
Achieving Fully Proportional Representation is Easy in
Practice

Piotr Skowron
University of Warsaw

Warsaw, Poland
p.skowron@mimuw.edu.pl

Piotr Faliszewski
AGH University of Science

and Technology
Krakow, Poland

faliszew@agh.edu.pl

Arkadii Slinko
University of Auckland

Auckland, New Zealand
a.slinko@auckland.ac.nz

ABSTRACT

We provide experimental evaluation of a number of known and

new algorithms for approximate computation of Monroe’s and

Chamberlin-Courant’s rules. Our experiments, conducted both on

real-life preference-aggregation data and on synthetic data, show

that even very simple and fast algorithms can in many cases find

near-perfect solutions. Our results confirm and complement very

recent theoretical analysis of Skowron et al., who have shown good

lower bounds on the quality of (some of) the algorithms that we

study.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-

gence—Multiagent systems

Keywords

algorithms, parliamentary elections, winner-determination

1. INTRODUCTION
Many countries are governed using indirect democracy, where

the people do not make decisions directly, but rather select repre-

sentatives (e.g., a parliament, a senate, a congress) who rule in their

interest. Unfortunately, relatively little effort was so far invested

in the algorithmic study of procedures for electing committees of

representatives (few exceptions include papers [2,5,9,14]). Here,

we consider two particularly appealing rules for electing a set of

representatives, namely those of Monroe and of Chamberlin and

Courant, and we argue that while these rules in the worst case sce-

nario may be difficult to compute [5,14], in practice, very simple

and efficient algorithms find almost-perfect approximate results.

There are several ways in which countries can choose their par-

liaments (or, more generally, in which societies can choose com-

mittees of representatives). Often, voters are divided into districts

and in each district we hold a local election. For the case of single-

representative districts, in each district we have a single-winner

election held according to one of the standard, well-known, rules

such as the Plurality rule or Borda’s rule. In particular, if the Plu-

rality rule is used then this method is known as First-Past-the-Post

(FPP): In each district the candidate supported by the largest num-

ber of voters is elected. However, FPP has a number of drawbacks.

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

For example, it is possible that in a country with two major parties,

A and B, even if 49% of the citizens support party B, only mem-

bers of partyA enter the parliament (this happens if in each district

partyA has a slight advantage over partyB). Indeed, under FPP the

election organizers are particularly tempted to tamper with the par-

tition of voters into districts. To circumvent this problem one might

use multi-representative districts, where elections are held using

some multi-winner voting rule (e.g., using Single Transferable Vote

(STV),1 or using a voting rule that assigns scores to the candidates

and picks a group of those with highest scores). However, this

approach only partially solves the problem. Further, compared to

single-representative districts, multi-representative districts loosen

the connection between the candidates and the voters that have

elected them.

Fortunately, there is a very attractive way to avoid the problems

mentioned above: Instead of using fixed districts, we may partition

the voters dynamically, based on the votes that they cast. Indeed,

this is exactly the idea behind the fully proportional representation

rules of Monroe [10] and of Chamberlin and Courant [3]. If we

seek a parliament of K representatives, then Monroe’s rule says

that we should pick a set of K candidates for whom there is an

assignment of these candidates to the voters such that: (a) each

candidate is assigned to roughly the same number of voters, and

(b) the total satisfaction of the voters (measured in one of the ways

introduced later) is maximal. Chamberlin-Courant’s rule is similar

except that it allows each selected candidate to be matched to a dif-

ferent number of voters. (Thus if one were to elect a parliament us-

ing Chamberlin-Courant’s rule then one should use weighted voting

within the parliament, weighted by the number of voters matched

to each representative.)

In the above description we focus on political elections, but we

mention that both Monroe’s rule and Chamberlin-Courant’s rule

have many different applications as well. For example, Skowron

et al. [15] have presented several (multi-agent) resource alloca-

tion settings that can be modeled using these rules and Lu and

Boutilier [5] have proposed to use Chamberlin-Courant’s rule for

constructing recommendations for groups of agents.

Unfortunately, computing Monroe’s and Chamberlin-Courant’s

rules is both NP-hard [5,14] and difficult in the parametrized

sense [2]. Thus using them in practice might simply be impossi-

ble. The goal of this paper is to show that not all is lost. We pro-

vide experimental evaluation of a number of known and new algo-

rithms for approximate computation of Monroe’s and Chamberlin-

Courant’s rules. Our experiments, conducted both on real-life

preference-aggregation data and on synthetic data, show that even

1STV for more than one winner is sometimes referred to as “Al-
ternative Vote” (AV). In a recent referendum Great Britain rejected
AV as a method for choosing its members of parliament.

399

very simple and fast algorithms can in many cases find near-perfect

solutions. Our results confirm and complement very recent the-

oretical analysis of Skowron et al. [15], who have shown good

lower bounds on the quality of (some of) our algorithms. While

for single-winner rules using approximate algorithms may be de-

batable, for the case of electing a large body of representatives,

e.g., a parliament, using approximation algorithms seems far eas-

ier to justify. Indeed, a good approximate solution for Monroe’s or

Chamberlin-Courant’s rule represents the society almost as well as

a perfect solution would.

The paper is organized as follows. In Section 2 we formally

define Monroe’s and Chamberlin-Courant’s rules. In Section 3 we

give an overview of the algorithms that we evaluate and in Section 4

we describe the data sets that we use in our experiments. Section 5

contains our main results. We conclude in Section 6.

2. PRELIMINARIES
In this section we briefly review basic notions regarding social

choice theory and we define Monroe’s [10] and Chamberlin and

Courant’s [3] fully proportional representation rules. We assume

the reader is familiar with standard notions regarding algorithms.

For each positive integer n, by [n] we mean the set {1, . . . , n}.

