES
We write [n] to denote the set {1. . . . , n}. An election is
specified by a set of candidates C = {c1, . . . , cm} and a pref-
erence profile R = (R1, . . . , Rn), where each Ri, i ∈ [n], is a
linear order over C. We will sometimes write �i in place of
Ri. We will refer to the entries of R as votes; i.e., Ri is the
vote of voter i in election E = (C,R). We will say that voter
i ranks a candidate a ∈ C above b ∈ C (or, prefers a to b) if
a �i b. We denote the top candidate in vote Ri by top(Ri),
i.e., we write a = top(Ri) if a �i b for all b ∈ C \{a}. Given
a set of candidates X and two candidates a, b 6∈ X, we write
a � X � b to denote a vote where a is ranked above all
candidates in X, b is ranked below all candidates in X, and
the candidates in X are ranked in lexicographic order; we

use a �
←−
X � b to denote the same vote with the order of

the candidates in X reversed.
A voting rule1 is a mapping F that given an election E =

(C,R) outputs a non-empty set of candidates W = F(E) ⊆
C; the candidates in W are called the winners of the election
E under the voting rule F . If F(E) = {c} for some c ∈ C
then candidate c is called the unique winner of the election
E. If |F(E)| > 1 then the elements of F(E) are called the
co-winners of E.

Given a set of candidates C, |C| = m, and a positive in-
teger n, we construct a graph Gn,m = (V, E) whose vertices

1Technically, the appropriate term would be a voting corre-
spondence, but we use “rule” for brevity.

are all n-voter elections over C and where we have an edge
between two elections (C,R) and (C,R′) if R′ can be ob-
tained from R by swapping two adjacent candidates in one
of the votes. Note that |V| = (m!)n and the degree of each
vertex is (m − 1)n. In what follows, we omit the indices n
and m and write G in place of Gn,m where this does not lead
to confusion.

One can think of a voting rule F as a (multi-)coloring of
this graph: the set of colors is C and each vertex E is as-
signed a set of colors F(E). Given a candidate a ∈ C, we
denote by cola(G,F) the set of all vertices that are colored
with a under F : cola(G,F) = {E | a ∈ F(E)}. We will refer
to the set cola(G,F), a ∈ C, as a monochromatic component
of G with respect to F . We will be interested in how the
choice of a voting rule affects the “shapes” of the monochro-
matic components. To formalize the notion of shape, we
introduce the following definitions.

Definition 2.1. A subset V ′ of vertices of the graph G =
(V, E) is said to be connected if for every E,E′ ∈ V ′ there
exists a path from E to E′ that lies entirely within V ′. A
voting rule F is said to be connected if for each a ∈ C the
set cola(G,F) is connected.

Definition 2.2. A subset V ′ of vertices of the graph G =
(V, E) is said to be convex if for every E,E′ ∈ V ′ there
exists a path from E to E′ that lies entirely within V ′ and
has length d, where d is the length of a shortest path between
E and E′ in G. A voting rule F is said to be convex if for
each a ∈ C the set cola(G,F) is convex.

We remark that given two elections, E and E′, there may
be many shortest paths between them. However, each such
shortest path can be obtained by executing (in some order)
exactly all the swaps of the form “swap candidates ci and
cj in vote k”, where the k-th vote in E ranks ci ahead of cj
and the k-th vote in E′ ranks cj ahead of ci (see, e.g., [11]).

While the notion of convexity defined above is satisfied by
several consensus classes (see Section 4), it turns out to be
too stringent for common voting rules: we consider several
well-studied rules, and show that none of them is convex in
the above sense. Therefore, we will now introduce a more
relaxed notion, which we call weak convexity. Intuitively,
a voting rule is weakly convex if the convexity condition is
satisfied for pairs of elections with the same unique winner.

Definition 2.3. A voting rule F is said to be weakly con-
vex if for every a ∈ C and every pair of elections E1, E2 such
that F(E1) = F(E2) = {a} there exists a path between E1

and E2 that lies entirely in the set cola(G,F) and has length
d, where d is the length of a shortest path between E and E′

in G.

We mention that our definition of convexity, and—in
general—the nature of our geometric approach, is very dif-
ferent from that used by Saari [22, 23]. The two main dif-
ferences, as compared to the notion of convexity in [22], are
that (a) Saari uses a very different space of elections (in par-
ticular, in his space elections with different number of vot-
ers are naturally allowed whereas this is not the case in our
model), and (b) Saari is interested in the process of merg-
ing two elections (and, in effect, in changing the number of
voters) whereas we transform the votes, without changing
the number of voters. Further, two elections that are close
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in terms of the swap distance may be quite distant in the
election space used by Saari.

