
On Elections with Robust Winners

Dmitry Shiryaev
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

SHIR0010@e.ntu.edu.sg

Lan Yu
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

yula0001@e.ntu.edu.sg

Edith Elkind
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

eelkind@ntu.edu.sg

ABSTRACT
We study the sensitivity of election outcomes to small changes in
voters’ preferences. We assume that a voter may err by swapping
two adjacent candidates in his vote; we would like to check whether
the election outcome would remain the same given up to δ errors.
We show that this problem can be viewed as the destructive version
of the unit-cost swap bribery problem, and demonstrate that it is
polynomial-time solvable for all scoring rules as well as for the
Condorcet rule. We are also interested in identifying elections that
are maximally robust with respect to a given voting rule. We define
the robustness radius of an election with respect to a given voting
rule as the maximum number of errors that can be made without
changing the election outcome; the robustness of a voting rule is
defined as the robustness radius of the election that is maximally
robust with respect to this rule. We derive bounds on the robustness
of various voting rules, including Plurality, Borda, and Condorcet.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

Keywords
voting; bribery; swap distance; robustness

1. INTRODUCTION
Voting provides a convenient method for preference aggregation in
heterogeneous groups of agents: the group members report how
they order the available alternatives (from the most preferred one
to the least preferred one), and a voting rule is used to select a
winner. There is a wide variety of voting rules that can be used for
this purpose, with each of these rules encoding a certain approach
to aggregating the preferences of the group members. Clearly, for
a voting rule to work as intended, it has to be the case that every
voter can reliably submit a ranking that fully reflects his opinion of
the available alternatives. However, it is not realistic to assume that
this is always the case.

Indeed, there are two main reasons for submitting an erroneous
vote. First, the voters may be unable to invest sufficient time and
resources in investigating the properties of all the available alterna-
tives, and, as a result, they may err by ordering fairly similar alter-
natives in a way that deviates from the one they would have chosen

if they were to study their options in more detail. Second, voters
can make mistakes when filling out their ballots; again, while they
are unlikely to rank their top alternative last, they may inadvertently
swap adjacent alternatives.

Thus, we may wonder if an outcome of a given election would
have remained the same if each vote was a perfect reflection of
the respective voter’s preferences. Of course, the answer to this
question depends on the observed election outcome: if the two most
successful candidates are close to being tied, it is quite plausible
that the error-free outcome would have been different, but if the
current winner leads by a significant margin, the election outcome
is likely to reflect the true collective opinion. In other words, given
an election, it is natural to ask how robust its outcome is, given that
our perception of the voters’ preferences may be noisy.

In this paper, we study this question for several voting rules,
namely, the class of all scoring rules and the Condorcet rule, under
the assumption that an “elementary” mistake that a voter (or a vote
recording device) can make is to swap two adjacent alternatives in
the vote; in recording a given vote, several such mistakes can be
made consecutively. This approach is motivated by a classic model
of noise used in the study of preferences, which is known as the
Mallows noise model [11]. However, in contrast to the Mallows
model, we do not assume that mistakes follow a particular distri-
bution. Rather, we are interested in the worst-case scenario, i.e.,
whether the election result could have been different if we were to
deviate by δ swaps of adjacent candidates from the observed pref-
erence profile. Thus, we measure the distance between elections
using the classic swap distance [4] (also known as the inversion
distance, the bubble-sort distance, or the Kemeny distance), and
we ask whether all elections within a given distance bound δ from
the observed election E have the same outcome as E.

This computational problem can be viewed as the destructive
version of the well-studied swap bribery problem [6] with unit
costs. In more detail, in the (constructive version of) the swap
bribery problem it is assumed that an external party wants to make
a specific candidate the election winner, and bribes the voters to
change their preferences; each voter has a price for swapping every
pair of adjacent candidates in his vote, and the question is whether
the external party can achieve its goal given a certain bribery bud-
get. In the destructive version of this problem (which, to the best
of our knowledge, has not been considered in the literature), the
briber’s goal would be to prevent a specific candidate from win-
ning; clearly, this is equivalent to our question under the assump-
tion that all swaps have the same cost.

We are also interested in understanding the structure of elections
whose outcome is maximally robust with respect to a given voting
rule, i.e., those whose winner is most resilient to swaps of adja-
cent candidates. Formally for a given voting rule F , we define the

415

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

robustness radius robF (E, c) of an election E with respect to a
candidate c as the smallest number of swaps that have to be ap-
plied to E to ensure that c is not the (unique) winner of E under
F . The robustness of a voting rule F for a given number of voters
n and a given number of candidates m (denoted by robF (m,n))
is then defined as the maximum robustness radius, over all n-voter
m-candidate elections and all candidates in these elections. This
quantity measures the maximum resilience of a voting rule to er-
rors in reported preferences and may vary quite substantially from
one voting rule to another: for instance, our results show that the
Borda rule is considerably more robust than the Condorcet rule.
In the context of bribery, the robustness radius provides an upper
bound on the briber’s expenses in the absence of information about
the voters’ true preferences. That is, suppose that the briber has an
upper bound b on the cost of each swap, and has to decide on the
bribery budget before he learns the voters’ rankings; then by allo-
cating a budget of b · robF (m,n) he can ensure that he will be able
to prevent his despised candidate from being the election winner.

Our Contribution We formally define the destructive swap bribery
problem and investigate its computational complexity. In partic-
ular, we show that the unit-cost version of this problem admits
polynomial-time algorithms for all scoring rules and the Condorcet
rule. On the other hand, we prove that the general destructive swap
bribery problem is hard for k-approval if k is considered a part of
the input description. Furthermore, we obtain essentially match-
ing upper and lower bounds on the robustness of several classes of
scoring rules, including such prominent scoring rules as Plurality
and Borda. Determining the robustness of the Condorcet rule turns
out to be more difficult: while we provide non-trivial upper and
lower bounds for this quantity, there is still a gap that remains to
be closed. Interestingly, we show that an election that is (almost)
maximally robust with respect to many scoring rules is provably
non-optimal for the Condorcet rule.