Elections. We consider elections over a given set A =
{a1, . . . , am} of alternatives. We have a setN = [n] of agents (the
voters), where each voter i, 1 ≤ i ≤ n, has a preference order ≻i

over A. A preference order of an agent i is a linear order over the
set A; the maximal element is this agent’s most preferred alterna-

tive, the minimal element is this agent’s least preferred alternative,

and the alternatives in the middle represent the agent’s spectrum of

preference. We refer to the collection V = (≻1, . . . ,≻n) as the
preference profile for a given election.

Let us fix an agent i, 1 ≤ i ≤ n, and an alternative a ∈ A. By

posi(a) we mean the position a has in i’s preference order. If a is

i’s most preferred candidate then posi(a) = 1, and if a is i’s least
preferred candidate then posi(a) = ‖A‖ = m.

Positional Scoring Functions. Let m be the number of candi-

dates in eleciton. A positional scoring function (PSF) is any func-

tion α : [m] → N that satisfies the following two conditions: (a)

α(m) = 0, and (b) for each i, j, 1 ≤ i < j ≤ m, α(i) ≥ α(j). In
Monroe’s and in Chamberlin-Courant’s proportional representation

rules we will match agents to the alternatives that represent them.

Intuitively, α(i) is the amount of satsifaction that an agent derives

from being represented by an alternative that this agent ranks on

the i’th position. In this paper we focus on Borda count PSF, which
for m alternatives is defined as αm

Borda(i) = m − i. However,

occasionally we will consider other PSFs as well.

In our algorithms we assume that the PSF α to be used is given

explicitly, as a vector (α1, . . . , αm) of integers such that for each i,
1 ≤ i ≤ m, α(i) = αi. We will implcitly assume that the number

of alternatives matches the domain of the given PSF.

Proportional Representation. Let A = {a1, . . . , am} be the set

of alternatives and N = [n] be the set of agents (with preference

orders over A). A representation function is any function Φ: N →
A. For anm-candidate PSF α and a representation function Φ, Φ’s
satisfaction is defined as:

α(Φ) =

n∑

i=1

α(posi(Φ(i))).

Let K be a positive integer. A K-CC-representation function is

any representation function Φ such that ‖Φ−1(N)‖ ≤ K (that

is, any representation function that matches voters to at most K

alternatives). A K-Monroe-representation function Φ is any K-

CC-representation function that additionally satisfies the follow-

ing requirement: For each a ∈ A it holds that either ⌊ n
K
⌋ ≤

‖Φ−1(a)‖ ≤ ⌈ n
K
⌉ or ‖Φ−1(a)‖ = 0 (that is, each alternative

represents either roughly n
K

agents or none of them).

We will also consider partial representation functions. A partial

CC-representation function is defined in the same way as a regu-

lar one, except that it may assign a null alternative, ⊥, to some of

the agents. By convention, we take that for each agent i we have
posi(⊥) = m. A partial Monroe-representation function is de-

fined analogously: It may assign the null alternative to some voters

(there are no constraints on the number of agents to whom the null

alternative is assigned) but it must be possible to extend it to a reg-

ular Monroe-representation function by replacing the occurrences

of the null alternative with the real ones.

We now define Monroe’s and Chamberlin-Courant’s (CC) rules.

DEFINITION 1. Let R be a member of {Monroe,CC}. Let

A = {a1, . . . , am} be a set of alternatives, N = [n] be a set

of agents, and α be an m-candidate PSF. Let K be the size of the

set of representatives that we seek (K ≤ m). We say that a K-

element set W , W ⊆ A, is a set of α-R winners if there exists

a K-R-representation function Φ : N → W such that for every

other K-R-representation function Ψ it holds that α(Φ) ≥ α(Ψ).

We point out that for both Monroe’s and Chamberlin-Courant’s

rule there may be several different winner sets and that some form

of tie-breaking should be applied in these settings. Here we disre-

gard tie-breaking and simply are interested in somewinner set (and,

not being able to compute that, in any set with as high a satsifaction

as possible).

It is well-known that for many natural families of PSFs, both

for Monroe’s rule and for Chamberlin-Courant’s rule, it is NP-
complete to decide if there exists a winner set that achieves a given

satisfaction [2,5,14]. However, for each R in {Monroe,CC},
for each PSF α (with the domain matching the number of alter-

natives in the election), and for each set S of up to K alterna-

tives we can compute in polynomial time a (possibly partial)K-R-

representation function ΦS
R that maximizes the agent satisfaction

under the condition that agents are matched to the alternatives in S
only. Indeed, it is easy to see that for α-CC this function is:

ΦS
CC(i) = argmina∈Sposi(a)

and that it is never a partial representation function. For the case of

α-Monroe, computing ΦS
Monroe is more involved and requires solv-

ing a certain min-cost/max-flow problem (see the work of Betzler

et al. [2]; here if ‖S‖ < K then ΦS
Monroe is a partial Monroe-

representation function). One can see that for a given set S, there
may be many different (partial) K-Monroe-representation func-

tions that achieve optimal satisfaction; when we write ΦS
Monroe,

we mean, w.l.o.g., the particular one computed by the algorithm of

Betzler et al. [2].

3. ALGORITHMS
Let us now describe the algorithms that we will consider in this

work. Some of our algorihtms can be applied both to Monroe’s rule

and to Chamberlin-Courtant’s rule, while some are specific to only

one of them. For each algorithm we will exactly specify for which

rules it is applicable and, if it is applicable to both, what are the

differences.

While most of the algorithms described below are based on ones

already given in the literature, in a number of cases we added

heuristics on top of existing algorithms (which proved to be quite

400

effective, as we will see later) and, in one case, provided a com-

pletely new theortical analysis. For each algorithm we will care-

fully describe what was already known in the literature, and which

additions are due to this paper.

Throughout this section we assume we are given the following

setting. A = {a1, . . . , am} is a set of alternatives, α is an m-

candidate PSF, N = [n] is a set of agents, each with a preference

order over A, and K is a positive integer, K ≤ m (the size of the

committee we want to elect).