Voting rules We now describe the voting rules considered
in this paper (see [5] for more details on voting rules). Unless
explicitly specified otherwise, the winners are the candidates
with the highest score. Given a profile R and a candidate
c, we write s(R, c) to denote the score of c in R under the
rule being defined.

Scoring rules Let m be the number of candidates. Given
a vector α = (α1, . . . , αm) ∈ Rm with α1 ≥ · · · ≥ αm, we de-
fine a scoring rule Fα as follows. Each voter grants αi points
to the candidate she ranks in the i-th position; the score of a
candidate is the sum of the scores he receives from all voters.
In this work, we assume without loss of generality that the
coordinates of α are nonnegative integers given in binary.
Some well-known voting rules can be represented as fami-
lies of scoring rules. For example, Plurality is given by the
family of scoring rules with vectors of the form (1, 0, . . . , 0),
Veto corresponds to a family of scoring rules with vectors
(1, . . . , 1, 0), and Borda corresponds to a family of scoring
rules with vectors (m− 1, . . . , 1, 0).

Copeland A candidate a is said to win a pairwise election
against candidate b if more than half of the voters prefer a
to b. If exactly half of the voters prefer a to b then a is said
to tie his pairwise election against b. Under the Copeland
rule, each candidate gets 1 point for each pairwise election
he wins and 0.5 points for each pairwise election he ties.

Maximin The Maximin score of a candidate c ∈ C is given
by the number of votes c gets in his worst pairwise election,
i.e., mind∈C\{c} |{i | c �i d}|.
Dodgson A candidate a ∈ C is said to be the Condorcet
winner of an election E = (C,R) if he beats every other
candidate in their pairwise election. Given an election E
and a candidate a ∈ C, the Dodgson score of a in E is
the distance in G from E to the nearest election that has
a as its Condorcet winner. The Dodgson winner(s) are the
candidates with the smallest Dodgson score.

Successive elimination rules For any voting rule F that
is defined by assigning scores to candidates (so that the can-
didate with the highest score wins), we can define a succes-
sive elimination variant of this rule, denoted by SE-F , as
follows. Under SE-F , the election proceeds in rounds. Dur-
ing each round, the candidate with the lowest F-score is
eliminated, and the candidates’ F-scores are recomputed.
The winner is the candidate that survives until the end. If
several candidates have the lowest F-score, we assume that
the candidate to be eliminated is chosen according to the
lexicographic order over the candidates: if S is the set of
candidates that have the lowest F score in some round, we
eliminate the candidate cj such that j ≥ i for all ci ∈ S.
(Other tie-breaking rules are also popular; see, e.g., [8] for
parallel-universes tie-breaking.) Several classic voting rules
can be described as sequential elimination rules: STV is
SE-Plurality, Coombs is SE-Veto, and Baldwin is SE-Borda.
Nanson is another rule based on the idea of successive elim-
ination. Just as Baldwin, it works with Borda scores, but
instead of eliminating a single candidate with the lowest
Borda score, it eliminates all candidates whose Borda scores
are strictly below the average. We mention that successive
elimination rule have recently received some attention in the
context of their algorithmic properties [20, 10].

3. CONNECTIVITY
We start by presenting a simple, yet powerful, argument
showing that many voting rules are connected. This argu-
ment makes use of a classic notion of monotonicity of voting
rules, known as weak monotonicity.2

Definition 3.1. A voting rule F is said to be weakly
monotone if for every election E = (C,R) and every can-
didate a ∈ F(E) it holds that every election E′ = (C,R′)
obtained from E by picking a vote Ri with top(Ri) 6= a and
swapping a with the candidate ranked right above her in Ri
satisfies a ∈ F(E′).

It is not hard to verify that all scoring rules, Copeland, and
Maximin are weakly monotone. In contrast, neither Dodg-
son nor any of the successive elimination rules (including
Nanson) has this property (for the case of Dodgson, see [6]
for a survey of its deficiencies; for the case of Baldwin and
Nanson—and elimination rules in general—see, e.g., [21] and
the references therein, in particular, the work of Smith [25]).

We will say that a voting rule F is unanimity-consistent
if in every election E where some candidate a is ranked first
by all voters, we have a ∈ F(E). Clearly, all voting rules
defined in Section 2 are unanimity-consistent.

Proposition 3.2. Every weakly monotone and
unanimity-consistent voting rule is connected.

Proof. Fix a weakly monotone and unanimity-consistent
voting rule F , a candidate a and two elections E1 = (C,R),
E2 = (C,R2) in cola(G,F). We will argue that there is a
path from E1 to E2 that is contained in cola(G,F).