Related Work Procaccia et al. [12] also consider robustness of
voting rules to swaps of adjacent candidates. However, their ap-
proach differs from ours in several important aspects. First, they
measure the robustness of a given election as a fraction of swaps
that leave the outcome unchanged (they also extend this definition
to fixed-length chains of swaps), i.e., while our model of noise is
adversarial, theirs is random. Second, Procaccia et al. are inter-
ested in minimally robust elections, while we focus on elections
that are maximally robust. Indeed, while the goal of Procaccia et
al. is to understand which voting rules are most resilient to errors
(or, viewed from a different perspective, least sensitive to changes
in voters’ preferences), our aim is to understand which features of a
preference profile guarantee that a given voting rule will output the
desired result, even in the presence of mistakes. Unsurprisingly, our
conclusions are also very different from those of Procaccia et al.: in
our framework, Borda turns out to be extremely robust, while Plu-
rality is rather fragile, whereas in the model of Procaccia et al. the
opposite is true. Finally, we provide efficient algorithms for com-
puting the robustness radius under many voting rules; in contrast,
the results of Procaccia et al. are non-algorithmic in nature.

Our work is also closely related to (and shares some of the mo-
tivation) with the recent work by Xia [13] on the margin of victory
of voting rules. Indeed, Xia explores essentially the same algorith-
mic question, but for a different model of errors. Namely, he asks if
the election results would have remained the same if up to δ voters
were to change their vote arbitrarily. Thus, our papers differ in their
notion of an elementary error, or, equivalently, in their approach to
measuring distance between elections: while the underlying no-
tion of distance for our work is the swap distance, for [13] it is the

Hamming distance. In other words, while we study the destruc-
tive version of the swap bribery problem [6], paper [13] studies the
destructive version of the original bribery problem [7]1.

While our approach is based on a more fine-grained notion of er-
rors than that of [13], we do not claim that it is generally superior:
rather, for either approach there is a range of scenarios where it is
more suitable than the other. In particular, the swap distance-based
model seems more attractive when voters make mistakes due to
imperfect introspection or errors in recording their vote, while the
Hamming distance-based approach is more appealing when mis-
takes are due to (potential) malfunctioning of the vote-recording
device (which is the motivation put forward in [13]).

We remark that both in our model and in the model of [13] the
associated algorithmic question is easy for all scoring rules, but,
apart from this, the contribution of the two papers is incomparable:
there are several voting rules studied in [13], but not in our work
(though we intend to study these voting rules in the future), but, on
the other hand, Xia does not consider the Condorcet rule (he does,
however, prove NP-hardness results for several voting rules that are
refinements of the Condorcet rule). Also, Xia focuses on the algo-
rithmic aspect of the problem only, while a significant (and perhaps
the most mathematically interesting) part of our contribution is the
study of the combinatorial question of robustness of voting rules;
we believe that this question would be just as interesting to study
in the model of [13], and propose it as a direction for future work.

The rest of this paper is organized as follows. After introducing
our notation and basic definitions in Section 2, we formally de-
fine the problems we intend to study (Section 3). Sections 4 and 5
present our results for scoring rules and the Condorcet rule, respec-
tively. We conclude in Section 6.

2. PRELIMINARIES
An election is a pair E = (C,R), where C is a set of candidates,
or alternatives, and R = (R1, . . . , Rn) is a preference profile,
with each Ri, i = 1, . . . , n, being a linear order over C; we will
sometimes write �i in place of Ri. We will refer to the elements
of R as votes: Ri is is the vote of the i-th voter in the election
(C,R). We denote the number of votes in a preference profile
R by |R|. We say that a voter i prefers a ∈ C to b ∈ C if
a �i b. We denote the candidate ranked by voter i in position
j by c(j, Ri). Conversely, we denote the position of a candidate
cj in the i-th vote by pos(cj , Ri). We will sometimes identify C
with the set [m] = {1, . . . ,m}. We denote the space of all n-voter
m-candidate elections by En,m.

Given an election E = (C,R), a candidate a is said to win the
pairwise election against b if more than half of the voters prefer a
to b; if exactly half of the voters prefer a to b, then a is said to tie
his pairwise election against b. A candidate a ∈ C is said to be
the Condorcet winner of the election E = (C,R) if he beats every
other candidate in their pairwise election.

Given two votes R and R′ over a set of candidates C, the swap
distance between R and R′, denoted by dswap(R,R′), is the num-
ber of swaps of adjacent candidates needed to transform R into
R′, or, equivalently, the number of pairs (a, b) ∈ C × C such
that in R candidate a is ranked above candidate b, but in R′ can-
didate b is ranked above candidate a. Given two n-voter elections
E = (C,R) and E′ = (C,R′) over the same set of candidates

1To be precise, the margin of victory problem studied in [13] differs
from destructive bribery with unit costs in its handling of ties, but
the two problems are nevertheless very similar; see the discussion
in [13].

416

C, the swap distance between them, denoted by dswap(E,E′), is
given by dswap(E,E′) =

∑
i=1,...,n dswap(Ri, R

′
i).

A voting correspondence (in what follows, we will use the terms
voting correspondence and voting rule interchangeably) is a map-
ping F that given an election E = (C,R) outputs a non-empty set
of candidates W = F(E) ⊆ C; the candidates in W are called
the winners of the electionE under the voting rule F . We will now
define the voting rules that will be considered in this paper.

Scoring rules Any vector of non-negative realsα = (α1, . . . , αm)
that satisfies α1 ≥ · · · ≥ αm corresponds to a scoring rule Fα,
which is defined for m-candidate elections only. Under this rule,
each candidate in an election E = (C,R) with |C| = m receives
αi points from every voter that ranks him in position i; the Fα-
score of a candidate c in E (denoted by sα(E, c)) is the total num-
ber of points that c receives in E. The winners under Fα are the
candidates with the highest Fα-score. The vector (α1, . . . , αm)
is called the scoring vector that corresponds to the scoring rule
Fα. As we are interested in asymptotic complexity results, we
will consider families of scoring rules {Fαm}m≥1, where αm =
(αm1 , . . . , α

m
m) and αm1 ≥ · · · ≥ αmm. We require these families

to be polynomial-time computable, i.e., we assume that for each
m ≥ 1 and each i = 1, . . . ,m the number αmi is a non-negative in-
teger given in binary, and, moreover, there is a polynomial-time al-
gorithm that can outputαmi givenm and i. There are several promi-
nent voting rules that correspond to families of scoring rules. In
particular, Plurality is the family of scoring rules given by αm1 = 1,
αmi = 0 for all m ≥ 1 and all i = 2, . . . ,m, Veto is the family
of scoring rules given by αmm = 0, αmi = 1 for all m ≥ 1 and all
i = 1, . . . ,m − 1, Borda is the family of scoring rules given by
αmi = m − i for all m ≥ 1 and all i = 1, . . . ,m, and k-approval
is the family of scoring rules such that for each m ≥ 1 it holds that
αmi = 1 for i = 1, . . . , k and αmi = 0 for all i = k + 1, . . . ,m,

The Condorcet rule Under the Condorcet rule, if the election has
a Condorcet winner, he is the (unique) election winner; otherwise,
the set of winners is C. We remark that it is more common (see,
e.g., [2]) to say that in the latter case the election has no winners.
However, in the social choice literature it is standard to require (as
we do) that a voting rule outputs a non-empty winner set for ev-
ery election, so we have modified the definition of the Condorcet
rule to satisfy this requirement. Since in this paper we focus on the
unique winner variant of our computational problem (see Section 3
for formal definitions), these two definitions are essentially equiv-
alent. However, for the co-winner variant of our problem this is no
longer the case; we discuss this issue in detail in Section 5.

