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ABSTRACT
We consider the scenario of a parliament that is going to vote on
a specific important issue. The voters are grouped in parties, and
all voters of a party vote in the same way. The expected winner
decision is known, because parties declare their intentions to vote,
but before the actual vote takes place some voters may leave the
leading party to join other parties. We investigate the computational
complexity of the problem of determining how many voters need
to leave the leading party before the winner changes. We consider
both positional scoring rules (plurality, veto, k-approval, k-veto,
Borda) and Condorcet-consistent methods (maximin, Copeland),
and we study two versions of the problem: a pessimistic one, where
we want to determine the maximal number of voters that can leave
the leading party without changing the winner; and an optimistic
one, where we want the minimal number of voters that must leave
the leading party to be sure the winner will change. These two
numbers provide a measure of the threat to the expected winner,
and thus to the leading party, given by losing some voters. We
show that for many positional scoring rules these problems are easy
(except for the optimistic version with k-approval, for k at least 3,
and Borda). Instead, for Condorcet-consistent rules, they are both
computationally difficult, with both Maximin and Copeland.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent systems; F.2 [Theory of Computation]: Anal-
ysis of Algorithms and Problem Complexity

General Terms
Theory, Algorithms

Keywords
Voting protocols, computational complexity, manipulation, control.

1. INTRODUCTION
We consider a parliament, where voters are grouped into parties

and where some particularly important vote is to be taken (e.g.,
deciding on the country’s budget for the coming year, or deciding
whether the current prime minister should stay in the office or if
a new one—and who should that be—should be chosen). Since
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the election at hand is such an important one, we assume that the
parties require all their members to follow party discipline, that
is, each party requires its members to vote in a certain given way.
We assume that there is one particularly strong party (we call it
the leading party) that has sufficiently many members that its top
preferred candidate is winning. (In practice, this would be the party
forming the government.) However, when such important elections
happen in a parliament, some not-so-happy members of the leading
party (perhaps those that have been mistreated in the past or who do
not fully identify with the party’s politics) try to negotiate with their
party leader to obtain some benefits for themselves, threatening that
if not satisfied, they will join other parties. In this paper we take
the position of the leading party’s leader, who has to decide how
many/which of these party members he should satisfy.

More precisely, we assume that before an election takes place
it is known how all parties will vote, so the winner is known, but
the loss of some of the voters by the leading party may result in a
different winner. The question we are asking is: How safe is the
leading party with respect to this kind of actions? In particular, it
would be interesting for such a leading party to know the maximal
number of voters that it may lose without posing any threat to the
winner of the election (or, in other words, the minimal number of
voters that must leave the leading party in order to have a chance
of changing the winner). This will be called the pessimistic variant
of the question we are addressing. The other interesting bound for
a leading party is the minimal number of voters whose loss would
certainly change the winner, regardless of which parties they de-
cide to join (or, in other words, the maximal number of voters that
may leave the leading party so that there would still be a chance
of keeping the winner unaltered). This will be called the optimistic
variant of our question. These two numbers (that is, the answers
to the pessimistic and the optimistic variants) provide a measure of
the stability of the current winner of the election.

Figure 1 shows a graphical representation of the stability of the
winner. Siz is the overall number of voters of the leading party,
while Pes and Opt are the numbers corresponding to the pessimistic
and optimistic variant solutions, respectively. If the leading party
loses less than Pes voters, the winner is safe; if it loses between Pes
and Opt voters, the winner is threatened, that is, it could change; if
it loses more than Opt voters, the winner will surely change.

threatened impossible to preservesafe

Pes Opt0 No. of votersSiz

Figure 1: Status of the winner depending on the number of
voters leaving the leading party.

For example, let us consider a parliament with 5 parties, P1
through P5, where P1 has 8 voters, P2 has 3 voters, and all other
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parties have 2 voters. We are going to use the Plurality rule to
aggregate the votes of such voters. This means that we will just
consider their first choice and declare as winners those candidates
that are the first choice for the highest number of voters. Assume
we have 4 candidates: a, b, c, and d. Assume also that P1 declares
the intention to vote for a, P2 for c, P3 for d, and both P4 and P5
for b. In this situation, P1 is the leading party and a is the winner.
Specifically, a has 8 votes, b has 4 votes, c has 3 votes, and d has
2 votes. If we move up to 2 voters from P1 to any combination of
the other parties, a will still be a winner: If we move 2 voters, a
will still have 6 points, and even if both voters go to P4 or P5 (thus
giving b 6 votes in total), a would still be among the winners. Thus
the winner is safe up to the loss of 2 voters. If instead we move 3
voters, then the winner could change, so we are in the threatened
range of Figure 1. In fact, if these 3 voters, who are currently in P1,
all move to P2, then a will lose, since it will get 5 votes and c will
get 6 votes. Instead, if 2 voters move to P2 and 1 voters moves to
either P4 or P5, then a, b, and c will all get 5 votes and d will get 2
votes, so a will still be among winners. With the loss of 4 or more
voters from P1, the winner will always change. Indeed, if 4 voters
leave P1, a will get just 4 votes, and the 4 votes will be given to b,
c, and d, that now have, respectively, 4, 3, and 2 votes. There is no
way that all of them will have at most 4 votes (there is space only
for 1+2 votes). So, in this example, Pes = 2 and Opt = 4.

In this paper we study the computational complexity of finding
the answer to both variants of the considered problem, for vari-
ous election systems. We show that the pessimistic problem is
easy for all scoring protocols, but that the complexity of the op-
timistic one depends on the scoring rule (for example, it is easy
for Plurality, 2-approval, and k-veto, but is NP-complete for k-
approval where k ≥ 3 and for Borda). On the other hand, for the
two Condorcet-consistent rules that we study (i.e., for Copeland
and Maximin), both problems are computationally hard. Naturally
one could study other voting rules as well. We have chosen these
ones as they are natural, representative members of scoring rules
and Condorcet consistent rules (though, for example, our analysis
misses elimination-based rules such as STV or Nanson’s rule).