Let Ê1 (respectively, Ê2) be the election obtained by mov-
ing a to the top of each vote in R1 (respectively, R2),
while leaving the relative ordering of all other candidates

unchanged. Election Ê1 can be reached from E1 by repeat-
edly swapping a with a candidate ranked right above her in
some vote. Thus, by weak monotonicity of F there is a path

P1 from E1 to Ê1 in cola(G,F). Similarly, there is a path

P2 from E2 to Ê2 in cola(G,F). Now, both in Ê1 and in

Ê2 candidate a is ranked first in all votes. Thus, we can

transform Ê1 into Ê2 by repeatedly swapping adjacent can-
didates without touching a. Let P12 be the path in G that
corresponds to this transformation. Since F is unanimity-
consistent, this path is contained in cola(G,F). Thus, we
can obtain a path from E1 to E2 in cola(G,F) by gluing
together P1, P12, and (the reverse of) P2.

Corollary 3.3. Copeland, Maximin, and all scoring
rules are connected.

Note that the proof of Proposition 3.2 does not use the full
power of weak monotonicity: for the proof to go through,
it suffices to be able to move the current winner a up in
some vote without making it lose, whereas weak monotonic-
ity criterion ensures that we can move a up in every vote
where she is not ranked first. This motivates the following
definition, which we believe may be of independent interest.

2The qualifier “weak” is used to distinguish it from another
classic notion of monotonicity, strong monotonicity (see,
e.g., [19]). We do not define strong monotonicity here as
it is not relevant to our work.
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Definition 3.4. A voting rule F is said to be feebly
monotone if for every election E = (C,R) and every candi-
date a ∈ F(E) it holds that either (1) top(Ri) = a for all
i ∈ [n], or (2) there exists a vote Ri with top(Ri) 6= a such
that the election E′ = (C,R′) obtained from R by swapping
a with the candidate ranked right above her in Ri satisfies
a ∈ F(E′).

As argued above, the proof of Proposition 3.2 actually shows
the following stronger claim.

Corollary 3.5. Every feebly monotone and unanimity-
consistent voting rule is connected.

Of course, the reader may wonder if the class of feebly
monotone voting rules is different from the class of weakly
monotone voting rules. We will now show that this is indeed
the case, by proving that STV, Coombs, and Dodgson are
feebly monotone (as we have mentioned, all of these rules
are known not to be weakly monotone).

Theorem 3.6. The STV rule is feebly monotone.

Proof. Consider an election E = (C,R) and let a be the
STV winner of E (note that under our definition of STV,
every election has a unique STV winner). The case where a
is the unanimous winner of E is trivial, so we assume that
there is a vote in R where a is not ranked first.

We rename the candidates so that C = {c1, . . . , cm},
where for each j, j = 1, . . . ,m− 1, cj is the candidate elim-
inated in the j-th round, and where cm is a. For each vote
Ri in R where a is not ranked on top, we define abovei(a) to
be the candidate that Ri ranks right above a. Further, for
each such Ri we define `i to be the first elimination round
such that before round `i starts, all candidates ranked in
Ri ahead of the candidate abovei(a) are eliminated. Ob-
serve that until round `i, voter i does not contribute to the
Plurality scores of either abovei(a) or a. Thus, if abovei(a)
is eliminated before round `i, we can safely swap abovei(a)
and a in Ri: the Plurality scores of all candidates in all
rounds would not be affected, and therefore a would win in
the modified election as well.

It remains to consider the case where for each vote Ri with
top(Ri) 6= a the candidate ranked right above a in Ri is not
eliminated before round `i. Let ` = max{`i | a 6= top(Ri)},
let Rk be some vote with `k = `, let c = abovek(a), and let
r be an integer such that c = cr. We will now argue that if
we swap a and c in Rk then a will still be the STV winner.

Let E′ be the election obtained by swapping a and c in Rk.
If STV operates in the same way on E and E′, i.e., if STV
eliminates candidates in the same order in both elections
then, naturally, a is the unique winner of E′. Now, suppose
there is a round where STV eliminates different candidates
in E and E′, and let `′ be the first such round. The reader
can verify that we have `′ ≥ ` and, moreover, it has to be
the case that in round `′ STV eliminates c from E′ (whereas
in E candidate c is eliminated in round r > `′).

We claim that at the start of round `′ all voters in E who
rank c first (and, hence, all voters in E′ who rank c first)
rank a right after c. That is, after round `′ in E′ all votes
for c transfer to a. Indeed, suppose there exists some voter
i in E′ who at the beginning of round `′ ranks c first but
does not rank a second. Let b = abovei(a), b 6= c, be the
candidate ranked right above a in the original ordering Ri
(i.e., before we started eliminating candidates). Note that by

our assumption candidate b is not eliminated until round `i.
Since at the beginning of round `′ candidate c still appears
above a in vote i (both in E and in E′), it has to be the case
that `i > `′ ≥ `, a contradiction with our choice of `.