A voting rule is said to be Condorcet-consistent if it elects the
Condorcet winner whenever one exists. Examples of such rules
include Maximin, Copeland, Dodgson, and several others; we omit
the formal definitions of these rules due to space constraints. Some
of our results for the Condorcet rule extend to all Condorcet-con-
sistent rules.

In what follows, we abbreviate the Plurality rule to FP , the Veto
rule to FV , the Borda rule to FB, k-approval to Fk, and the Con-
dorcet rule to FC .

Our usage of theO-notation follows [3]: we write f(x) = g(x)+
O(h(x)) to indicate that |f(x)− g(x)| ≤ λh(x) for some positive
constant λ and all values of x. This notation extends to inequalities
in a natural way.

3. OUR MODEL
We will now present the two questions that will be the focus of this
paper.

Our first definition builds on the notion of swap bribery that
was introduced by Faliszewski et al. [6]. Recall from [6] that a
unit swap for an election E = (C,R) with |R| = n is a triple
(i, cj , ck), where i ∈ {1, . . . , n} and cj , ck ∈ C; this unit swap is
said to be admissible if cj is ranked right above ck inRi. Executing
an admissible unit swap (i, cj , ck) means changing the order of cj
and ck in Ri, i.e., replacing the vote Ri = · · · �i cj �i ck �i . . .
with R′i = · · · �i ck �i cj �i A bribery price function
for a voter i is a mapping πi : C × C → Z+ that associates each
admissible unit swap involving this voter with a non-negative cost.

We are now ready to present the definition of destructive swap
bribery.

DEFINITION 3.1. Given a voting rule F , an instance of F-
DESTRUCTIVE SWAP BRIBERY is given by an electionE = (C,R),
a candidate c ∈ C, a list of n = |R| bribery price functions
(π1, . . . , πn), and a parameter δ ∈ Z+. It is a “yes”-instance if
F(E) = {c}, but there exists a sequence of unit swaps σ1, . . . , σk
of total cost at most δ and a sequence of electionsE0, . . . , Ek such
that E0 = E, Ek = E′, F(E′) 6= {c}, and for each j = 1, . . . , k
the unit swap σj is admissible in Ej−1 and Ej is obtained from
Ej−1 by executing σj . Otherwise, it is a “no”-instance.

Motivated by the considerations of robustness discussed earlier in
the paper, we will mostly focus on a special case of DESTRUCTIVE
SWAP BRIBERY where πi(cj , ck) = 1 for all i = 1, . . . , n and all
cj , ck ∈ C, i.e., each swap has unit cost. We refer to this special
case as UC DESTRUCTIVE SWAP BRIBERY. Note that in the unit
cost model the requirement thatE′ can be obtained fromE by a se-
quence of admissible unit swaps of total cost at most δ is equivalent
to requiring that dswap(E,E′) ≤ δ.

We remark that in Definition 3.1 we consider the unique winner
variant of our problem, i.e., we require c to be the unique winner
of the original election, and we seek a modified election for which
this is no longer the case. Alternatively, one could consider the co-
winner variant of this problem, where c is required to be one of the
election winners, and the goal is to find an election in which c is not
an election winner at all. It is not hard to verify that the dynamic
programming algorithm for scoring rules presented in Section 4
can be modified to work for the co-winner variant of our problem.
However, for the Condorcet rule the relationship between the two
variants of the problem is more complicated (see Section 5). We
chose to focus on the unique winner variant of our problem since it
provides a better match for the intuition behind the Condorcet rule.

Definition 3.1 is very similar to the one given by Faliszewski et
al. [6]; the only difference is that in [6] the briber’s goal is to make
his preferred candidate an election winner, while in our setting he
wants to ensure that a candidate he dislikes is not the election win-
ner. We will refer to the problem considered in [6] as CONSTRUC-
TIVE SWAP BRIBERY. We observe that the unique-winner variant
of DESTRUCTIVE SWAP BRIBERY is polynomial-time reducible
to the co-winner variant of CONSTRUCTIVE SWAP BRIBERY: the
briber can ensure that c is not the unique winner if and only if he
can make another candidate a ∈ C \ {c} an election co-winner. (A
similar relationship holds between constructive and destructive ver-
sions of other voting problems, see [9]). Thus, by Theorem 3 in [6]
and Theorem 1 in [5] we obtain the following easiness results for
our problem.

PROPOSITION 3.2. F-DESTRUCTIVE SWAP BRIBERY is in P
forF ∈ {FP ,FV}. Also,Fk-UC DESTRUCTIVE SWAP BRIBERY
is in P for every k ≥ 1.

On the other hand, we can exploit the relationship between the
POSSIBLE/NECESSARY WINNER problem [10] and CONSTRUC-

417

TIVE/DESTRUCTIVE SWAP BRIBERY to obtain hardness results
for our problem. In more detail, most of the hardness results for
CONSTRUCTIVE SWAP BRIBERY presented in [6] are obtained via
a reduction from the POSSIBLE WINNER problem, where we are
given a collection of partial orders over a set of candidates C, and
we ask if a given candidate c ∈ C is a winner in some election
obtained by extending these partial orders to total orders. The re-
duction itself is very simple: we extend the given partial orders to
total orders in an arbitrary way, assign a cost of 0 to swapping pairs
of candidates that are unordered in the original instance, and a cost
of 1 to all other pairs, and set the bribery budget δ to 0 (see [6]
for details). We can apply the same reduction to (the unique win-
ner variant of) the NECESSARY WINNER problem, where, given
a collection of partial orders over C and a candidate c ∈ C, we
have to decide whether c is the unique election winner in every
extension of these partial orders to total orders. It is not hard to
verify that this reduction maps a “yes”-instance of NECESSARY
WINNER to a “no” instance of DESTRUCTIVE SWAP BRIBERYand
vice versa. Thus, if F-NECESSARY WINNER is coNP-hard, then
F-DESTRUCTIVE SWAP BRIBERY is NP-hard. Together with the
results of [14] this implies that DESTRUCTIVE SWAP BRIBERY is
NP-hard, e.g., for the Copeland rule, STV or Ranked Pairs (we omit
the formal definition of these rules due to space constraints).