Although the terms used above are related to political elections,
the same scenarios can occur also in other contexts. Elections may
be used by solvers to find the best solution for a problem, by a
group of friends to determine what to have for dinner, by a group
of radio listeners to decide for their favourite song, as well as by
search engines to determine the ranking of the most popular web-
sites and to avoid spam [4,7], or also by routers to designate one of
them in a routing protocol. Elections have been used also in various
tasks of collaborative filtering [16] (that is, techniques of filtering
large sets of data for patterns and information of special interest of
users, usually involving collaboration among multiple agents and
data sources), as well as in planning tasks for automated multiagent
systems [5, 6]. At least in some of these contexts our problem still
makes sense. For example, if several solvers are trying to find the
best solution to a problem (and these solvers have weights measur-
ing the amount of trust we have in them and they vote on the final
solution) then the amount of weight that we need to move away
from the solver that currently dictates the solution so that the result
changes (or, may change) can be viewed as measuring the amount
of confidence we should have in the solution.

The paper is organized as follows. In Section 2 we provide the
background notions, Sections 4 and 5 contain the results on scor-
ing rules and Condorcet-consistent rules. We present related work
in Section 6. Finally, in Section 7 we summarize our results and
propose lines for future work.

2. BACKGROUND NOTIONS
In this section we introduce the main notions that we use

throughout the paper. More detailed definitions and results about
voting theory can be found in [2]. An election is a pair E = (C,V ),
where C = {c1, . . . ,cm} is a set of candidates and V = {v1, . . . ,vn}
is a set of voters. Each voter vi is represented via its preference
order >i, which is a strict linear order over the candidates in C.
Occasionally, when specifying a preference order, we will include
a set in the preference order. This means ranking the candidates in
this set in some arbitrary but fixed order. To indicate the reverse of
this fixed order, we put an arrow over the set.

An election system (or voting rule) R maps an election E =
(C,V ) to a nonempty set W , W ⊆ C, of winners. We assume the
nonunique-winner model, i.e., all members of R(E) are considered
to be winning.

A scoring protocol for m candidates is an election system de-
fined by a vector α = (α1,α2, . . . ,αm) (so called scoring vector)
of non-negative integers such that α1 ≥ α2 ≥ ·· · ≥ αm. A candi-
date on the i-th place on a voter’s preference list receives αi points
from that voter. Examples of scoring protocols (for m candidates),
that will be considered in this paper, are: Plurality (scoring vec-
tor (1,0, . . . ,0)), Veto (scoring vector (1,1, . . . ,1,0)), k-approval
(scoring vector with k ones followed by m− k zeros), and Borda’s
rule (scoring vector (m−1,m−2, . . . ,0)). We write k-veto to mean
(m− k)-approval.

A Condorcet-consistent rule is an election system that always
elects the Condorcet winner, if it exists. The Condorcet winner
is a candidate who wins by majority in all pairwise elections with
any other candidate. Examples of Condorcet consistent rules, that
will be considered in this paper, are Maximin and Copeland. The
Copeland rule associates to each candidate a score which is the
number of other candidates it wins in pairwise competitions, and
the winners are the candidates with the largest score. In this ver-
sion of the Copleand rule, a win in a pairwise competion counts
1 for the winner and 0 for the loser, while a tie counts 0 for both.
Other versions of the Copeland rule treat ties differently, count-
ing them as α points for both candidates, where α usually is be-
tween 0 and 1. When we will need to indicate a specific α , we
will write Copelandα to mean the Copeland rule that uses such
α . The Maximin rule records, for each pairwise competition, not
only the winner, but also the majority (that is, the number of vot-
ers who make it a winning competition). Each candidate is then
associated to a score which is the minimum majority (or minor-
ity) on all its pairwise competitions with all other candidates. The
winners are then the candidates with the largest score. More for-
mally, let E = (C,V ) be an election. For two distinct candidates
c and d, we define NE(c,d) = ‖{v ∈ V | v prefers c to d}‖ and
ME(c,d) = NE(c,d)−NE(d,c). We define Maximin score of can-
didate c to be mind∈C−{c}ME(c,d). (We point out that many au-
thors take the minimum over NE and not ME , but our definition is
equivalent because we assume strict total orders as voters’ prefer-
ences. Our definition is easier to work with in our proofs.)

For the voting rules that assign scores, we write scoreE(c) to de-
note the score of candidate c in election E. The particular election
system will always be clear from context.

Our hardness proofs follow by reductions from the X3C prob-
lem [11]. We recall here the formal definition of this NP-complete
problem.

DEFINITION 1. In the X3C problem we are given a set B =
{b1,b2, . . . ,b3t}, t > 1, and a family S = {S1,S2, . . . ,Sm} of three-
element subsets of B. We ask if there is a set A⊆ {1,2, . . . ,m} such
that |A|= t and

⋃
i∈A Si = B.

408



3. PROBLEM STATEMENT
The election scenario we consider is one where voters are

grouped into parties. That is, in addition to the set of voters
V = (v1, . . . ,vn) we have a set P = {P1, . . . ,Pk} of parties, where
P1, . . . ,Pk are mutually disjoint subsets of V . We assume that all
voters in the same party vote in the same way. An election with
parties is therefore a triple E = (C,V,P).

We assume that a leading party is given as part of the input and
that the candidate that is most preferred by this party wins the elec-
tion (or is one of the winners). Without loss of generality, we also
assume that the given leading party is P1.

Finally, we define a losing function l : V →P that for each voter
indicates which party he moves to. Losing functions have the fol-
lowing property: Each voter who belongs to parties {P2, . . . ,Pk}
stays in his or her respective party, but the voters from P1 may move
to the other parties. We will study the computational complexity of
determining:

1. The maximal number of voters that can leave from the lead-
ing party without changing the set of winners, regardless of
which parties they choose to join. We will call this the pes-
simistic variant of the voter losing problem.