Thus, after round `′, all c’s votes in E′ transfer to a.
Observe that after round `′ the Plurality score of each can-
didate c′ ∈ C \ {c, a} in E′ is the same as his Plurality
score in E after round `′ − 1, whereas the Plurality score of
a in E′ after round `′ may be higher than her score in E
after round `′. Note also that in E candidate a is not elim-
inated until the very end (and recall that the tie-breaking
rule is lexicographic). Therefore, the behavior of STV on
E′ in rounds `′ + 1, . . . , r is identical to its behavior on E
in rounds `′, . . . , r − 1, i.e., it eliminates the same candi-
dates in the same order (note that all votes that transfer
to c in E transfer to a in E′, and thus do not affect the
relative scores of other candidates). Then, in round r STV
eliminates c = cr from E (as argued above, all these votes
transfer to a), and from round r + 1 onwards STV oper-
ates identically on both E and E′. In particular, this means
that a is the STV winner of E′, which is what we wanted to
prove.

A similar argument, omitted due to space constraints,
shows that the Coombs rule is feebly monotone as well.

Theorem 3.7. The Coombs rule is feebly monotone.

For the Dodgson rule, the argument is somewhat different.

Theorem 3.8. The Dodgson rule is feebly monotone.

Proof. Consider an election E = (C,R) and let a be a
Dodgson winner of E. Suppose first that a is the Condorcet
winner of E. Then a remains the Condorcet winner (and
hence the unique Dodgson winner) after it is shifted upwards
in any of the votes, so we are done.

Now, suppose that a’s Dodgson score is s > 0 (and hence
the Dodgson score of any other candidate is at least s), and
consider a sequence of swaps of length s that makes a the
Condorcet winner. It can be assumed without loss of gen-
erality that each of these swaps involves a and moves her
upwards in the vote. Suppose that the first of these swaps
takes place in the i-th vote, i.e., it swaps a with candidate
c ranked right above her in Ri. Consider the election E′

obtained from E by swapping a and c in Ri. In E′, the
Dodgson score of a is s− 1: it is at most s− 1, because we
can perform the rest of the swaps in the original sequence
that makes a the Condorcet winner, and it is at least s− 1,
because otherwise the Dodgson score of a in E would be less
than s. On the other hand, the Dodgson score of any other
candidate in E′ is at least s− 1: any sequence of swaps that
makes a candidate b 6= a the Condorcet winner in E′ com-
bined, if necessary, with swapping b and a in vote i, would
make b the Condorcet winner in E. Thus, a is a Dodgson
winner in E′.

While the set of feebly monotone voting rules is consider-
ably broader than the set of weakly monotone voting rules,
there exist voting rules that are not even feebly monotone.
In particular,this is the case for the Nanson rule and the
Baldwin rule.

Theorem 3.9. The Baldwin rule is not feebly monotone.
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Proof. We construct an election over the set of can-
didates C = {x0, . . . , x4, a, b} as follows. Let R0 be a
5-voter preference profile over {x0, . . . , x4} where voter i,
i = 1, . . . , 5, ranks the candidates as:

xi mod 5 � xi+1 mod 5 � . . . � xi−1 mod 5.

Let R1 be a 5-voter profile over C obtained by inserting a
and b into, respectively, the top position and the second-to-
last position in each vote in R0; for instance, the first voter
in R1 ranks the candidates as a � x1 � x2 � x3 � x4 � b �
x0. Similarly, let R2 be a 5-voter profile over C obtained by
inserting a and b into, respectively, the second-to-last and
the second position in each vote in R0; for instance, the
first voter in R2 ranks the candidates as x1 � b � x2 �
x3 � x4 � a � x0. Finally, let R3 be a 5-voter profile over
C obtained by inserting a and b into, respectively, the first
and the last position in each vote in R0; for instance, the
first voter in R3 ranks the candidates as a � x1 � x2 �
x3 � x4 � x0 � b.

Now, consider the election obtained by taking 4 copies of
R1, 5 copies of R2, and 1 copy of R3. Assume that the
tie-breaking rule favors b over all other candidates.

In this election the Borda score of a is 175, the Borda score
of b is 145, and the Borda score of each xi, i = 1, . . . , 4, is
146. Thus, in the first round b is eliminated. In the next five
rounds, candidates x1, . . . , x0 are eliminated, and finally a
wins.