3.1 ILP Formulation (Monroe and CC)
To measure the quality of our approximation algorithms, we

compare their results against optimal solutions that we obtain us-

ing integer linear programs (ILPs) that describe Monroe’s and

Chamberlin-Courant’s rules. An ILP for Chamberlin-Courant’s

rule, for arbitraty PSF α, was provided by Lu and Boutilier [5]; the
analogous formulation for Monroe’s rule was provided by Potthoff

and Brams [13]. We used the GLPK 4.47 package (GNU Linear

Programming Kit, version 4.47) to solve these ILPs, whenever it

was possible to do so in reasonable time.

3.2 Algorithms A, B, and C (Monroe)
Skowron et al. [15] have suggested and studied the following

algorithm for Monroe’s rule, which we will call Algorithm A. We

start with an empty partial Monroe-representation function Φ and

we execute K iterations. In each iteration we do the following:

1. For each alternative a ∈ A that does not yet represent any

agents, we compute the maximal satisfaction that some not-

yet-represented ⌈ n
K
⌉ agents derive from being represented by a

(we call this number score(a) and we refer to these agents as

bests(a)).

2. We pick an alternative a with maximum score(a) and extend

Φ by assigning a to represent agents in bests(a).

This algorithm clearly works in polynomial time. Skowron et

al. [15] have shown that for αm
Borda it finds a solution whose sat-

isfaction is at least a (1 − K−1
2(m−1)

− HK

K
) fraction of a (possibly

nonexistent) perfect solution, where each agent is represented by

his or her top preference (HK is the K’th harmonic number, i.e.,

HK =
∑

i=1
1
i
= Θ(logK)). This suggests that the algorithm

performs best in elections where the size of the committee we seek

is relatively small with respect to the number of alternatives.

Based on Algorithm A we have derived Algorithm B. The only

difference is that after completing the operation of Algorithm A,

we take the set S of alternatives that were assigned to represent

some agents by Algorithm A, and replace function Φ with func-

tionΦS
Monroe , that optimally reassigns the alternatives to the voters.

This very simple heuristic turned out to noticeably improve the re-

sults of the algorithm in practice (and, of course, the approximation

guarantees carry over from Algorithm A to Algorithm B).

Algorithm C is a further heuristic improvement over Algo-

rithm B. This time the idea is that instead of keeping only one par-

tial function Φ, we keep a list of up to d partial representation func-
tions, where d is a parameter of the algorithm. At each iteration,

given these d partial representation functions, for each Φ of them

and for each alternative a that does not yet have agents assigned to

by this Φ, we compute an optimal extension of this Φ that assigns

agents to a. As a result we obtain possibly more than d (partial)

representation functions. For the next iteration we keep those d of

them that have highest satisfaction.

We provide pseudocode for Algorithm C in Figure 1. If we take

d = 1, we obtain Algorithm B. If we also disregard the last two

lines prior to returning solution, we obtain Algorithm A.

Figure 1: The pseudocode for Algorithm C.

Notation: Φ← a map defining a (partial) representation function,
iteratively built by the algorithm.
Φ← ← the set of agents already represented by some
alternative
Φ→ ← the set of alternatives already used in the
representation function.
Par← a list of partial representation functions

Par = []
Par.push({})
for i← 1 to K do

newPar = []
for Φ ∈ Par do

score← {}
bests← {}
foreach ai ∈ A \ Φ→ do

agents← sortN \ Φ← so that j ≺ k in agents
=⇒ posj(ai) ≤ posk(ai)

bests[ai]← chose first ⌈N
K
⌉ elements of agents

Φ′ ← Φ
foreach j ∈ bests[ai] do

Φ′[j]← ai
newPar.push(Φ′)

sort newPar according to descending order of the total
satisfaction of the assigned agents
Par ← chose first d elements of newPar

for Φ ∈ Par do
Φ← compute the optimal representative function using an
algorithm of Betzler et al. [2] for the set of winners Φ→

return the best representative function from Par

Figure 2: Pseudocode for Algorithm GM.

Notation: R is either Monroe or CC.
S ← ∅
for i← 1 to K do

a← argmaxa∈A\Sα(Φ
S∪{a}
R

)

S ← S ∪ {a}
return ΦS

M

3.3 Algorithm GM (Monroe and CC)
Algorithm GM (greedy marginal improvement) was introduced

by Lu and Boutilier for the case of Chamberlin-Courant’s rule.

Here we generalize it to apply to Monroe’s rule as well, and we

show that it is a 1 − 1
e
approximation algorithm for α-Monroe.

We point out that this is the first approximation result for Monroe

rule that applies to all PSFs α (approximability results of Lu and

Boutilier [5] did not apply to α-Monroe, and results of Skowron et

al. [15] applied to Monroe with Borda count PSF only). For Mon-

roe’s rule, the algorithm can be viewed as extending Algorithm B.

Let R be one of Monroe and CC. The algorithm proceeds as

follows. We start with an emtpy set S. Then we execute K it-

erations. In each iteration we find an alternative a that is not as-

signed to agents yet, and maximizes the value Φ
S∪{a}
R . (A certain

disadvantage of this algorithm for the case of Monroe is that it re-

quires a large number of computations of ΦS
Monroe, which is a slow

process based on min-cost/max-flow algorithm.) We provide the

pseudocode for Algorithm GM in Figure 2.

THEOREM 1. Algorithm GM is an (1−1/e)-approximation al-
gorithm for the Monroe’e election problem for arbitrary positional

scoring functions.

PROOF. The proof is based on the powerful result of Nemhauser

et al. [11], who have shown that greedy algorithms achieve 1 − 1
e

approximation ratio when used to optimize submodular functions.