2. The minimal number of voters that must leave the leading
party to ensure that the winning candidate will not win, re-
gardless of which parties they choose to join. We will call
this the optimistic variant of the voter losing problem.

More formally, we are given: an election with parties E =
(C,V,P) with a set of n voters V = (v1, . . . ,vn) in k parties P =
{P1, . . . ,Pk}, where P1 is the leading party, a set of m candidates
C = {c1, . . . ,cm}, an election system R, and a winner w of the elec-
tion E (i.e., w ∈ R(E); w is the top choice of P1). We then consider
the following two decision problems:

R-pessimistic-voter-losing: Given a natural number q, is there a
set T ⊆ P1 with |T | ≥ q such that, for all losing function l :
V →P , after moving every voter v∈ T to the party indicated
by l(v), w would still be a winner?

R-optimistic-voter-losing: Given a natural number q, is there a
set T ⊆ P1 with |T | ≤ q such that, for all losing functions l :
V →P , after moving every voter v∈ T to the party indicated
by l(v), w would not be a winner?

It is easy to show that the following result holds.

THEOREM 2. If the number of parties is a fixed constant and
R is an anonymous voting rule with polynomial-time winner deter-
mination procedure, then both R-pessimistic-voter-losing and R-
optimistic-voter-losing are in P.

Since in parliaments one typically expects to have few candi-
dates, one could say that this theorem is “the end of the story”
for our problem. However, the proof of this theorem relies on the
fact that with n voters in the leading party and k parties in total,
we can consider all nk distributions of P1 members among the par-
ties. Under our assumption this mean polynomial running time, but
in practice such complexity may be prohibitive. In consequence,
polynomial-time algorithms that we provide later are much better
for their settings (or, in case of optimistic setting for k-veto are, at
least, somewhat better) and computational hardness results justify
when we are bound to use this brute-force algorithm.

4. SCORING PROTOCOLS
In this section we present our complexity results regarding the

voter losing problems with respect to scoring protocols.

4.1 Pessimistic Voter Losing
We show that for every scoring protocol the voter losing problem

in its pessimistic variant is computationally easy.

THEOREM 3. For every given scoring protocol, pessimistic-
voter-losing is in P. This holds even if the scoring protocol is part
of the input.

PROOF. We give an algorithm for our problem. Let E =
(C,V,P) be our input election, where P1 ∈P is the leading party
and let w be the leading party’s top candidate (w is a winner in E).
For each party P ∈P and each candidate c ∈C, by scoreP

E(c) we
mean the number of points that candidate c gets from a single voter
from party P.

If all parties place w on top of their preference lists, then clearly it
is possible to move all the voters away from P1 without preventing
w from winning. Otherwise, let A be the set of all those candidates
who, for some party, are placed on a position where they get more
points than w. For each candidate c∈ A and for each party Pj (apart
from the leading party P1) we compute the expression

(scorePj
E (c)− scorePj

E (w))− (scoreP1
E (c)− scoreP1

E (w)),

choosing the party, for which it has the greatest possible value (we
use ρ(c) to denote this value and ψ(c) to denote corresponding
party Pj). Note that since we have limited ourselves to only those
candidates, who are not “dominated” by w on at least one pref-
erence list—the greatest value for the above expression is guar-
anteed to be positive. This is because the first term of the sub-
traction for that party (ranking the currently considered candidate
over w) is positive and the second term is nonpositive for all par-
ties and candidates. Now, for each candidate c ∈ A we compute
φ(c) = d scoreE (w)−scoreE (c)

ρ(c) e and choose that candidate (let us call
him x) for whom the value of this expression is the smallest. It
remains to note that φ(x) is the smallest number of voters whose
move away from P1 can change the winner (provided they move to
ψ(x)). Clearly, the is polynomial-time and is correct.

COROLLARY 4. R-Pessimistic-voter-losing is in P when R is
Plurality, k-veto, k-approval, and Borda.

4.2 Optimistic Voter Losing
Let us now move on to the optimistic setting. Here we seek

the maximum number of voters that we can move away from the
leading party before its top candidate ceases to be a winner.
Plurality. Not surprisingly, for Plurality the problem is easy.

THEOREM 5. Plurality-optimistic-voter-losing is in P.

PROOF. To prove the theorem, we provide a polynomial-time
algorithm that will not change the result of the election for as many
moved voters as possible. Let w be the top candidate of the leading
party. If there exists another party Pi (apart from the leading one)
that supports w, then we can move every voter to that party and w
would still be a winner. Otherwise, let A be the set of candidates
who are top choice of at least one party (except for the leading
party). It suffices to move voters to a party which votes for the
least popular candidate from set A at the moment (i.e., the candidate
from A with the fewest points at the moment of choosing him).
In this way we will keep w winning for as long as possible. The
algorithm works in polynomial time since we will move at most
|P1| voters and for each of them we can determine the target party
of the transfer in polynomial time.

k-approval and k-veto. Intuitively, k-approval (k-veto) for k > 2
does not seem to be a natural voting rule for a parliament because
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it is not unanimous. Even if all the members of parliament agreed
on a preference order, they would still select k top choices (m− k
top choices, where m is the number of alternatives) rather than the
single top one. Nonetheless, we provide the analysis of this family
of rules for a number of reasons: (a) our study is not limited to
parliaments, (b) to allow comparison with other voting problems,
and (c) because technical ideas developed in this section might be
interesting in other settings.

We start with k-approval. We prove that the optimistic variant
is easy for k = 2, while it is intractable for any value of k that is
greater than 2. We assume that k ≥ 2, since for k = 1 the problem
is identical to the one presented for Plurality. We prove tractabil-
ity of the optimistic variant of voter losing problem for 2-approval
by exploiting its similarity to a certain polynomial-time solvable
matching problem.