Now, suppose that we move a one position up in some
vote in R2. This lowers the score of some xi, i = 0, . . . , 4, to
145. Hence, because of the tie-breaking rule, in the modified
election xi is the first candidate to be eliminated. Then all
other candidates in C \ {a, b} are eliminated one by one,
starting with xi−1 mod 5 and ending with xi+1 mod 5. In the
last round the election is a tie between a and b, so b wins
because of the tie-breaking rule. This is the case no matter
in which vote a was moved upwards. Hence, the theorem is
proved.

Theorem 3.10. The Nanson rule is not feebly monotone.

This theorem is witnessed by the following 12-voter 7-
candidate profile (preference orders are formed by the matrix
columns):

a7 a4 a3 a2 a1 a6 a7 a4 a5 a1 a2 a6
a5 a3 a2 a7 a6 a5 a3 a5 a1 a7 a6 a3
a4 a2 a7 a1 a5 a4 a4 a1 a7 a2 a3 a4
a3 a7 a1 a6 a4 a3 a5 a7 a2 a6 a4 a5
a2 a1 a6 a5 a3 a2 a1 a2 a6 a3 a5 a1
a6 a6 a5 a4 a2 a1 a6 a6 a3 a4 a1 a2
a1 a5 a4 a3 a7 a7 a2 a3 a4 a5 a7 a7


Borda scores of all candidates in this profile equal 36 and

thus Nanson rule declares all candidates to be the winners of
the election. In particular, a6 is among the winners. How-
ever, in every vote where a6 is not ranked first, either a1 or
a2 is ranked right above a6. A straightforward calculation
shows that if we move a6 up, a6 ceases to be a winner.

Theorem 3.11. Both the Baldwin rule and the Nanson
rule are connected.

We omit the full proof of Theorem 3.11 due to space con-
straints. Briefly, for both rules, we follow the same line of

reasoning as in the proof of Proposition 3.2. Specifically,
given two profiles with the same winner a, in each profile we
identify the candidate(s) that are first to be eliminated, and
shift them to the bottom in all votes. We do so repeatedly
until we reach a pair of profiles such that a is ranked first by
all voters in both profiles. We then use the fact that both
Baldwin and Nanson are unanimity-consistent to complete
the proof.

4. CONVEXITY
Clearly, convexity is a much more demanding property than
connectivity, but also a much more desirable one. Consider a
society where the voters’ preferences evolve in some direction
over time (we use the terms “evolve” and “direction” infor-
mally here). For example, suppose that initially the voters
prefer less expensive energy sources that result in higher pol-
lution, but over time—as some sort of awareness campaign
is conducted—their preferences move towards more expen-
sive, but clean energy sources. The fact that preferences
“evolve in some direction” could be modeled by the fact that
these preferences move over some shortest path between two
elections. A voting rule’s convexity would ensure that if the
society switches from some aggregated top-preference a to
b, then over the course of further evolution it never switches
back to a (unless the direction of the evolution changes).

On a more technical ground, for unanimity-consistent vot-
ing rules convexity can be viewed as a strengthening of feeble
monotonicity (and, if one were to change the definition to
speak of all shortest paths rather than of at least one short-
est path, then it would have been a strengthening of weak
monotonicity). Indeed, consider a unanimity-consistent vot-
ing rule F and an election E where no candidate is ranked
first by all voters, and let a be a candidate in F(E). Let
E′ be the election obtained from E by shifting a to the top
position in each vote. By unanimity consistency we have
a ∈ F(E′). Now, if F is convex, then there is some short-
est path from E to E′ such that a is a co-winner of every
election on this path. Further, by properties of the swap
distance, the first election after E on this path is identical
to E except that in some vote a is swapped with the candi-
date originally preceding her. Since our choice of E was, in
essence, arbitrary, this reasoning shows that if F is convex
then it is feebly monotone (and if the definition of convexity
spoke of all shortest paths, then the same reasoning would
imply weak monotonicity of F).

Convexity is a very intriguing property. Our first set of
results shows that it is extremely difficult for a voting rule to
satisfy convexity, and even the Plurality rule fails to be con-
vex in the sense of Definition 2.2 (but it is weakly convex in
the sense of Definition 2.3). On the other hand, our second
set of results shows that convexity is satisfied by many nat-
ural consensus classes (i.e., mappings that are very similar
to voting rules, but for each election either return a unique
winner or indicate that there is no winner). This difference
between voting rules and consensus classes is quite striking,
and suggests that perhaps convexity should be viewed as a
normative requirement that should be imposed on consen-
sus classes, but not necessarily on voting rules built around
them (the idea of building a voting rule around a consensus
class is the basis of the work on distance rationalization of
voting rules [18, 14, 13]).