Let A be a set of alternatives, N = [n] a set of agents with prefer-

401

ences over A, α an ‖A‖-candidate PSF, andK ≤ ‖A‖ the number

of representatives that we want to elect.

We consider function z : 2A → N defined, for each set S,
S ⊆ A and ‖S‖ ≤ K, as z(S) = α(ΦS

Monroe). Clearly, z(S)
is monotonic (that is, for each two sets A and B, if A ⊆ B and

‖B‖ ≤ K then z(A) ≤ z(B). The main part of the proof below is

to show that z is submodular (we provide the definition below).

Since argmaxS⊂A,‖S‖=Kz(S) is the set of winners of our elec-
tion (under α-Monroe) and since Algorithm GM builds the solution

iteratively by greedily extending initially empty set S so that each

iteration increases the value of z(S) maximally, by the results of

Nemhauser et al. [11] we get that Algorithm GM is a (1 − 1
e
)-

approximation algorithm.

Let us now prove that z is submodular. That is, our goal is to

show that for each two sets S and T , S ⊂ T , and each alternative

a /∈ T it holds that z(S ∪ {a}) − z(S) ≥ z(T ∪ {a}) − z(T).
First, we introduce a notion that generalizes the notion of a partial

set of winners S. Let s : A → N denote a function that assigns

a capacity to each alternative (i.e., s gives a bound on the number

of agents that a given alternative can represent). Intuitively, each

set S, S ⊆ A, corresponds to the capacity function that assigns

⌈n
k
⌉ to each alternative a ∈ S and 0 to each a /∈ S. Given a ca-

pacity function s, we define a partial solution Φs
Monroe to be one

that maximizes the total satisfaction of the agents and that satis-

fies the capacity constraints: ∀a∈S‖(Φ
s
Monroe)

−1(a)‖ ≤ s(a). To
simplify notation, we write s ∪ {a} to denote the function such

that (s ∪ {a})(a) = s(a) + 1 and ∀a′∈S(s ∪ {a})(a′) = s(a′).
(Analogously, we interpret s \ {a} as subtracting one from the ca-

pacity for a; provided it is nonzero.) Also, by s ≤ t we mean that

∀a∈As(a) ≤ t(a). We extend our function z to allow us to consider

a subset of the agents only. For each subset N ′ of the agents and
each capacity function s, we define zN′(s) to be the satisfaction

of the agents in N ′ obtained under Φs
Monroe. We will now prove a

stronger variant of submodularity for our extended z. That is, we
will show that for each two capacity functions s and t it holds that:

s ≤ t ⇒ zN(s ∪ {a}) − zN(s) ≥ zN(t ∪ {a}) − zN (t) (1)

Our proof is by induction on N . Clearly, Equation (1) holds for

N ′ = ∅. Now, assuming that Equation (1) holds for everyN ′ ⊂ N
we will prove its correctness forN . Let i denote an agent such that

Φ
t∪{a}
Monroe(i) = a (if there is no such agent then clearly the equation

holds). Let as = Φs
Monroe(i) and at = Φt

Monroe(i). We have:

zN(t ∪ {a}) − zN(t) = α(posi(a)) + zN\{i}(t)

− α(posi(at))− zN\{i}(t \ {at}).

We also have:

zN(s ∪ {a})− zN (s) ≥ α(posi(a)) + zN\{i}(s)

− α(posi(as))− zN\{i}(s \ {as}).

Since Φt
Monroe describes an optimal representation function under

the capacity restrictions t, we have that:

α(posi(at)) + zN\{i}(t \ at) ≥ α(posi(as)) + zN\{i}(t \ {as})

Finally, from the inductive hypothesis for N ′ = N \ {i} we have:

zN\{i}(s)− zN\{i}(s \ {as}) ≥ zN\{i}(t)− zN\{i}(t \ {as})

Figure 3: Pseudocode for Algorithm P.

Notation: We use the same notation as in Algorithm 1;
num_posx(a)← ‖{i ∈ [n] \ Φ← : posi(a) ≤ x}‖ (the
number of not-yet assigned agents that rank alternative a in
one of their first x positions)

Φ = {}

x = ⌈
mW(K)

K
⌉

for i← 1 to K do
ai ← argmaxa∈A\Φ→num_posx(a)

foreach j ∈ [n] \ Φ← do

if posj(ai) < x then
Φ[j]← ai

foreach j ∈ A \ Φ← do
a← such server from Φ→ that ∀a′∈Φ→posj(a) ≤ posj(a

′)
Φ[j]← a

By combining these inequalities we get:

zN (s ∪ {a})− zN(s) ≥ α(posi(a)) + zN\{i}(s)

− (α(posi(as)) + zN\{i}(s \ {as}))

≥ α(posi(a))− α(posi(as))

+ zN\{i}(t)− zN\{i}(t \ {as})

≥ α(posi(a)) + zN\{i}(t)

− α(posi(at))− zN\{i}(t \ {at})

= zN (t ∪ {a}) − zN(t)

This completes the proof.

3.4 Algorithm C (CC)
This algorithm, introduced in this paper, proceeds like Algorithm

GM for Chamberlin-Courant’s rule, but in each iteration it keeps

up to d (partial) CC-representation functions ΦS
CC, for distinct sub-

sets S of alternatives (d is a parameter of the algorithm). In each

iteration the algorithm extends each function ΦS
CC by every pos-

sible alternative (obtaining O(dm) new representation functions)

and stores up to d of them, that obtain highest satisfaction.

3.5 Algorithm P (CC)
Algorithm P (position restriction) was introduced and studied by

Skowron et al. [15]. The algorithm proceeds as follows. First, we

consider a certain number x (specifically, x = ⌈mW(K)
K

⌉, where
W(x) is Lambert’s W function, defined as the solution of equality

x = W(x)eW(x)). Then, the algorithm tries to greedily find a cover

of as many agents as possible withK alternatives (an alternative is

said to cover a given agent if this agent ranks this alternative among

top x positions). Skowron et al. [15] have shown that for αm
Borda

this algorithm finds a solution that is at most 1− 2W(K)
K

times worse

than a perfect (possibly nonexistent) solution, where every agent is

represented by his or her top-preferred alternative. The pseudocode

for Algorithm P is presented in Figure 3.