THEOREM 6. 2-approval-optimistic-voter-losing is in P.

PROOF. Let w be the top candidate in the leading party’s (i.e.,
P1’s) preference order (prior to any voter movement, w is among the
winners). Without loss of generality, we can assume that there is
no other party that supports the same two candidates as the leading
party (otherwise we can move every voter to that party and w would
still be a winner). Let us assume that exactly k = k′ + k′′ voters
move from the leading party P1 to the other ones, where k′ is the
number of voters who move to the parties that do not support w, and
k′′ is the number of voters who move to the parties that do support
w. Candidate w will have scoreE ′(w) = scoreE(w)− k′ points. Let
s : C→Z be a function defined as follows: s(w) = k′′ and for every
candidate x∈C\{w}, s(x) = scoreE ′(w)−scoreE(x)+b(x), where

b(x) =

{
k′+ k′′, if P1 supports x
0, otherwise

E ′ will denote the transformed election that we get from E af-
ter moving all voters according to the description provided in this
proof. Function s indicates how many more voters at the beginning
may vote for the particular candidate before he or she defeats w
(and, in case of w, function s indicates how many more voters must
vote for him).

Now we construct a graph whose vertices and edges will in some
way correspond to candidates and parties, respectively. For each
candidate x ∈C (including w) we add to the graph exactly s(x) cor-
responding vertices. For each party Pi (apart from P1) we add edges
as follows: Supposing that Pi supports candidates q and r, we add
to the graph edges that connect each of the vertices corresponding
to candidate q with each of the vertices corresponding to candidate
r (thus creating a local complete bipartite graph). Since we as-
sumed that there is no other party supporting the same candidates
as the leading one and we explicitly excluded P1 from the routine
above, there is no edge connecting vertices corresponding to candi-
date w with the other candidate supported by P1. Finally, we assign
weights to the edges of the graph with a function ω : E→Z defined
as follows: ω(e) = 2 if w ∈ e, and ω(e) = 1 otherwise. For such a
graph, we solve (in polynomial time) a maximum weighted match-
ing problem (see, e.g., [14]), whose solution corresponds almost
directly to the solution of the 2-approval-optimistic-voter-losing
problem: adding an edge to the matching indicates a single voter
moving to the party corresponding to that edge. All we need to do
is to check whether exactly k′′ edges from the maximum weighted
matching are incident to vertices corresponding to w and whether
there are at least k′ other edges in that matching.

CLAIM 7. For a graph defined above, a maximum weighted
matching contains as many edges incident to w-originating ver-

tices as possible (i.e., it is not possible to ‘exchange’ one of the
other edges of the matching for a w-incident edge).

PROOF. Assume to the contrary that we have the graph defined
above, and that—after finding a maximum weighted matching—
there is an unmatched vertex corresponding to w, for example as
the vertex vw

3 on Figure 2(a). Thick and thin lines denote edges
of weight 2 and 1, respectively. Continuous lines denote edges in
the matching, and dotted lines—the other ones. However, in that
case, it would suffice to exchange some edge of weight 1 to a w-
incident edge of weight 2 in order to increase the overall weight of
the matching (which contradicts our assumption that the matching
found is a maximum weighted matching). Such an exchange may
take place either in a single step (as in the example on Figure 2),
or as a result of a series of exchanges of adjacent edges along some
path (if the 1-weighted edge being exchanged is not adjacent to any
w-incident edge)—the process is known as a matching alternation
along an alternating path [14]. Figure 2 shows an exemplary ex-
change: initially, the w-originating vertex vw

3 is not incident to the
matching. Then, an edge incident to the vertex vb

2 (which belongs
to the matching) is exchanged for the edge {vw

3 ,v
b
2}. It is worth

to note that the weights of the edges do not need to be exactly
as specified—all we need is to ensure that w-incident edges have
greater weights than the other ones.

vw3

vw1

vw2

vb1

va1

va2

vb2

(a)

vw3

vw1

vw2

vb1

va1

va2

vb2

(b)

Figure 2: Exchanging edges in matching.

Note that by Claim 7 and by setting weights as above, we ensured
that the solution will contain as many w-incident edges as possible.
Furthermore, because of the value of s(w) (and, consequently, be-
cause of the number of vertices corresponding to w), there can be
no more than k′′ such edges. As a result, the solution will contain
exactly k′′ w-incident edges if and only if it is possible for such
values of k′ and k′′. We do not require that there were exactly k′

other edges in the matching, but rather set a lower bound, because
we can simply ignore excessive edges that are not w-incident (that
is: excessive voters that move to the parties not supporting w). Nat-
urally, we do not a’priori know what values of k′ and k′′ to use.
However, there are only polynomially many combinations (we take
consecutive integers from |P1| to 0 as the value of k, and for each of
them there are only linearly many decompositions to a sum of two
nonnegative integers) and we can try them all. If we search for the
value of k in decreasing order (starting with |P1|), then we stop the
procedure as soon as we find the first valid solution (thus getting
the largest number of voters we can move to other parties).

On the other hand, for k ≥ 3, the problem is NP-complete.

THEOREM 8. k-approval-optimistic-voter-losing, where k ≥ 3,
is NP-complete.

PROOF. The problem is clearly in NP—we can just guess
to which parties we should move the voters. To prove NP-
hardness of the problem, we construct a reduction from X3C.
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Let B = {b1,b2, . . . ,b3t}, t > 1, be a set of elements and let
S = {S1,S2, . . . ,Sm} be a family of three-element subsets of B.
Our goal is to construct an instance of k-approval-optimistic-voter-
losing problem (defined by an instance of election with parties
E =(C,V,P), candidate w and a threshold q), k≥ 3, in which there
exists a solution if and only if there exists a set A ⊆ {1,2, . . . ,m}
such that |A|= t,

⋃
i∈A Si = B.