We conclude the discussion of convexity by showing that
the set of elections that are single-peaked with respect to
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a given axis is convex. This result can be interpreted as
an argument that single-peakedness is essentially a form of
consensus.

4.1 Convexity of Voting Rules
We start by arguing that even the Plurality rule is not con-
vex in the sense of Definition 2.2. This argument can be
adapted to apply to many other voting rules.

Proposition 4.1. The Plurality rule is not convex.

Proof. Let C = {a, b, c}. Let E1 = (C,R1) be a 3-voter
election with R1 = (R1

1, R
1
2, R

1
3), where R1

1 = a � b � c,
R1

2 = b � c � a, and R1
3 = c � b � a. Further, let

E2 = (C,R2) be a 3-voter election with R2 = (R2
1, R

2
2, R

2
3),

where R2
1 = R1

1, R2
2 = R1

3, and R2
3 = R1

2, i.e., E2 is obtained
from E1 by swapping the last two voters. Clearly, the short-
est path from E1 to E2 involves swapping b and c in each of
the last two votes. However, after any such swap the candi-
date who was swapped upwards becomes the unique winner.
Thus, even though a is a co-winner in both E1 and E2, it
is not a co-winner in some election on every shortest path
from E1 to E2.

However, Plurality can be shown to be weakly convex.

Theorem 4.2. The Plurality rule is weakly convex.

Proof. Consider two elections, E1 = (C,R1) and E2 =
(C,R2), that both have some candidate a ∈ C as their
unique Plurality winner. For each c ∈ C and i = 1, 2, let
si(c) denote the Plurality score of candidate c in Ei.

We will construct a shortest path from E1 to E2 on which
a is the election co-winner as follows. We start with E = E1.
Then, for every index i ∈ [n] such that a 6∈ top(R1

i ) but
a ∈ top(R2

i ), we move a to the top of the i-th vote, and then
optimally rearrange the rest of the candidates so that the
i-th vote coincides with R2

i . Clearly, each of these swaps is
needed to get from E1 to E2, so the sequence of elections
that we go through during this process is a prefix of some
shortest path from E1 to E2. Let s be the Plurality score
of a at this point; clearly, we have s ≥ max{s1(a), s2(a)}.
Since a is the unique Plurality winner in both E1 and E2,
the score of any other candidate at this point is at most s−1.

Let S = {i | top(R1
i ) 6= a, top(R2

i ) 6= a, top(R1
i ) 6=

top(R2
i )}. We will now process the votes in S one by

one. Specifically, we pick an arbitrary voter i ∈ S, set
c = top(R2

i ), move c to the top, and then optimally re-
arrange the rest of the vote so that it coincides with R2

i .
During each step of this transformation, the top-ranked can-
didate in the i-th vote is either top(R1

i ) or c; hence, the score
of each candidate other than c remains at most s−1. Now, if
also the score of c remains at most s− 1, we simply pick an-
other arbitrary voter j ∈ S and repeat the process. On the
other hand, if the score of c becomes s > s2(c), there must
exist another voter j ∈ S with top(R1

j ) = c, top(R2
j ) 6= c.

Then we can apply the same procedure to the j-th voter;
as a result, the score of c goes back to s − 1 (though the
score of top(R2

j ) may now go up to s). We repeat this step
until we have handled all voters in S, picking the next voter
to process either arbitrarily or according to the candidate
promoted to the top at the previous step. An easy inductive
argument shows that if at step k candidate d was promoted
to the top, the scores of all candidates in C \ {a, d} after
step k are at most s− 1, and d’s score is at most s.

Finally, we transform each vote i with top(R1
i ) = a,

top(R2
i ) 6= a into R2

i by first moving top(R2
i ) to the top and

then optimally rearranging the rest of the vote. At each step
of this process a’s score is at least s2(a) and the score of each
other candidate d is at most s2(d) < s2(a). Since at each
step of the transformation we perform the necessary swaps
only, we have found a shortest path from E1 to E2.

Other common voting rules, such as, e.g., the Borda rule,
are not even weakly convex.

Theorem 4.3. The Borda rule is not weakly convex.

Proof. Let C = {a, b, c, d, e}. We construct a 4-voter
election E over C as follows. The first two votes are a �
b � c � d � e and e � c � b � a � d and the next two
votes are e � c � d � a � b and a � e � c � b � d. We
define election E′ to be identical to E except we replace the
first two voters with, respectively, c � d � a � b � e and
e � a � d � c � b.