3.6 Algorithm R (Monroe and CC)
Algorithm R (random sampling) is based on picking the set

of winners randomly and matching them optimally to the agents.

Skowron et al. [15] have shown that if one chooses a set S of K
alternatives uniformly at random, then for αm

Borda-Monroe, the ex-

pected satisfaction of αm
Borda(Φ

S
Monroe) is

1
2
(1 + K

m
− K2

m2−m
+

K3

m3−m2)− ǫ, and that one has to repeat this process
−512 log(1−λ)

Kǫ2

times, to reach probability λ of achieving this satisfaction. For ex-

ample, for λ = 0.99 and ǫ = 0.1 this algorithm would require to

repeat the sampling process 340000/K times (each time executing

402

Alg. Approx. Runtime Reference

A 1− K−1
2(m−1)

− HK

K
Kmn Skowron et al. [15]

B as in Alg. A Kmn+O(ΦS) (this paper)

C as in Alg. A dKmn+dO(ΦS) (this paper)

GM as in Alg. A for Borda
PSF; 1− 1

e
for others

KmO(ΦS) (this paper)

R 1
2
(1+ K

m
−K2m−K3

m3−m2
) | log(1−λ)|

Kǫ2
O(ΦS) Skowron et al. [15]

P 1− 2W(K)
K

nmW(K) Skowron et al. [15]

GM 1− 1
e

Kmn Lu and Boutilier [5]

C as in Alg. GM dKm(n+log dm) (this paper)

R (1 − 1
K+1

)(1 + 1
m
) | log(1−λ)|

ǫ2
n Oren [12]

Table 1: A summary of the algorithms studied in this paper.

The top of the table regards algorithms for Monroe’s rule and

the bottom for Chamberlin-Courant’s rule. In column “Ap-

prox.” we give currently known approximation ratio for the

algorithm under Borda PSF, on profiles with m candidates

and where the goal is to select a committee of size K. Here,

O(ΦS) = O(n2(K + logn)) is the complexity of finding a

partial representation function with the algorithm of Betzler et

al. [2].

a costly matching algorithm). This makes the algorithm impracti-

cal, especially for small instances (where K is low). Thus in our

experimental evaluation we will consider the modification of the

algorithm that repeats the sampling process only 100 times.

Oren [12] has shown an analogous result for the case of

Chamberlin-Courant’s rule.

3.7 Summary of the Algorithms
We summarize the algorithms that we use in Table 1. In par-

ticular, the table clearly shows that for the case of Monroe, Algo-

rithms B and C are not much slower than Algorithm A but offer

a chance of improved peformance. Algorithm GM is intuitively

even more appealing, but achieves this at the cost of high time

complexity. For the case of Chamberlin-Courant’s rule, it is un-

clear which of the algorithms to expect to be superior. One of

the main goals of this paper is to establish if either of the pre-

sented algorithms clearly dominates the others. Our implementa-

tions are available at http://mimuw.edu.pl/~ps219737/

monroe/experiments.tar.gz.

4. EXPERIMENTAL DATA
We have considered both real-life preference-aggregation data

and synthetic data, generated according to a number of election

models.

4.1 Real-Life Data
We have used real-life data regarding people’s preference on

sushi types, movies, college courses, and competitors’ performance

in figure-skating competitions.

One of the major problems regarding real-life preference data

is that either people express preferences over a very limited set of

alternatives, or their preference orders are partial. To address the

latter issue, for each such data set we complemented the partial or-

ders to be total orders using the technique of Kamishima [4]. (The

idea is to complete each preference order based on those reported

preference orders that appear to be similar.)

Some of our data sets contain a single profile, whereas the others

contain multiple profiles. When preparing data for a given number

m of candidates and a given number n of voters from a given data

set, we used the following method: We first uniformly at random

chose a profile within the data set, and then we randomly selected

n voters and m candidates. We used preference orders of these n
voters restricted to these m candidates.

Sushi Preferneces. We used the set of preferences regarding

sushi types collected by Kamishima [4].2 Kamishima has col-

lected two sets of preferences, which we call S1 and S2. Data

set S1 contains complete rankings of 10 alternatives collected from
5000 voters. S2 contains partial rankings of 5000 voters over a

set of 100 alternatives (each vote ranks 10 alternatives). We used

Kamishima [4] technique to obtain total rankings.

Movie Preferences. Following Mattei et al. [8], we have used

the NetFlix data set3 of movie preferences (we call it MV). NetFlix

data set contains ratings collected from about 480 thousand distinct
users regarding 18 thousand movies. The users rated movies by

giving them a score between 1 (bad) and 5 (good). The set contains
about 100 million ratings. We have generated 50 profiles using

the following method: For each profile we have randomly selected

300 movies, picked 10000 users that ranked the highest number

of the selected movies, and for each user we have extended his

or her ratings to a complete preference order using the method of

Kamishima [4].

Course Preferences. Each year the students at the AGH Univer-

sity choose courses that they would like to attend. The students are

offered a choice of six courses of which they have to attend three.

Thus the students are asked to give an unordered set of their three

top-preferred courses and a ranking of the remaining ones (in case

too many students select a course, those with the highest GPA are

enrolled and the remaining ones are moved to their less-preferred

courses). In this data set, which we call CR, we have 120 voters

(students) and 6 alternatives (courses). However, due to the nature

of the data, instead of using Borda count PSF as the satisfaction

measure, we have used the vector (3, 3, 3, 2, 1, 0). We made this

data set publicly available under the url: http://mimuw.edu.

pl/~ps219737/monroe/registration.tar.gz.