Let us begin with a 3-approval case. We define an election with
3t + 3 candidates: w,d1,d2,c1,c2, . . . ,c3t and m + 1 parties such
that: (1) The leading party’s preference order is w > d1 > d2 > · · ·
and the party has t+1 voters. (2) The other parties have preference
orders with the first three candidates representing corresponding
3-sets of the S family and no members. We ask whether it is pos-
sible to keep candidate w winning after moving at least t voters
(q = t). It is easy to notice that the only way of keeping candidate
w winning is to find parties that correspond to the solution of the
initial X3C problem and to move one voter to each of them. Thus
each candidate would have exactly one point. Otherwise, some
candidates would have more than one point, which means that they
would beat w. It is clear that the whole reduction works in polyno-
mial time. We can extend this construction to the case of k > 3 by
adding k−3 additional ‘dummy’ candidates to each party’s prefer-
ence order (different dummies for each party so that no candidate
is supported by more than one party).

The optimistic variant of voter losing for k-veto is easy.

THEOREM 9. k-veto-optimistic-voter-losing is in P.

PROOF. Let us fix a positive integer k. We will give a
polynomial-time algorithm for k-veto-optimistic-voter-losing prob-
lem. Our input contains an election E = (C,V,P) with parties,
where C is the candidate set, V is a collection of n voters, and P is
the set of t disciplined parties, P = {P1, . . . ,Pt}. Our winning party
is P1 and its top-preferred candidate is w (who, by assumption, is
also among the winners of the election). Our goal is to compute the
maximum number of voters that can move from P1 to other parties
without preventing w from being a winner.

Let m+ k+1 be the number of candidates in C. We assume that
m≥ k (otherwise we can solve the problem using Theorem 2). We
rename the candidates so that C = {w,a1, . . . ,am,d1, . . . ,dk}, where
w is the top candidate in party P1, a1, . . . ,am are the candidates
the party P1 approves of (in addtion to w), and d1, . . . ,dk are the
candidates that party P1 ranks on bottom k positions. We set A =
{a1, . . . ,am} and D = {d1, . . . ,dk}.

Let Pw be a subset of P that includes those parties (other than
P1) that approve of w. We claim that if Pw is empty, then it is
impossible to move any voters from P1 to other parties without pre-
venting w from being a winner.

First, if P = {P1}, then clearly it is impossible to move any
voters from P1 because there is no party where the voters could
go. Second, if P1 is the only party that approves of w, then all the
other parties must be initially empty. For the sake of contradiction
let us assume otherwise. Let n1 > 0 be the number of P1 party
members and let ni > 0 be the number of party members of some
non-empty party Pi. Since m ≥ k, there must be some candidate c
that is approved both by P1 and by Pi. However, this c has score at
least n1 + ni which is higher than the score of w (equal to n1; by
assumption, w gets points from party P1 only). This contradicts the
assumption that w is a winner. The same argument shows that if
any voter moved from P1 to some other party, then w would not be
a winner anymore.

Thus let us focus on the case where Pw is nonempty. Through
routine calculation, the reader can verify that it suffices to consider

the case where voters from P1 move to parties in Pw. The reason is
the following: When a voter moves from P1 to a party in Pw then:
(a) the score of w does not change, (b) for each candidate a ∈ A,
the difference between the score of w and a either stays the same or
increases (so w’s advantage increases), and (c) for each candidate
d ∈ D, the difference between the score of w and d either stays the
same or decreases. Thus when voters move from P1 to parties in
Pw we can disregard candidates in A; their score was originally
not greater than that of w and such moves cannot change it. On
the other hand, the reader can verify that for each candidate d ∈ D
and each two parties P′ ∈Pw and P′′ ∈P − (Pw ∪ {P1}), the
difference between the score of w and d after a voter moves from
P1 to P′ is no less than if this voter moved to P′′.

This means that we can focus entirely on the voters moving from
P1 to the parties in Pw. Further, it suffices to focus on the scores
of candidates in D. As a result, we can describe each party by
the subset of those candidates in D that it vetos. If two parties
veto the same subsets of candidates in D, then moving a voter from
P1 to either of these parties has the same effect on the score of
candidates in D. Thus we attach to each party in Pw a signature,
the subset of candidates in D that it vetos. For each signature that
occurs in Pw we delete all parties except for one with this signature
(arbitrarily chosen). Let P ′

w be the collection of parties that we
obtain in effect.

Clearly, P ′
w contains at most 2k parties. If P1 contains n1 voters,

then there are at most O(n2k

1 ) ways of moving (some of) them to
parties in P ′

w. Since k is a constant, we can try all these possibili-
ties in polynomial time and pick the one that moves the maximum
number of voters away from P1. This completes the proof.

The running time of the above algorithm may look somewhat
disappointing. After all, even for fairly small values of k, Θ(n2k

)
is a prohibitive time complexity. However, in general superpolyno-
mial dependence of the algorithm’s running time on k is unavoid-
able (unless P = NP). This is so because t-approval-optimistic-
voter-losing is NP-complete for t ≥ 3, and for m candidates, (m−
t)-veto is exactly t-approval.

Borda. The optimistic variant turns out to be computationally hard
for Borda’s rule. We prove it by a reduction from the X3C problem.
This time, however, the construction is not straightforward.

THEOREM 10. Borda-optimistic-voter-losing is NP-complete.