We remark, however, that for many classic voting rules neither
of these reductions settles the complexity of DESTRUCTIVE SWAP
BRIBERY, because CONSTRUCTIVE SWAP BRIBERY is typically
computationally hard, whereas NECESSARY WINNER is often com-
putationally easy; this is the case, for instance, for most scoring
rules, including k-approval for k ≥ 2.

Another notion that we consider is that of robustness radius,
which measures the difficulty of changing an election outcome by
unit swaps.

DEFINITION 3.3. Given an election E = (C,R), a candidate
c ∈ C, and a voting rule F , the robustness radius ofE with respect
to c underF , denoted by robF (E, c), is the smallest value of δ such
that there exists an election E′ = (C,R′) with dswap(E,E′) ≤ δ
such that F(E′) 6= {c}.

Clearly, robF (E, c) ≥ 0 and robF (E, c) = 0 if and only if c is
not the unique winner of E under F . Moreover, since the swap
distance between any pair of n-voter m-candidate elections is at
most δm,n = nm(m−1)

2
, we have robF (E, c) ≤ δm,n for every

E ∈ En,m.
Given a voting rule, we would like to understand the structure of

the elections that have the maximum robustness radius with respect
to this rule. Thus, overloading notation, we define the robustness
of a voting rule F as a function

robF (m,n) = max{robF (E, c) | E = (C,R) ∈ En,m, c ∈ C}.

We will show upper and lower bounds on robF (m,n) for several
families of scoring rules as well as the Condorcet rule.

4. SCORING RULES
We start by presenting a simple dynamic programming algorithm
that efficiently solves UC DESTRUCTIVE SWAP BRIBERY for any
polynomial-time computable family of scoring rules. We then de-
scribe a simpler and faster algorithm for the Borda rule, as well as
a hardness result for the general DESTRUCTIVE SWAP BRIBERY
problem.

THEOREM 4.1. The problem {Fαm}m≥1-UC DESTRUCTIVE
SWAP BRIBERY is in P for any polynomial-time computable family
of scoring rules {Fαm}m≥1.

PROOF. Fix a scoring vector α = (α1, . . . , αm). We will de-
scribe an algorithm that given (a) an election E = (C,R) ∈ En,m
that has a unique winner c underFα and (b) a positive integer δ, de-
termines whether there exists an election E′ with dswap(E,E′) ≤
δ such that Fα(E′) 6= {c}. The running time of our algorithm
is polynomial in n, m, δ and logα1. As we can assume that
δ ≤ nm2, this implies the statement of the theorem.

Consider an election E = (C,R) ∈ En,m. Suppose that c is
the unique winner of E. For each a ∈ C \ {c}, we will check
whether there exists an election Ea with dswap(E,Ea) ≤ δ such
that in Ea the Fα-score of a is at least as high as that of c; we
output “yes” if the answer is positive for at least one a ∈ C \ {c}.
Given an election E′ = (C,R′) and a candidate a ∈ C \ {c}, let
def(E′, a) = max{0, sα(E′, c)− sα(E′, a)}; we will refer to the
quantity def(E′, a) as the deficit of a in E′. Thus, our goal is to
find an election Ea within a distance δ from E such that the deficit
of a in Ea is 0.

We start by considering a variant of this problem where we are
only allowed to modify a single vote Ri ∈ R. Suppose that we are
allowed to make at most d swaps in Ri. Let z(i, d) be the max-
imum reduction in a’s deficit that can be obtained in this manner.
Clearly, we cannot benefit from swaps that do not involve a or c.
Thus, we should use our d swaps to move a upwards or to move
c downwards (or both), and it remains to decide how many swaps
to allocate to each of these actions; this can be determined by con-
sidering all possible splits. More precisely, for each d′ = 0, . . . , d,
we consider the vote Ri(d′) obtained by first shifting c by d′ po-
sitions downwards in Ri and then shifting a by d − d′ positions
upwards in the resulting vote; among these d + 1 votes, we pick
one that reduces a’s deficit as much as possible, and let z(i, d) be
the corresponding reduction in a’s deficit.

We are now ready to describe the dynamic programming algo-
rithm for our problem. For each d = 0, . . . , δ and each i =
0, . . . , n, let N(i, d) be the smallest deficit of a over all elections
at swap distance at most d from E that differ from E in the first
i votes only. The quantities N(i, d) can be computed as follows.
Clearly, for every d = 0, . . . , δ, N(0, d) is simply a’s deficit in the
original election E, which is straightforward to compute. Further,
we have

N(i, d) = max

{
0, min
d′=0,...,d

(
N(i− 1, d− d′)− z(i, d′)

)}
for all d = 0, . . . , δ and all i = 1, . . . , n. Indeed, we simply have
to find an optimal way of splitting d swaps between the i-th vote
and the first i− 1 votes; the best way to use the d′ swaps allocated
to the i-th vote is given by z(i, d′). Thus, the quantities N(i, d)
can be computed inductively starting from i = 0. Once we have
computed N(n, δ), it remains to check if N(n, δ) = 0; if yes, we
have succeeded in finding an election at distance at most δ from E
where a’s score is at least as high as that of c.

For some scoring rules, the algorithm given in the proof of The-
orem 4.1 can be simplified. In particular, this is the case for the
Borda rule. Indeed, under this rule each upwards swap involving a
but not c, as well as each downwards swap involving c but not a,
reduces a’s deficit by 1; the most “profitable” swaps are the ones
that involve both a and c, as they reduce a’s deficit by 2. Thus, our
optimal strategy is to maximize the number of “super-profitable”
swaps. This observation allows us to simplify our algorithm as fol-
lows. We first consider the list R′ ⊆ R of all votes where c is
ranked above a. We re-order the votes in this list according to the
number of candidates ranked between c and a, from the smallest
to the largest (breaking ties arbitrarily). We then process the votes
in R′ one by one. In each vote, we swap c downwards until it is

418

swapped with a. If we have processed all votes in R′, and we still
have some swaps available, we allocate them arbitrarily to swap-
ping c downwards or swapping a upwards in any vote in R where
this can be done. Clearly, this approach maximizes the number of
swaps that reduce the deficit by 2, and is therefore optimal.