Figure Skating. This data set, which we call SK, contains pref-

erences of the judges over the performances in a figure-skating

competitions. The data set contains 48 profiles, each describing

a single competition. Each profile contains preference orders of 9
judges over about 20 participants. The competitions include Euro-

pean skating championships, Olympics, World Junior, and World

Championships, all from 19984 . (Note that while in figure skating

judges provide numerical scores, this data set is preprocessed to

contain preference orders.)

4.2 Synthetic Data
For our tests, we have also used profiles generated using three

well-known distributions of preference orders.

Impartial Culture. Under impartial culture model of preferences

(which we denote IC), for a given setA of alternatives, each voter’s

preference order is drawn uniformly at random from the set of

all possible total orders over A. While not very realistic, profiles

generated using impartial culture model are a standard testbed of

election-related algorithms.

Polya-Eggenberger UrnModel. Following Walsh [16], we have

used the Polya-Eggenberger urn model [1] (which we denote UR).

In this model we generate votes as follows. We have a set A of

m alternatives and an urn that initially contains all m! preference

2The sushi data set is available under the following url: http:
//www.kamishima.net/sushi/
3http://www.netflixprize.com/
4This data set is available under the following url: http://
rangevoting.org/SkateData1998.txt.

403

orders over A. To generate a vote, we simply randomly pick one

from the urn (this is our generated vote), and then—to simulate

correlation between voters—we return a copies of this vote to the

urn. When generating an election with m candidates using the urn

model, we have set the parameter a so that a
m!

= 0.05 (Walsh [16]

calls this parameter b; we mention that other authors use much

higher values of b but we felt that too high a value of b leads to

a much too strong a correlation between votes).

Generalized Mallow’s Model. We refer to this data set as ML.

Let ≻ and ≻′ be two preference orders over some alternative set

A. Kendal-Tau distance between ≻ and ≻′, denoted dK(≻,≻′),
is defined as the number of pairs of candidates x, y ∈ A such that

either x ≻ y ∧ y ≻′ x or y ≻ x ∧ x ≻′ y.
Under Mallow’s distribution of preferences [7] we are given two

parameters: A center preference order ≻ and a number φ between

0 and 1. The model says that the probability of generating prefer-

ence order ≻′ is proportional to the value φdK(≻,≻′). To generate

preference orders following Mallow’s distribution, we use the al-

gorithm given by Lu and Boutilier [6].

In our experiments, we have used a mixture of Mallow’s models.

Let A be a set of alternatives and let a be a positive integer. This

mixture model is parametrized by three vectors, Λ = (λ1, . . . , λa)
(where each λi, 1 ≤ i ≤ a is between 0 and 1, and

∑a

i=1 λ1 = 1),
Φ = (φ1, . . . , φa) (where each φi, 1 ≤ i ≤ a, is a number between

0 and 1), and Π = (≻1, . . . ,≻a) (where each ≻i, 1 ≤ i ≤ a, is
a preference order over A). To generate a vote, we pick a random

integer i, 1 ≤ i ≤ a (each i is chosen with probability λi), and then

generate the vote using Mallow’s model with parameters (≻i, φi).
For our experiments we have used a = 5, and we have generated

vectors Λ, Φ, and Π uniformly at random.

5. EXPERIMENTS
In this section we present the results of the evaluation of algo-

rithms from Section 3 on the data sets from Section 4. In all cases,

except for the college courses data set, we have used Borda PSF to

measure voter satisfaction. For the case of the courses data set, we

have used vector (3, 3, 3, 2, 1, 0).
We have conducted three sets of experiments. First, we have

tested all our algorithms on relatively small elections (up to 10 can-
didates, up to 100 agents). In this case we were able to compare

our algorithms’ solutions with the optimal ones. (To obtain the op-

timal solutions we were using the ILP formulations and GLPK’s

ILP solver.) Thus we report the quality of our algorithms as the

average of fractions C/Copt, where C is the satisfaction obtained

by a respective algorithm and Copt is the satisfaction in the opti-

mal solution. For each algorithm and data set, we also report the

average fraction C/Cideal, where Cideal is the satisfaction that the

voters would have obtained if each of them were matched to his or

her most preferred alternative. In our further experiments, where

we consider larger elections, we were not able to compute optimal

solutions, but fraction C/Cideal gives a lower bound for C/Copt.

We report this value for small elections so that we see an example

of relation between C/Copt and C/Cideal and so that we can com-

pare the results for small elections with the results for the larger

ones. Further, for the case of Borda PSF the C/Cideal fraction has

a very natural interpretation: If its value is α (for a given solution),

then, on the average, in this solution each voter is matched to an

alternative that he or she prefers to (m− 1)α alternatives.

In our second set of experiments we have run our algorithms

on large elections (thousands of agents, hundreds of alternatives),

coming either from the NetFlix data set or generated by us using

one of our models. Here we reported the average fraction C/Cideal

only. We have analyzed the quality of the solutions as a function

Table 2: The average quality of the algorithms compared with

the optimal solution (C/Copt) for the small instances of data

and for K = 3.
Monroe CC

A B C GM R C GM P R
S1 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
S2 0.95 0.99 1.0 ≈ 1.0 0.99 1.0 ≈ 1.0 0.98 0.99
MV 0.96 ≈ 1.0 1.0 ≈ 1.0 0.98 1.0 ≈ 1.0 0.96 ≈ 1.0
CR 0.98 0.99 1.0 ≈ 1.0 0.99 1.0 ≈ 1.0 1.0 ≈ 1.0
SK 0.99 ≈ 1.0 1.0 ≈ 1.0 0.94 1.0 ≈ 1.0 0.85 0.99
IC 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
ML 0.94 0.99 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
UR 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 0.99 0.97 0.99