PROOF. The problem is clearly in NP—we can just guess
to which parties we should move the voters. To prove NP-
hardness of the problem, we construct a reduction from X3C. Let
B = {b1,b2, . . . ,b3t}, t > 1, be a set of elements and let S =
{S1,S2, . . . , Sm} be a family of three-element subsets of B. Our goal
is to construct an instance of Borda-optimistic-voter-losing prob-
lem (define an election with parties E = (C,V,P), winner w and
threshold q), in which there exists a solution if and only if there
exists a set A⊆ {1,2, . . . ,m} such that |A|= t,

⋃
i∈A Si = B. We de-

fine an election E with m+ 1 parties P = {P0,P1, . . . ,Pm}, where
P0 is the leading party and P1, . . . ,Pm correspond to the 3-sets from
S . The election has 3t ‘real’ candidates b1,b2, . . . ,b3t correspond-
ing to the elements of B, one winner w and m · (t−1) ·3t ‘dummy’
candidates d j

i (k), where i = 1, . . . ,3t, j = 1, . . . , t−1, k = 1, . . . ,m.
The preference lists of parties are as follows:

1. Party P0 (the leading one) has preference order w > b1 >
b2 > .. . > b3t > .. .

2. Every party Pk (k = 1, . . . ,m) has preference order defined as
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follows. We take consecutive candidates from b3t to b1 and
for each of them we repeat the procedure described below.

If the selected candidate bi corresponds to an element of
subset Sk from family S , then we put him on place no.
(3t − i) · (t − 1)+ 1 of the preference list, and we put t − 2
dummy candidates d2

i (k),d
3
i (k), . . . ,d

t−1
i (k) just below him.

Moreover, we put one dummy candidate d1
i (k) on place no.

3t · (t − 1) + i + 1. Otherwise, we put there t − 1 dummy
candidates d1

i (k),d
2
i (k), . . . ,d

t−1
i (k) (starting from the same

place as we would have put candidate bi in the previous case)
and we put candidate bi on place no. 3t · (t−1)+ i+1.
Finally, we put candidate w on place no. 3t · (t−1)+1.

After that, we have the first 3t · t + 1 places of the list occu-
pied. The other places may be taken by the rest of the dummy
candidates in any order.

Assuming that Sk = {bp,bq,br}, the preference order of
the corresponding party Pk is Block3t(k) > Block3t−1(k) >
. . . > MemberBlockr(k) > . . . > MemberBlockq(k) > . . . >
MemberBlockp(k) > . . . > Block1(k) > w > b1 > . . . > bp−1
> d1

p(k) > bp+1 > . . . > bq−1 > d1
q(k) > bq+1 > . . . > br−1

> d1
r (k) > br+1 > . . . > b3t , where Blocki(k) is given by

d1
i (k) > d2

i (k) > .. . > dt−1
i (k) and MemberBlocki(k) cor-

responds to bi > d2
i (k)> .. . > dt−1

i (k).

The leading party has t voters and all of the other parties have no
voters. We ask whether it is possible to keep candidate w winning
after moving at least t (or rather exactly t, since there are only t
voters in the election) voters (we set the threshold q = t).

First of all, it is clear that—having the election instance de-
fined as above—candidate w initially wins the election: Initially,
the winner w gets scoreE(w) = t · (|C| − 1) points, and any of
the other ‘real’ candidates bi for i = 1, . . . ,3t gets scoreE(bi) =
t · (|C|− i−1)< scoreE(w), where |C| denotes the number of can-
didates in the election. Obviously, any of the dummy candidates
gets even fewer points.

Second, note that if there exists a solution to the original
X3C problem, then the answer to the Borda-optimistic-voter-losing
problem is also positive: The preference lists are organized in such
a way that—after moving voters in accordance with the X3C so-
lution (one voter for each party representing a subset from the
cover)—candidate w and all of the candidates b1, . . . ,b3t will have
an equal number of points (recall that E ′ denotes the transformed
election that we get from E after moving all voters according to the
description provided in this proof):
After moving t voters according to the X3C solution, the can-
didate w gets scoreE ′(w) = t · (|C| − 3t · (t − 1)− 1) points and
any of the other candidates bi, i = 1, . . . ,3t gets scoreE ′(bi) =
|C| − (3t − i) · (t − 1)− 1 + (t − 1) · (|C| − 3t · (t − 1)− i− 1) =
= t · (|C| − 3t · (t − 1)− 1) = scoreE ′(w), where the term |C| −
(3t− i) · (t− 1)− 1 comes from the voter moved to the party cor-
responding to the set from X3C solution that covers element bi,
and the term (t− 1) · (|C|− 3t · (t− 1)− i− 1) comes from voters
moved to the other t−1 parties. Note that the last result (the num-
ber of points scored by candidate bi) is independent of the index
i, which means that every candidate gets exactly the same score.
Furthermore, in such case none of the dummy candidates will have
a chance of winning the election. Dummy candidates can score
at most |C| − 1+(t − 1) · (|C| − 3t · t − 2) = t · |C| − 3t · t · (t − 1)
−2(t−1)−1< scoreE ′(w). This is the most optimistic case, where
one of the dummy candidates is top-ranked by one of the nonempty
parties (thus getting |C| − 1 points), and all other nonempty par-
ties rank him on the highest possible place (i.e., on place number

3t · t +2). The last inequality holds because we assumed that t > 1
(recall the assumption about the size of X3C input set B).

Conversely, if there exists a solution to the optimistic-voter-
losing problem for a scoring protocol, then there must exist a solu-
tion to the corresponding X3C problem. Let us suppose that exactly
t voters have moved to other (non-leading) parties. It is clear that in
such a case, candidate w (the initial winner of the election) would
have exactly t · (|C| − 3t · (t − 1)− 1) points, regardless of which
parties had the voters moved to (since all parties, except for the
leading party P0, rank w on the same place). Let us fix some arbi-
trary candidate c∈C\{w}. Let α(c) and β (c) denote the sets of all
those parties, which rank candidate c above and below candidate w,
respectively. If a party is a member of the set α(c), then we will say
that it covers candidate c. Each of the candidates bi, i = 1, . . . ,3t,
gets |C| − (3t− i) · (t− 1)− 1 points for each voter that moved to
one of the parties α(bi), and |C| − 3t · (t − 1)− i− 1 points for
each voter that moved to one of the parties β (bi), so switching
his choice between those two options changes his overall score
by (|C| − (3t − i) · (t − 1)− 1)− (|C| − 3t · (t − 1)− i− 1) = t · i.
Supposing that for some i = 1, . . . ,3t all t voters have moved
only to parties from β (bi), candidate bi would have a total of
scoreE ′(bi) = t · (|C| − 3t · (t − 1)− i− 1), which is such that
scoreE ′(w)− scoreE ′(bi) = t · i. Consequently, each candidate may
be covered at most once—otherwise he or she will overtake w,
which stays in opposition to the conditions of Borda-optimistic-
voter-losing problem. Furthermore, it means that we can move at
most one voter to each party. On the other hand, each party covers
exactly three candidates. Finally, mind that we move exactly t vot-
ers, which implies—in conjunction with the statement above—that
we choose exactly t parties. Taking all of the statements above into
consideration we can clearly see that this is precisely the definition
of the X3C problem.