We remark, however, that the easiness result of Theorem 4.1 does
not extend to the general (non-unit cost) version of destructive swap
bribery. We conjecture that DESTRUCTIVE SWAP BRIBERY is hard
for many families of scoring rules, including Borda and k-approval
for any fixed k ≥ 2. While we have not been able to prove this
so far, we can show that destructive swap bribery is NP-hard for
k-approval if k is viewed as part of the input. Interestingly, this
holds even if there are only 2 voters; indeed, it seems likely that
this problem remains hard even for n = 1, though we have not
been able to prove this.

THEOREM 4.2. When k is a part of the input, destructive swap
bribery for k-approval is NP-complete even for n = 2.

PROOF SKETCH. It is clear that our problem is in NP, so we
focus on the NP-hardness proof. Theorem 6 in [6] established
that when k is part of the input, the co-winner version of construc-
tive swap bribery for k-approval is NP-hard even for n = 1. We
will now argue that this problem (which we will denote by CSB-
KAPPROVAL) is polynomial-time reducible to ours. Briefly, sup-
pose that we have an instance I of CSB-KAPPROVAL given by an
election with a candidate set C and a single vote R, a candidate p
(whom the briber wants to make the election co-winner), a bribery
price function π, a bribery budget δ, and a value of k ≥ 2. We
construct an instance of our problem as follows. We introduce a
new candidate c and a set of dummy candidates D, |D| = |C|. We
modify R by placing c in the top position and ranking the dummy
candidates in the last |D| positions. We also add a vote of the form
c � p � D � C \ {p}.

The bribery price function π1 for the first voter is obtained by
setting π1(ci, cj) = π(ci, cj) if ci, cj ∈ C and π1(ci, cj) = δ + 1
otherwise; for the second voter we set π2(ci, cj) = δ + 1. Also,
we set k′ = k + 1 and δ′ = δ. Then under any feasible bribery c
receives 2 points. The only other candidate who can hope to get 2
points is p, and for this to happen, p has to be moved into top k+ 1
positions in the first vote. It follows that c can be prevented from
being the unique winner of the resulting election if and only if p
can be made a co-winner of the original election.

We now move on to the study of robustness of scoring rules. We
first provide a simple upper bound that applies to all “reasonable”
voting rules. We then show that for the Borda rule this bound is
essentially tight.

We say that a voting rule F is unanimity-consistent if in every
election E where some candidate c is ranked first by all voters it
holds that c is a winner of E under F . Note that all voting rules
considered in this paper (and, more broadly, all common voting
rules) are unanimity-consistent.

THEOREM 4.3. For any unanimity-consistent voting rule F we
have robF (m,n) ≤ nm

2
.

PROOF. Consider an election E = (C,R) ∈ En,m, and let c be
a winner of E under F . For every candidate a ∈ C \ {c}, let ra be
the number of swaps required to get a into the top position in each
vote inR; note that by unanimity consistency performing these ra
swaps would make a an election winner. We have∑

a∈C\{c}

ra ≤ n(1 + 2 + . . .+ (m− 1)) =
nm(m− 1)

2
.

As |C\{c}| = m−1, by the pigeonhole principle there exists some
a ∈ C \ {c} such that ra ≤ nm

2
. Hence, robF (m,n) ≤ nm

2
.

Interestingly, for the Borda rule this bound is essentially tight.

THEOREM 4.4. We have robFB (m,n) = nm
2

+O(n+m).

PROOF. The upper bound follows from Theorem 4.3. For the
lower bound, consider an election E = (C,R) ∈ En,m, where
C = {c1, . . . , cm} and R consists of bn/2c votes of the form
c1 � c2 � . . . � cm and dn/2e votes of the form c1 � cm �
. . . � c2. In this election c1 is the unique Borda winner, and his
Borda score is n(m− 1). On the other hand, consider a candidate
ci with i > 1. His Borda score inE is (m− i)bn

2
c+(i−2)dn

2
e =

nm
2

+O(n+m).
Now, consider a minimal sequence of swaps that transforms E

into an election E′ where ci is a Borda winner. Each swap de-
creases the difference between the score of c1 and that of ci by at
most one unless this swap involves both c1 and ci (in which case
it decreases the difference in their scores by 2); however, there can
be at most n swaps of the latter type. Therefore, the total number
of swaps required to make ci an election winner is at least nm

2
+

O(n+m), and therefore robFB (m,n) ≥ nm
2

+O(n+m).

Next, we consider the k-approval rule with k ≥ m/2. We will
use the following construction. Given a voteR over a candidate set
C of size m, we say that R′ is obtained from R by the downwards
shift if c(1, R′) = c(m,R) and for each j = 2, . . . ,m it holds that
c(j, R′) = c(j − 1, R). For instance, by applying the downwards
shift to the vote c1 � . . . � cm−1 � cm we obtain the vote
cm � c1 � . . . � cm−1. We say that an election (C,R) ∈ En,m
is an (R,n,m)-typhoon if n = mα for some α ∈ N, R1 = R,
for each i = 2, . . . ,m the vote Ri is obtained from the vote Ri−1

by the downwards shift, and for each j = 1, . . . , α − 1 and each
i = 1, . . . ,m it holds that Rmj+i = Ri. Further, we say that an
election (C,R) ∈ En,m is a (c,R′, n,m)-lidded typhoon if c ∈ C,
n = (m− 1)α for some α ∈ N, R′ is a vote over C \ {c}, andR
is obtained from the (R′, n,m− 1)-typhoon by inserting c into the
top position of each vote inR′.

THEOREM 4.5. For k ≥ m
2

we have

robFk (m,n) =
n(m− k)2

2m
+O(n+m).

PROOF. For the upper bound, consider an election E = (C,R)
in En,m that has some candidate c as its unique k-approval winner.
Consider a candidate a ∈ C \ {c}. To ensure that c in not the
unique winner of E, it suffices to swap a into the top k positions
in each vote. Let ra denote the number of swaps needed to place a
into top k positions in every vote. We have∑
a∈C\{c}

ra ≤ n(1+2+. . .+(m−k)) =
n(m− k)(m− k + 1)

2
.