Table 3: The average quality of the algorithms compared with

the simple lower bound (C/Cideal) for the small instances of

data and for K = 3.
Monroe CC

A B C GM R C GM P R
S1 0.85 0.89 0.9 0.89 0.89 0.92 0.89 0.91 0.92
S2 0.85 0.89 0.89 0.89 0.89 0.93 0.9 0.91 0.92
MV 0.88 0.92 0.92 0.92 0.91 0.97 0.92 0.93 0.97
CR 0.94 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97
SK 0.96 0.96 0.97 0.97 0.91 1.0 0.97 0.82 0.99
IC 0.8 0.84 0.85 0.84 0.84 0.85 0.83 0.84 0.85
ML 0.83 0.88 0.88 0.9 0.88 0.92 0.90 0.89 0.94
UR 0.8 0.85 0.86 0.87 0.85 0.9 0.87 0.87 0.89

of the number of agents, the number of candidates, and the relative

number of winners (fraction K/m). (This last set of results is par-

ticularly interesting because in addition to measuring the quality of

our algorithms, it allows one to asses the size of a committee one

should seek if a given average agent satisfaction is to be obtained).

In the third set of experiments we have measured running times

of our algorithms and of the ILP solver.

5.1 Evaluation on Small Instances
We now present the results of our experiments on small elections.

For each data set, we generated elections with the number of agents

n = 100 (n = 9 for data set SK because there are only 9 voters

there) and with the number of alternativesm = 10 (m = 6 for data
set CR because there are only 6 alternatives there) using the method

described in Section 4.1 for the real-life data sets, and in the natural

obvious way for synthetic data. For each algorithm and for each

data set we ran 500 experiments on different instances for K = 3
(for the CR data set we usedK = 2) and 500 experiments forK =
6 (for CR we set K = 4). For Algorithms C we set the parameter

d = 15. The results (average fractions C/Copt and C/Cideal) for

K = 3 are given in Tables 2 and Tables 3. We omit the results for

K = 6 due to space constraints, but we mention they are almost

identical (we can provide all our omitted numerical results upon

request). For each experiment in this section we also computed the

standard deviation; it was always on the order of 0.01. The results
lead to the following conclusions:

1. Even Algorithm A obtains very good results, but nonetheless

Algorithms B and C improve noticeably upon Algorithm A. In

particular, Algorithm C (for d = 15) obtains the highest satisfac-
tion on all data sets and in almost all cases was able to find an

optimal solution.

2. Algorithm R gives slightly worse solutions than Algorithm C.

3. The quality of the algorithms does not depend on the data set

used for verification (the only exception is Algorithm R for Mon-

roe’s rule on data set SK; however SK has only 9 voters so it can

be viewed as a border case).

404

5.2 Evaluation on Larger Instances
For experiments on larger instances we needed data sets with

at least n = 10000 agents. Thus we used the NetFlix data set

and synthetic data. (Additionally, we run the subset of experiments

(for n ≤ 5000) also for the S2 data set.) For Monroe’s rule we

present results for Algorithm A, Algorithm C, and Algorithm R,

and for Chamberlin-Courant’s rule we present results for Algo-

rithm C and Algorithm R. We limit the set of algorithms due to

space constraints. For Monroe we chose Algorithm A because it is

the simplest and the fastest one, Algorithm C because it is the best

generalization of Algorithm A that we were able to run in reason-

able time, and Algorithm R to compare a randomized algorithm to

deterministic ones. For Chamberlin-Courant’s rule we chose Algo-

rithm C because it is, intuitively, the best one, and we chose Algo-

rithm R for the same reason as in the case of Monroe. Further, we

present results for the NetFlix data set and for the urn model only.

Again, we do so due to space constraints, and we chose these data

sets because the urn model results turned out to be the worst ones

among the synthetic data sets, and the NetFlix data set is our only

large real-life data set. (All the omitted results are available upon

request.)

First, for each data set and for each algorithm we fixed the value

of m and K and for each n ranging from 1000 to 10000 with the

step of 1000 we run 50 experiments. We repeated this procedure

for 4 different combinations of m and K: (m = 10, K = 3),
(m = 10, K = 6), (m = 100, K = 30) and (m = 100, K = 60).
We measured the statistical correlation between the number of vot-

ers and the quality of the algorithms C/Cideal. The ANOVA test

in most cases showed that there is no such correlation. The only

exception was S2 data set, for which we obtained an almost neg-

ligible correlation. For example, for (m = 10, K = 3) Algo-
rithm C under data set S2 for Monroe’s rule for n = 5000 gave

C/Cideal = 0.88, while for n = 100 (in the previous section) we

got C/Cideal = 0.89. Thus we conclude that in practice the num-

ber of agents has almost no influence on the quality of the results

provided by our algorithms.

Next, we fixed the number of voters n = 1000 and the ratio

K/m = 0.3, and for each m ranging from 30 to 300 with the

step of 30 (naturally, as m changed, so didK to maintain the ratio

K/m), we run 50 experiments. We repeated this procedure for

K/m = 0.6. The relation between m and C/Cideal for MV and

UR, under both Monroe’s rule and Chamberlin-Courant’s rule, is

given in Figures 4 and 5 (the results for K/m = 0.6 look similar).

Finally, we fixed n = 1000 and m = 100, and for each K/m
ranging from 0.1 and 0.5 with the step of 0.1 we run 50 ex-

periments. The relation between the ratio K/m and the quality

C/Cideal is presented in Figures 6 and 7.

For the case of Chamberlin-Courant’s rule increasing the size of

the committee we elect improves agent satisfaction: Since there

are no constraints on the number of agents matched to a given al-

ternative, larger committees mean more opportunities to satisfy the

agents. For Monroe, larger committees may lead to lower total sat-

isfaction. This happens if many agents like a particular alternative

a lot, but only some of them can be matched to this alternative and

others have to be matched to their less-preferred ones. Nonethe-

less, we see that Algorithm C achieves C/Cideal = 0.925 even for

K/m = 0.5 for the NetFlix data set.