It remains to note that the reduction is polynomial-time.

5. CONDORCET CONSISTENT RULES
We now present our complexity results regarding two Condorcet

consistent rules (namely: Copeland and Maximim).
Maximin. The pessimistic variant for maximin is difficult.

THEOREM 11. Maximin-pessimistic-voter-losing is coNP-
complete.

PROOF. It is clear that the problem is in coNP and thus we
focus on the proof of its coNP-hardness. We do so via a reduc-
tion from the complement of X3C (that is, the problem that is
identical to X3C, except that if the answer for a given X3C in-
stance is “yes” then in the complement the answer is “no”, and the
other way round). Let I = (B,S ) be an instance of X3C, where
B = {b1, . . . ,b3k} and S = {S1, . . . ,Sn} is a family of three-eleemt
subsets of B. We build the following election E = (C,V,P) with
disciplined parties. The candidate set is B∪{a,b,c,d,w}. The set
of parties is P = {P1,P2,R1, . . . ,R6,T1, . . .T4,Q1, . . . ,Qn} with the
following preference orders and member counts (we set N = 4k,
X = 5k, Z = 4k, Y = k+1 and W = k−1):

1. Both P1 and P2 have N members each. P1 has preference
order w > C−{w,d} > d and P2 has preference order w >
←−−−−−−
C−{w,d}> d.

2. Parties R1 and R2 have X members each. R1 has preference
order a > b > d > c > w > B and R2 has preference order
←−
B > c > w > d > b > a.

3. Parties R3 and R4 have Z members each. R3 has preference
order w > b > d > a > c > B and R4 has preference order
←−
B > a > c > d > b > w.
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w a b c d bi b j score
w – 8k 8k −2k 6k−2 8k 8k −2k
a −8k – 8k 6k−2 −8k
b −8k – 6k−2 −8k
c 2k −8k – 6k−2 −8k
d −6k+2 −6k+2 −6k+2 −6k+2 – −4k −4k −6k+2
bi −8k 4k – −8k
b j −8k 4k – −8k

Table 1: Function ME(·, ·) from the proof of Theorem 11.
Candidates bi and bj are two arbitrarily chosen, distinct, mem-
bers of B. Empty cells indicate that the value of the function
for given two candidates is 0.

4. Parties R5 and R6 have W members each. R5 has preference
order a > d > B > b > c > w and R6 has preference order
w > c > b > d >

←−
B > a.

5. Parties T1, T2, T3, and T4 have Y members each, and have the
following preference orders:

(a) T1 : a > d > b > c > w > B,
(b) T2 : b > d > a > w > c > B,
(c) T3 : c > d > w > a > b >

←−
B , and

(d) T4 :
←−
B > w > d > c > b > a.

6. For each i, 1 ≤ i ≤ n, party Qi has 0 members and has pref-
erence order B−Si > d > Si > a > b > c > w.

Table 1 shows the values of function ME(·, ·) and Maximin scores
of the candidates prior to any voter movement in E. We claim that
there is an exact cover of B with sets from S if and only if there is
a way to move k voters from P1 to other parties so that w ceases to
be a winner.

Let us assume that there is no exact cover of B with sets from
S . After we move k voters from P1 to other parties, the score of w
decreases to no less than −4k. The score of the candidates in B∪
{a,b,c} cannot increase to more than −6k so neither of them can
endanger w’s victory. The only candidate whose score could possi-
bly exceed −4k is d. However, if even one voter v of our k moving
voters go from P1 to some party in {P2,R1, . . . ,R6,T1, . . . ,T4} then
the score of d cannot go beyond −4k. The reason is that this v will
move to a party that prefers some candidate x∈ {a,b,c,w} to d, and
thus in the election E ′ resulting from the move ME ′(d,x) ≤ −4k,
and d will not defeat w. Yet, if all the k voters that leave party P1
go to parties in {Q1, . . . ,Qn} then, since there is no cover of B with
sets from S , there will be at least one candidate bi ∈ B such that
in the election E ′′ resulting from the move, ME ′′(d,bi) =−4k and,
again, d will not defeat w.

On the other hand, if there is an exact cover of B with sets from
S , then if k voters move from P1 to the parties corresponding to
the cover, then d will have score −4k + 2 and w will have score
−4k. That is, there is a way to move k voters that prevents w from
being a winner.

THEOREM 12. For Maximin, optimistic-voter-losing is NP-
complete.

Copeland. The results for the case of Copeland are the same as
for Maximin and we omit the proof for the pessimistic case due to
space constraints; it is similar in spirit to the proof used for Max-
imin. The key trick is to use McGarvey’s theorem [15] in a way that
allows us to build an election with necessary structure, but which
prevents voters to move from P1 to the parties that we use in the
application of McGarvey’s theorem. This can be done using candi-
dates a, b, c, and d similarly as in the proof of Theorem 11. The
proof for the optimistic case relies on a similarity to set covering.