As |C \ {c}| = m − 1, by the pigeonhole principle there exists
some a ∈ C \ {c} such that

ra ≤
n(m− k)(m− k + 1)

2(m− 1)
=
n(m− k)2

2m
+O(n+m),

which establishes our upper bound.
For the lower bound, we provide a proof for the case n = α(m−

1) for some α ∈ N. Our proof can be extended to the case where
m − 1 does not divide n; we omit the details due to space con-
straints.

419

Let R′ be a vote over the candidate set {c2, . . . , cm} given by
c2 � . . . � cm, and let (C,R) be the (c1, R

′, n,m − 1)-lidded
typhoon. Clearly, c1 is the unique winner of (C,R) under k-
approval. Fix a candidate ci with i > 1, and consider a minimal
sequence of swaps that makes ci a k-approval winner. Clearly, the
only useful swaps are the ones that shift c1 out of top k positions
or ones that shift ci into top k positions. Shifting ci into top k
positions requires at most m − k swaps, while shifting c1 out of
top k positions requires k swaps, and by our choice of k we have
k ≤ m − k. Thus, an optimal sequence of swaps that makes ci a
k-approval winner is to shift him into top k positions in every vote.
Since ci appears in each of the bottom m − k positions exactly α
times, the total number of swaps required is

α
(m− k)(m− k + 1)

2
= n

(m− k)(m− k + 1)

2(m− 1)

=
n(m− k)2

2m
+O(n+m).

Consequently, robFk (m,n) ≥ n(m−k)2/(2m)+O(n+m).

For k-approval with k ≤ m/2, the argument in the proof of
Theorem 4.5 no longer applies. Specifically, while we conjecture
that lidded typhoons are maximally robust for small values of k
as well, it is no longer the case that to make some non-top-ranked
candidate a an election winner it is optimal to only perform swaps
that shift a into the top k positions. Indeed, for small values of k
it may be easier to move the top-ranked candidate out of the top
k positions. We will now show that this is indeed the case for the
Plurality rule.

THEOREM 4.6. For m ≥ 6, we have

n− 1− n

m− 1
≤ robFP (m,n) ≤ n−

⌈
n

m− 1

⌉
.

PROOF. For the upper bound, consider an electionE = (C,R) ∈
En,m and suppose that c1 is the unique Plurality winner ofE. Then
c1’s Plurality score is at most n. On the other hand, by the pi-
geonhole principle there exists a candidate a ∈ C \ {c} that is
ranked in top two positions at least d n

m−1
e times. Thus, by us-

ing at most d n
m−1
e swaps we can ensure that a’s Plurality score

is at least d n
m−1
e. Observe that at this point the Plurality score

of c is at most n − d n
m−1
e, so using additional n − 2d n

m−1
e

swaps, we can reduce its Plurality score to at most d n
m−1
e. Thus,

robFP (m,n) ≤ n− d n
m−1
e.

For the lower bound, suppose first that n = α(m− 1) for some
α ∈ N. Let (C,R) be the (c1, R

′, n,m)-lidded typhoon, where
R′ is an arbitrary preference order over C \ {c1}. Among all
minimum-length sequences of swaps which ensure that c1 is not
the unique election winner under Plurality, pick one which swaps
c1 out of the top position in the maximum number of votes, and let
ci, i > 1, be a winner of the resulting election E′. Let N1 be the
set of voters in E′ that rank c1 first, let Ni be the set of voters in
E′ that rank ci first, and let N ′ = N \ (Nc ∪Ni) be the set of all
other voters; we have |Ni| ≥ |N1|.

We have N ′ 6= ∅, since otherwise we would have |Ni| ≥ n/2,
and for m ≥ 6 the cost of swapping ci into the top position in
n/2 votes exceeds n. Therefore, we have |Ni| = |N1|. Indeed, if
|Ni| > |N1|, we could shorten our swap sequence by not making
the swaps in some vote inN ′: in the resulting election it would still
be the case that |Ni| ≥ |N1|. Now, suppose that |Ni| > α. Then
we had to perform at least two swaps in at least one vote in Ni.
Consider a modified sequence of swaps that performs no swaps in
this vote (so that it still ranks c1 first), but swaps c1 out of the top

position in two votes in N1. The length of this modified sequence
is at most that of the original sequence, it also ensures that ci’s
Plurality score is at least as high as that of c1, and it swaps c1 out
of the top position in a higher number of votes, a contradiction with
our choice of the swap sequence. It follows that |Ni| = |N1| =
α, which implies that the length of our swap sequence is at least
n− α = n− n

m−1
.

It is easy to generalize this argument to the case where m − 1
does not divide n to obtain a slightly weaker lower bound of n −
1− n

m−1
; we omit the details.

It is instructive to compare the bounds obtained in Theorems 4.4,
4.5, and 4.6. Perhaps not surprisingly, among all k-approval rules
with k ≥ m/2, the m/2-approval rule is the most robust, and Veto
is the least robust. It is interesting to note that Borda is about four
times more robust that m/2-approval and m/2 times more robust
than Plurality; also Plurality is considerably more robust than Veto.

5. THE CONDORCET RULE
In this section, we show that UC DESTRUCTIVE SWAP BRIBERY
remains easy for the Condorcet rule; however, deriving good bounds
on robFC (m,n) requires quite a bit of effort.

THEOREM 5.1. The problemFC-UC DESTRUCTIVE SWAP BRI-
BERY is in P.

PROOF. Consider an instance of FC-UC DESTRUCTIVE SWAP
BRIBERY given by an election E = (C,R), a candidate c ∈ C
and a non-negative integer δ. Suppose that c is the Condorcet win-
ner of E. Similarly to the proof of Theorem 4.1, for every can-
didate a ∈ C \ {c} we check if there exists an election Ea with
dswap(E,Ea) ≤ δ such that a beats or ties c in their pairwise elec-
tion. It is not hard to see that we can use essentially the same algo-
rithm as for the Borda rule: that is, we order the votes where a is
ranked below c according to the distance between c and a (from the
smallest to the largest) and process these votes one by one, shifting
c downwards to appear just below a; we do this until we exhaust
our swap budget. We return “yes” if in the end of this process a
beats or ties c in their pairwise election.