Our conclusions from these experiments are the following. For

Monroe’s rule, even Algorithm A achieves very good results. How-

ever, Algorithm C consistently achieves better ones (indeed, almost

perfect ones). Randomized algorithms consistently do worse than

our deterministic ones.

Figure 4: The relation between the number of alternatives m
and the quality of the algorithms C/Cideal for the Monroe’s

rule.

Figure 5: The relation between the number of alterna-

tives m and the quality of the algorithms C/Cideal for the

Chamberlin-Courant’s rule.

5.3 Running time
In our final set of experiments we have measured running times

of our algorithms on the data set MV. We have used a machine

with Intel Pentium Dual T2310 1.46GHz processor and 1.5GB of

RAM. In Figure 8 we show the running time of GLPK ILP solver

for Monroe’s and for Chamberlin-Courant’s rules. These running

times are already large for small instances and they are increasing

exponentially with the number of voters. For Monroe’s rule, even

for K = 9, m = 30, n = 100 some of the experiments timed

out after 1 hour, and for K = 9,m = 30, n = 200 none of the

experiments finished within one day. Thus we conclude that the real

application of the ILP algorithm is very limited. Example running

times of the other algorithms for some combinations of n, m, and

K are presented in Table 4.

6. CONCLUSIONS
We have provided experimental evaluation of a number of al-

gorithms (both known ones and their extensions) for computing the

winners under Monroe’s rule and under Chamberlin-Courant’s rule.

While finding winners under these rules is NP-hard [2,5,14], it

turned out that in practice we can obtain very high quality solutions

using simple algorithms. Indeed, both for Monroe’s rule and for

Chamberlin-Courant’s rule we recommend using Algorithm C (or

Algorithm A on very large Monroe elections). We believe that our

405

Figure 6: The relation between the ratioK/m and the quality

of the algorithms C/Cideal for the Monroe’s rule.

Figure 7: The relation between the ratio K/m and the qual-

ity of the algorithms C/Cideal for the Chamberlin-Courant’s

rule.

results mean that (approximations of) Monroe’s and Chamberlin-

Courant’s rules can be used in practice.

Acknowledgements The authors were supported in part by AGH

Univ. grant 11.11.120.865, by the Foundation for Polish Science’s

Homing/Powroty program, by Poland’s National Science Center

grant DEC-2011/03/B/ST6/01393, and by EU’s Human Capital

Program "National PhD Programme in Mathematical Sciences"

carried out at the University of Warsaw.

7. REFERENCES
[1] S. Berg. Paradox of voting under an urn model: The effect of

homogeneity. Public Choice, 47:377–387, 1985.

[2] N. Betzler, A. Slinko, and J. Uhlmann. On the computation

of fully proportional representation. Technical report, U. of

Auckland, November 2011.

[3] B. Chamberlin and P. Courant. Representative deliberations

and representative decisions: Proportional representation and

the Borda rule. American Political Science Review,

77(3):718–733, 1983.

[4] T. Kamishima. Nantonac collaborative filtering:

recommendation based on order responses. In Proceedings of

KDD-03, pages 583–588, 2003.

[5] T. Lu and C. Boutilier. Budgeted social choice: From

consensus to personalized decision making. In Proceedings

of IJCAI-2011, pages 280–286, 2011.

Figure 8: The running time of the standard ILP solver forMon-

roe’s and Chamberlin-Courant’s rules. For Monroe’s rule, for

K = 9,m = 30 and for n ≥ 200 none of the single algo-

rithm execution finished within 1 day.

Table 4: Example running times of the algorithms [in seconds].
m = 100, K = 30 m = 100, K = 60

n = 2000 6000 10000 2000 6000 10000

M
o
n
ro
e

A 0.5 1.6 2.8 0.9 2.8 4.9
B 0.8 4 9.5 1.7 8 18
C 38 140 299 64 221 419
GM 343 2172 5313 929 5107 13420
R 41 329 830 88 608 1661

C
C

C 4.3 11 19 7.5 19 31
GM 0.06 0.2 0.4 0.09 0.3 0.7
P 0.03 0.1 0.26 0.03 0.1 0.2
R 0.06 0.24 0.45 0.1 0.4 0.8

[6] T. Lu and C. Boutilier. Learning Mallows models with

pairwise preferences. In Proceedings of ICML-11, pages

145–152, June 2011.

[7] C. L. Mallows. Non-null ranking models. i. Biometrika,

44(1-2):114–130, June 1957.

[8] N. Mattei, J. Forshee, and J. Goldsmith. An empirical study

of voting rules and manipulation with large datasets. In

COMSOC, 2012.

[9] R. Meir, A. Procaccia, J. Rosenschein, and A. Zohar. The

complexity of strategic behavior in multi-winner elections.

JAIR, 33:149–178, 2008.

[10] B. Monroe. Fully proportional representation. American

Political Science Review, 89(4):925–940, 1995.

[11] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of

approximations for maximizing submodular set functions.

Mathematical Programming, 14(1):265–294, 1978.

[12] J. Oren. Personal communication, 2012.

[13] R. Potthoff and S. Brams. Proportional representation:

Broadening the options. Journal of Theoretical Politics,

10(2):147–178, 1998.

[14] A. Procaccia, J. Rosenschein, and A. Zohar. On the

complexity of achieving proportional representation. Social

Choice and Welfare, 30(3):353–362, 2008.

[15] P. Skowron, P. Faliszewski, and A. Slinko. Fully proportional

representation as resource allocation: Approximability

results. Technical Report arXiv:0809.4484 [cs.GT],

arXiv.org, Jan. 2013.

[16] T. Walsh. Where are the hard manipulation problems? JAIR,

42:1–29, 2011.

406