THEOREM 13. For each rational α , 0 ≤ α ≤ 1, Copelandα -
pessimistic-voter-losing is coNP-complete.

THEOREM 14. For each rational α , 0 ≤ α ≤ 1, Copelandα -
optimistic-voter-losing is NP-complete.

PROOF. We will give a proof for the case of α = 0 (we do so due
to space constraints; a proof that covers all values of α jointly is
somewhat longer). It is clear that the problem is in NP and we will
show its NP-hardness via a reduction from X3C. Let I = (B,S ) be
an instance of X3C where B = {b1, . . . ,b3k} and S = {S1, . . . ,Sn}
is a family of three-element subsets of B.

We form two sets, B′ = {b′1, . . . ,b′3k} and B′′ = {b′′1 , . . . ,b′′3k}.
Further, for each set Si ∈S , we form a set Ri = {b′j | b j ∈ Si}∪
{b′′j | b j ∈ Si}. We construct an election E = (C,V,P) with parties,
where C = B′∪B′′∪{w,c}, V is a collection of 4k voters, and P =
{P1,P2,Q1, . . . ,Qn} is a set of parties.

Party P1 has 2k + 2 members and preference order w > c >
B′ > B′′. Party P2 has 2k − 2 members and preference order
c >
←−
B′′ >

←−
B′ > w. For each i, 1 ≤ i ≤ n, party Qi has 0 mem-

bers and preference order Ri > w > c > (B′ ∪B′′)−Ri. Prior to
the movement of any voters, w wins head-to-head contests with all
the other candidates (each by 4 votes) and has score 6k+1. Candi-
date c loses his head-to-head contest to c by 4 votes, but wins every
head-to-head contest with candidates in B′ ∪B′′ by 4k votes. Alto-
gether, c has score 6k (and this cannot change after the movement
of at most k voters from P1). Each candidate in B′ ∪B′′ loses both
to w and to c, and thus has score at most 6k−1.

We claim that it is possible to move k voters away from party P1
if and only if there is an exact cover of B with sets from S . Let us
assume that there is such a cover. If we move voters from P1 to the
parties in {Q1, . . . ,Qn} that correspond to the sets from the cover,
then the score of w is still 6k+1 and, as a result, w is still a winner.

On the other hand, let us assume that there is no exact cover. If
we move k voters from P1 to the parties in {Q1, . . . ,Qn} then, since
there is no exact cover of B, there will be at least two candidates,
b′i ∈ B′ and b′′i ∈ B′′, with whom w will either tie or lose. In effect
w will have score at most 6k− 1 and since c will still have score
6k, w will not be a winner any more. Alternatively, if k voters will
move from P1 to other parties and at least one of them will move to
P2, then clearly the score of w will be at most 6k−5 and so w will
have fewer points than c. Since the reduction can be computed in
polynomial time, the proof is complete.

6. RELATED WORK
There is a long collection of papers that study computational

complexity of affecting the results of elections, and we point the
reader to the survey papers of Faliszewski, Hemaspaandra, and
Hemaspaandra [9] and of Brandt, Conitzer, and Endriss [3].

Our work is perhaps closest to a very recent paper of Baumeis-
ter et al. [1], where the authors asks the following question: Given
an election, is it possible to set the weights of the voters so that a
particular candidate becomes a winner? Our work differs in im-
portant technical details: First, in our case the total weight of the
parties (that is, the total number of members of parliament) is fixed
and each member has to belong to some party. Second, we have
initial “weights” of the parties and voters can leave only the spec-
ified leading party. (In terms of Baumeister et al., for one voter
we can only decrease the weight, and for the others we can only
increase the weights, and the total weight has to stay the same.)
Further, in our case voters can go from the leading party to any of
the other parties, whereas Baumeister et al. have two groups of vot-
ers, those whose weights are fixed and those whose weights may
change. Thus our complexity results differ from theirs.
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Our work is also related to Faliszewski, Hemaspaandra, and
Hemaspaandra’s [10] work on multimode control, where the au-
thors study questions such as: If I am allowed to both add and
delete some voters, then what is the complexity of ensuring that a
given candidate is a winner? Our problem can be viewed as a vari-
ant of simultaneous adding and deleting voters (we delete voters
from the leading party and add them to the other parties).

Our problems resemble also the problem of bribery [8] and mar-
gin of victory (destructive bribery) [19]. One could also use the
very recent result of Xia [20] to provide asymptotic analysis of our
problems in terms of the expected number of voters that have to
leave the leading party in order to change the winner. Finally, our
work is close in spirit to the studies of possible and necessary win-
ners [12, 13, 17, 21], though different on technical side.

7. CONCLUSIONS
The paper provides a study of party changing problem in opti-

mistic and pessimistic variant for the most common scoring pro-
tocols (namely, plurality, veto, k-approval, k-veto, and Borda) and
for Cordorcet consistent rules (namely, Copeland and Maximin).
Table 2 shows a summary of our results. As opposed to the studies
of manipulation, bribery, and control in elections (see [3, 9]), here
NP-completeness should not be taken to mean that members of the
leading party will not attempt to threaten the result of an election
by moving to other parties. Rather, where we have polynomial-
time algorithms for both our problems, we should expect the party
members attempting to move and the party leader trying to keep
them, to make rational calculations regarding their situation. Where
our results show NP-completeness (or coNP-completeness), these
agents’ calculations would, by necessity, be only approximate or
take much more of their resources.

Table 2: The complexity of the party-change problem
Election system pessimistic optimistic
plurality P P
veto P P
2-approval P P
k-approval (k≥ 3) P NP-com
k-veto P P
Borda P NP-com
maximin coNP-com NP-com
Copelandα (for all α) coNP-com NP-com

We plan to investigate complexity results for this problems also
in scenarios where we have probabilistic information about the par-
ties where the voters will move, in the spirit of probabilistic study
of control problems initiated by Wojtas and Faliszewski [18].
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