We remark that the proof of Theorem 5.1 does not extend to the
co-winner version of the FC-UC DESTRUCTIVE SWAP BRIBERY
problem. Indeed, suppose that c is a co-winner of an election E.
Then the nearest election where c is not a co-winner is one where
some other candidate is the (unique) Condorcet winner. Thus, for
an election E with no Condorcet winners (where, according to
our definition of the Condorcet rule, all candidates are the election
winners), the co-winner version of FC-UC DESTRUCTIVE SWAP
BRIBERY is essentially the problem of computing the winners of
E under the Dodgson rule (recall that under this rule, the winners
are the candidates who can be made the Condorcet winners by the
smallest number of swaps of adjacent candidates). The latter prob-
lem is known to be computationally hard [1, 8]. In fact, we can use
the results of [1, 8] to show that the co-winner version of FC-UC
DESTRUCTIVE SWAP BRIBERY is computationally hard as well.
We do not present the formal proof of this result, as we do not find
the co-winner version of FC-UC DESTRUCTIVE SWAP BRIBERY
intuitively appealing, and therefore we do not think that this hard-
ness result is informative.

We will now present our upper and lower bounds on the robust-
ness of the Condorcet rule.

It will be convenient to prove bounds on robFC (m+1, n) rather
than robFC (m,n); our results are not affected by this change, since

420

j : j . . . j m− 2j + 1 . . .m− 2j + 1 m− 2j + 2 . . .m− 2j + 2
m− 2j + 1 : m− 2j + 2 . . .m− 2j + 2 j . . . j m− 2j + 1 . . .m− 2j + 1
m− 2j + 2 : m− 2j + 1 . . .m− 2j + 1︸ ︷︷ ︸

2`

m− 2j + 2 . . .m− 2j + 2︸ ︷︷ ︸
2`

j . . . j︸ ︷︷ ︸
2`

Table 1: Proof of Theorem 5.3

they involve an error term that is linear in n+m. First, we will re-
state the problem of computing robFC (m+1, n) as an optimization
problem. Given a set S ⊆ N, let L(S) denote the sum of the small-
est d|S|/2e numbers in S. Then, given an election (C,R) with
|R| = n, the quantity L({pos(c,Ri) | i ∈ [n]}) is the sum of the
highest dn/2e positions in which candidate c appears inR. We can
now reformulate our problem as follows (we omit the proof due to
space constraints).

LEMMA 5.2. We have

robFC (m+ 1, n) = max
(C,R)∈En,m

min
c∈C

L ({pos(c,Ri) | i ∈ [n]}) .

From now on, to simplify notation, we identify the candidate set
C with [m] and let sj = L({pos(j, Ri) | i ∈ [n]}) for each can-
didate j ∈ [m]. By Lemma 5.2, it suffices to find upper and lower
bounds on maxE∈En,m minj∈[m] sj . The next theorem provides a
lower bound.

THEOREM 5.3. For every m,n ∈ N there exists an election
E = (C,R) ∈ En,m such that sj ≥ 1

6
mn+ O(m+ n) for every

candidate j ∈ [m].

PROOF. We start by giving the proof for the case m = 3k, n =
6` for some k, ` ∈ N.

For each j = 1, . . . , k, we place the candidates j, m − 2j + 1,
and m − 2j + 2 in positions j, m − 2j + 1, and m − 2j + 2 in
each vote so that each of them appears 2` times in each position
(see Table 1). Clearly, this results in a valid profile over [m]. For
instance, for m = n = 6 we obtain the following profile:

1 1 5 5 6 6
2 2 3 3 4 4
4 4 2 2 3 3
3 3 4 4 2 2
6 6 1 1 5 5
5 5 6 6 1 1

In such an election, for every j ∈ {1, . . . , k} we have

sj = j× 2`+ (m− 2j+ 1)× ` = m`+ ` =
1

6
mn+O(m+n).

By symmetry, sj = sm−2j+1 = sm−2j+2. Therefore, sj =
1
6
mn+O(m+ n) for all j ∈ [m].
We will now consider the general case, i.e., we drop the assump-

tion that m is divisible by 3 and n is divisible by 6. First, we fill
in the top 3bm

3
c rows and the first 6bn

6
c columns of the profile

with 3bm
3
c candidates as described above. Then we complete each

of these 6bn
6
c columns by an arbitrary permutation of the remain-

ing candidates. Each remaining column can be an arbitrary vote
over [m]. It is not difficult to adapt the proof for the special case
m = 3k, n = 6` to show that the theorem holds for this pro-
file.

Combining Theorem 5.3 with Lemma 5.2, we obtain

robF (m+ 1, n) ≥ 1

6
mn+O(m+ n)

and hence

robF (m,n) ≥ 1

6
(m− 1)n+O(m+ n) =

1

6
mn+O(m+ n).

Now we consider the upper bound.

THEOREM 5.4. For any E ∈ En,m there exists a candidate j
such that sj ≤ λmn+O(m+n) for any constant λ > (

√
3−1)/4.

PROOF. Fix λ > (
√

3 − 1)/4 and suppose for the sake of con-
tradiction that sj > λmn + O(m + n) for each j ∈ [m]. Given
an election E = (C,R) ∈ En,m, we construct an m × n matrix
M(R) as follows. The j-th row of M(R) lists all n positions in
which candidate j occurs in the n votes, in non-decreasing order.
Below is an example of a 3 × 4 profile R and its corresponding
matrix M(R).

R =

1 2 3 3
2 3 2 2
3 1 1 1

 M(R) =

1 3 3 3
1 2 2 2
1 1 2 3

By the definition ofM(R), each number between 1 andm (which

denotes a position in a vote) appears exactly n times in M(R).
Moreover, sj is simply the sum of the leftmost ` = dn

2
e entries

of the j-th row in M(R). Let S denote the submatrix formed
by the first ` columns of M(R), and let Σ denote the sum of all
entries of S. We will derive upper and lower bounds on Σ. For
λ > (

√
3 − 1)/4 the lower bound will exceed the upper bound,

leading to a contradiction.
As we have assumed that sj > λmn+O(m+n), a lower bound

is immediate:

Σ =

m∑
i=1

sj > λm2n+O(m2 +mn).

The upper bound requires much more work. Let a be the smallest
entry of the `-th column of M(R), and let i0 be the index of its
row. All entries to the left of a do not exceed a, so si0 ≤ `a. On
the other hand, our assumption implies si0 > λmn + O(m + n),
so we get a lower bound on a: a > 2λm+O(m+n

n
).

Note that each entry ofM(R) that is not in S is at least a. There-
fore, all entries that are smaller than a have to appear in S, and each
number between 1 and a − 1 has to appear exactly n times. The
sum of these numbers is

Σ1 =

a−1∑
i=1

i · n =
1

2
a2n+O(mn).

Let Σ2 = Σ − Σ1; Σ2 is the sum of all entries of S that are
greater than or equal to a. We will now derive an upper bound on
Σ2, which will imply an upper bound on Σ.