It is easy to verify that in both elections e has 11 points,
a and c have 10 points each, and b and d have at most 10
points each. Thus, e is the unique winner of both E and E′.
However, we claim that on any shortest path from E to E′

(a) the Borda score of either a or c goes up to at least 12,
and (b) the Borda score of e remains unchanged. Together,
(a) and (b) imply that every shortest path from E to E′

goes through an election E′′ where e is not a Borda winner
and hence the Borda rule is not weakly convex.

To see why (a) holds, note that on each shortest path
from E to E′, the second swap of c upwards is with a (in
the first vote), and the second swap of a upwards is with
c (in the second vote). Now, one of these swaps, call it S,
has to happen first. However, by construction of E and E′,
this means that the candidate being swapped upwards in
S could not yet have been swapped downwards in the other
vote. Thus, after S this candidate has at least 12 points. On
the other hand, (b) holds because in the respective votes of
E and E′ candidate e is ranked either first or last.

It is easy to see that the construction used in the proof of
Theorem 4.3 works for many other scoring rules. By tweak-
ing this construction slightly, we can extend Theorem 4.3 as
follows.

Corollary 4.4. Suppose that a scoring rule Fα satis-
fies one of the following conditions: (1) there exists an
i ∈ {1, . . . ,m−2} such that αi−αi+1 = 2, αi+1−αi+2 = 1;
(2) there exists an i ∈ {1, . . . ,m−2}, a j ∈ {1, . . . , i−1} and
a k ∈ {1, . . . , j−1} such that αi−αi+1 = 1, αi+1−αi+2 = 1,
αj − αj+1 ≥ 1, and αk − αk+1 ≥ 1. Then Fα is not weakly
convex.

A somewhat similar argument shows that neither
Copeland nor Maximin is weakly convex.

Theorem 4.5. Neither the Copeland rule nor the Max-
imin rule is weakly convex.

Given that Borda, Copeland, and Maximin are not weakly
convex, how difficult is it to tell whether two elections con-
stitute a witness to their nonconvexity?

Definition 4.6. Let F be a voting rule. An instance of
the F-ShortestPath problem is given by a set of candi-
dates C and two preference profiles R and R′ over C with
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F(C,R) = F(C,R′) = {a} for some a ∈ C. This is a
“yes” instance if there is a shortest path between (C,R) and
(C,R′) in G that is contained in cola(G,F), and a “no”-
instance otherwise.

This problem is NP-complete even for the Borda rule (as
well as for Maximin and Copeland). We interpret this result
as saying that the topology of G (colored by these rules) is
quite intricate.

Theorem 4.7. For each F in {Borda, Maximin,
Copeland}, the problem F-ShortestPath is NP-complete.

4.2 Convexity of Consensus Classes
We now move on to the discussion of convexity of consensus
classes. A consensus class F is a mapping that given an
election E = (C,R) either outputs a single (undisputed)
consensus winner of this election or indicates that there is
no consensus winner. The notion of a consensus class lies at
the heart of distance-based interpretation of voting rules [18,
14, 13], where to determine the winners of an election E, we
identify the nearest consensus election(s) (with respect to
a given distance function, which does not need to be the
swap distance), and output the consensus winners of these
elections. The four most-often studied consensus classes are:

1. Strong unanimity (S): A candidate a is a strong una-
nimity winner of an election E if all voters in E have
the same preference order and a is the top candidate
with respect to this order.

2. Weak unanimity (U): A candidate a is a weak una-
nimity winner of an election E if a is ranked first by
all voters in E.

3. Majority (M): A candidate a is a majority winner of
an election E if a is ranked first by more than half of
the voters in E.

4. Condorcet (C): A candidate a is a consensus winner in
election E with respect to the Condorcet consensus if
a is the Condorcet winner in this election.

The notion of convexity can be naturally extended from
voting rules to consensus classes. Since each election either
has a single consensus winner or has no winners at all, for
consensus classes the notions of convexity and weak convex-
ity are equivalent. We will now show that U , M, and C are
all convex, but the strong unanimity consensus S is not.

Theorem 4.8. The consensus classes U , M, and C are
convex.

Proof. Let K be one of the consensus classes U ,M, and
C, and let E1 = (C,R1) and E2 = (C,R2) be two elec-
tions that have the same K-consensus winner a = K(E1) =
K(E2). For each K ∈ {U ,M, C} we will show that there is
a shortest path from E1 to E2 where a is the K-consensus
winner of every intermediate election.

We consider the majority consensus first. The proof is

very similar to that of Proposition 3.2. Let Ê1 (respectively,

Ê2) be an election obtained from E1 (respectively, from E2)
by shifting a to the top of each vote in R1 (respectively, in
R2) such that the corresponding vote in R2 (respectively, in
R1) ranks a first. It is easy to see that there is a shortest

path from E1 to E2 that first goes from E1 to Ê1, then to

Ê2, and finally to E2, and such that a is the majority winner

of every election on that path. The same proof works for
weak unanimity consensus U .