Let N≥k denote the number of entries in S that are greater than
or equal to k. We will first obtain a general upper bound on N≥k.
Observe that entries with value k appear in at least dN≥k

`
e rows,

and each entry in these rows that does not appears in S is greater
than or equal to k. Hence the total number of entries that are greater

421

than or equal to k is at least N≥k (in S) plus (n− `)dN≥k

`
e (not in

S). On the other hand, there are exactly (m− k + 1)n entries that
are greater than or equal to k, so we get

N≥k ≤
(m− k + 1)n

1 + n−`
`

= (m− k + 1)`.

In total there are m` entries in S, which include the n(a − 1)
entries that are smaller than a. We want an upper bound for the sum
of the remaining m`− n(a− 1) entries. To maximize Σ2, the best
way to fill up the remaining entries is to setN≥k = (m−k+1)` by
using entries k = m,m− 1, . . . until we run out of entries. More
specifically, we put in ` entries of value m,m − 1, . . . , 2a − 1,
respectively, and after that the entries left are negligible, since there
are at most a− 1 of them (as ` ≤ (n+ 1)/2) and the order of their
sum is O(m2)). Therefore,

Σ2 ≤
m∑

i=2a−1

i · `+O(m2)

=
1

2
(m+ 2a− 1)(m− 2a+ 2)`+O(m2)

=
1

2
(m2 − 4a2)

n

2
+O(m2 +mn).

Combining Σ1 and Σ2, we obtain

Σ = Σ1 + Σ2 ≤ 1

4
(2a2 +m2 − 4a2)n+O(m2 +mn)

=
1

4
(m2 − 2a2)n+O(m2 +mn),

which, by the lower bound on a, can be upper-bounded as

1

4
(m2 − 2 · 4λ2m2)n+O(m2 +mn).

The lower bound on Σ exceeds this upper bound when

λm2n >
1

4
(1− 8λ2)m2n,

i.e., 8λ2 + 4λ− 1 > 0, which holds for λ > (
√

3− 1)/4.

Combining Theorem 5.4 with Lemma 5.2, we obtain

robFC (m+ 1, n) ≤ λmn+O(m+ n)

and hence

robFC (m,n) ≤ λ(m− 1)n+O(m+ n) = λmn+O(m+ n)

for every λ > (
√

3− 1)/4. Thus, we have

mn

6
+O(m+n) ≤ robFC (m,n) ≤ (

√
3− 1

4
+ε)mn+O(m+n)

for every ε > 0. We have 1/6 ≈ 0.167 and (
√

3− 1)/4 ≈ 0.183,
i.e., there is a small gap between our lower and upper bounds. Clos-
ing this gap is a natural direction for future work. We remark that
our bounds indicate that the Condorcet rule is considerably less ro-
bust than the Borda rule, but more robust thanm/2-approval. Also,
it is interesting to note that the lidded typhoon is not the most robust
election with respect to the Condorcet rule.

We remark that the bounds on the robustness radius obtained in
this section apply to all Condorcet-consistent rules. Indeed, for
the lower bound we can use the same construction as in the proof
of Theorem 5.3. On the other hand, our upper bound works by
identifying a candidate j other than the original election winner
that can be shifted into the top position in at least dn/2e votes by at
most λmn+O(m+ n) swaps, where λ > (

√
3− 1)/4. By using

additional O(m) swaps, we can make j the Condorcet winner, and
hence a winner under any Condorcet-consistent rule.

6. CONCLUSIONS AND FUTURE WORK
We have defined the destructive swap bribery problem and started

the investigation of its computational complexity, with a particular
focus on the case where all swaps have unit cost. Also, we have
introduced the notions of robustness radius of an election and ro-
bustness of a voting rule, and provided bounds on the robustness
of several voting rules, including Plurality, Borda, k-approval for
k ≥ m/2 and Condorcet-consistent rules. It would be interest-
ing to see if our algorithmic results for UC DESTRUCTIVE SWAP
BRIBERY can be extended to voting rules not considered in this pa-
per (such as, e.g., Copeland and Maximin) and to the general cost
version of this problem. Similarly, a natural research direction is to
analyze the robustness of other voting rules.

We remark that the robustness notions introduced in this paper
are defined in terms of the swap distance. However, one can define
and study them for other distances over elections, such as the Ham-
ming distance or the footrule distance. In particular, one might be
able to use the techniques developed by Xia [13] in order to study
robustness of voting rules with respect to the Hamming distance.
Acknowledgements This research was supported by National Re-
search Foundation (Singapore) under grant RF2009-08. We thank
Arkadii Slinko, Piotr Faliszewski, and anonymous AAMAS refer-
ees for useful suggestions.

7. REFERENCES
[1] J. Bartholdi, C. Tovey, and M. Trick. Voting schemes for

which it can be difficult to tell who won the election. Social
Choice and Welfare, 6(2):157–165, 1989.

[2] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to
control an election? Mathematical and Computer Modeling,
16(8/9):27–40, 1992.

[3] N. G. de Bruijn. Asymptotic Methods in Analysis. Dover
Publications, 1981.

[4] M. M. Deza and E. Deza. Encyclopedia of Distances.
Springer, 2009.

[5] B. Dorn and I. Schlotter. Multivariate complexity analysis of
swap bribery. Algorithmica, 64(1):126–151, 2012.

[6] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In
SAGT’09, pages 299–310, 2009.

[7] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra.
How hard is bribery in elections? Journal of AI Research,
35:485–532, 2009.

[8] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact
analysis of Dodgson elections: Lewis Carroll’s 1876 voting
system is complete for parallel access to NP. Journal of the
ACM, 44(6):806–825, 1997.

[9] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone
but him: The complexity of precluding an alternative.
Artificial Intelligence, 171(5–6):255–285, 2007.

[10] K. Konczak and J. Lang. Voting procedures with incomplete
preferences. In MPREF’05, pages 124–129, 2005.

[11] C. L. Mallows. Non-null ranking models. Biometrica,
44:114–130, 1957.

[12] A. D. Procaccia, J. S. Rosenschein, and G. A. Kaminka. On
the robustness of preference aggregation in noisy
environments. In AAMAS’07, pages 416–422, 2007.

[13] L. Xia. Computing the margin of victory for various voting
rules. In ACM EC’12, pages 982–999, 2012.

[14] L. Xia and V. Conitzer. Determining possible and necessary
winners given partial orders. Journal of Artificial Intelligence
Research, 41:25–67, 2011.

422