Let us now consider the Condorcet consensus. We proceed
in two stages. For each stage, we describe the order in which
swaps of adjacent candidates should be performed.

At the first stage, we consider the votes in R1 one by
one. Pick a vote R1

i in R1. Candidate a partitions it into
two blocks: the candidates ranked above a and those ranked
below a. We sort the upper block according to R2

i by bub-
ble sort, i.e., by performing the necessary swaps only. This
transformation is on a shortest path from E1 to E2, and,
since it does not change the order of a relative to the other
candidates, a remains the Condorcet winner at each step.
Now the upper block can be further subdivided into two sub-
blocks (one or both can be empty): the candidates ranked
above a in R2

i and those ranked below it in Ri2. Note that
the candidates in each subblock occur contiguously in the
vote after the sorting step. We swap a with all candidates
in the lower subblock of the upper block, i.e., the candidates
that are ranked above a in R1

i , but below it in R2
i ; clearly,

all these swaps are necessary. Next, we bubble-sort all can-
didates ranked below a in the vote according to R2

i . Again,
all these swaps are necessary and do not change the order of
a relative to the other candidates, so we stay on a shortest
path and a remains the Condorcet winner. The first stage
ends when we have done this for all votes.

At the beginning of the second stage, the lower block of the
i-th vote can be subdivided into two contiguous subblocks:
the candidates that appear above a in R2

i and those that
appear below it in R2

i , with the former subblock appearing
above the latter. To get to E2, it suffices to swap a with all
candidates in the upper subblock of the lower block of each
vote; this is what we do during the second stage. Since a
is only shifted downwards during this procedure, and it is
the Condorcet winner at the end, it is also the Condorcet
winner at all the intermediate steps.

Given that each of U , M, and C are convex (and, conse-
quently, connected), it is natural to ask about the status of
strong unanimity. Here the answer is somewhat disappoint-
ing: it is easy to see that strong unanimity is not convex,
and, moreover, not even connected. Indeed, for every strong
unanimity election E with m > 1 candidates and more than
one voter, any single swap of adjacent candidates transforms
E into an election without a strong unanimity consensus
winner.

However, there is a different interpretation of the strong
unanimity consensus under which it is both connected and
convex (albeit for trivial reasons). While for weak unanim-
ity, majority, and Condorcet consensus we focused on the
consensus winner, for the case of strong unanimity one could
argue that we have more: a consensus ranking. Then, if one
colored the swap-distance graph not by (consensus) winners,
but by consensus rankings, then the resulting coloring would
of course be connected and convex (because there would be
exactly one vertex of each color). We leave it to the readers
to decide whether they find this interpretation convincing.

4.3 Convexity of Single-Peaked Elections
We conclude our discussion of convexity by considering
single-peaked elections [4].

Definition 4.9. Let C be a set of candidates and let L
be a linear order over C. We say that a preference order �
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is consistent with L if for every triple of distinct candidates
(a, b, c) ∈ C3 it holds that ((a L b L c) ∨ (c L b L a)) =⇒
(a � b =⇒ a � c). An election E = (C,R) is single-peaked
with respect to L if every vote in E is consistent with L.

Single-peaked elections are very well studied and have a
number of desirable properties: for instance, every single-
peaked election has a (weak) Condorcet winner. It turns
out that the set of all elections that are single-peaked with
respect to a given axis is convex (we omit the proof).

Theorem 4.10. For every candidate set C, every linear
order L over C and every n > 0, the set of n-voter elections
that are single-peaked with respect to L is convex.

5. CONCLUSIONS
Swap distance is one of the most natural measures of sim-
ilarity between elections (with a fixed candidate set and a
fixed number of voters). In this paper we have considered
the shapes of sets formed by elections with a particular win-
ner (according to a given voting rule or a given consensus
class) in the graph of elections defined via the swap dis-
tance. To do so, we have adapted the standard geometric
notions of connectedness and convexity. It turns out that
while all the voting rules that we have considered are con-
nected (that is, the sets of elections with a given winner
are connected), none of them is convex, and only the Plu-
rality rule is weakly convex. On the other hand, we have
identified interesting examples of convex sets of elections,
such as consensus elections with a given winner (for three
standard notions of consensus) and elections that are single-
peaked with respect to a given ordering of candidates. In
the course of our discussion, we have defined a new notion
of monotonicity (feeble monotonicity), and argued that for
unanimity-consistent voting rules convexity is a strengthen-
ing of feeble monotonicity. It would be very interesting to
explore further connections between connectivity, convexity,
and other properties of voting rules.
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