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ABSTRACT
We study settings in which a central authority must appoint a num-
ber of committees, where each committee is tasked with making a
specific decision via a given voting rule. Each voter has their own
individual preferences, and the center desires the decisions to be
made in a certain way. The overall problem is whether the center
can design the committees so that if the committee members then
vote according to their preferences, the decisions will be made ac-
cording to the desires of the center. After motivating and formally
defining this problem, we investigate cases where this problem can
be solved in polynomial time, and highlight cases where the prob-
lem is intractable. We consider a range of possible voting rules.
We conclude with some possible extensions to the model and fu-
ture work.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

Keywords
Computational Social Choice, Delegation

1. INTRODUCTION
Decision making by committees is a fundamental part of the work-
ing life of many organizations. In some organisations—universities
are a very obvious example—committees are indeed the primary
mechanisms for decision making. Committees also form a key
component of decision making in governments (witness e.g., the
committees of the US Congress and House of Representatives).
Our aim in the present paper is to study committee decision making
from the point of view of a committee designer. The basic problem
we consider is as follows. A central authority (the designer) must
appoint k ≥ 1 committees, where each committee is tasked with
making a specific decision via a given voting rule. Each voter has
their own individual preferences, and the center desires the deci-
sions to be made in a certain way. The overall problem is whether
the center can design the committees so that if the committee mem-
bers then vote according to their preferences, the decisions will be
made according to the desires of the center. Our interest in this
problem is not Machiavellian: an individual charged with forming
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committees in an organisation such as a university may well invest
a great deal of energy ensuring that the committees are composed
in such a way as to lead to coherent collections of decisions.

Our paper is directly motivated by recent work of Kraus and
Wooldridge [13], which deals with the problem of delegating de-
cisions to individuals in Boolean games (see, e.g., [12, 3, 7] for
background on Boolean games). However, our work differs from
that of Kraus and Wooldridge in several important aspects. First, in
Boolean games agents have to set values of Boolean variables they
control rather than rank alternatives. Second, in the model of [13]
each decision is delegated to a single agent rather than a commit-
tee. Finally, in a Boolean game, when deciding how to set his vari-
able(s), an agent has to predict how the variables controlled by the
other agents will be set, and therefore to describe the outcome of
the decision-making process one has to engage in equilibrium anal-
ysis (and, in particular, deal with the issue of multiple equilibria); in
contrast, in our model the voters are assumed to be non-strategic.
The similarities and differences between the two models point to
several directions for future work (see Section 8).

On a more technical level, our problem can be viewed as a gen-
eralization of (a variant of) the the well-studied problem of con-
structive control by deleting voters (CCDV) [2]. In this problem,
we are given an election (i.e., a set of candidates, a list of voters
together with their preferences over the candidates, and a voting
rule), a candidate p and a “budget” B, and we are asked if p can
be made the election winner by removing at most B voters. Now,
deleting B voters is equivalent to selecting n − B voters to serve
on the committee, so CCDV can be viewed a variant of our prob-
lem where k = 1 (i.e., there is just one issue) and there is a lower
bound on the committee size. The complexity of CCDV for vari-
ous voting rules is quite well understood, and it turns out that many
existing hardness results for CCDV can be adapted to our setting,
implying that for several voting rules our problem is computation-
ally hard even for k = 1 (see Section 6). However, easiness results
for CCDV do not necessarily translate into easiness results for our
problem, as having to deal with multiple committees provides an
additional level of complexity: indeed, we will show that for 2-
Approval our problem is NP-hard even for k = 2, even though 2-
Approval-CCDV is known to be in P [15]. Another closely related
problem is winner determination under lot-based voting rules [18].
Such rules proceed by first selecting a subset of voters of size s and
then applying a given voting rule to the preferences of the voters
in this subset. Clearly, deciding if a given candidate has a positive
chance of being elected under this procedure is equivalent to our
problem with k = 1. Walsh and Xia [18] show that winner deter-
mination under lot-based voting rules is often NP-hard; we discuss
their results in more detail in Section 6.
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2. THE MODEL
We are given a set of issues I = {1, . . . , k} and a set of voters
N = {1, . . . , n}. Each issue j ∈ I is associated with a set of
alternatives Aj ; we can assume without loss of generality that the
size of this set is the same for all issues, i.e., we have |Aj | = m for
each j ∈ I. We denote the elements of Aj by aj1, . . . , a

j
m. We say

that the issues in I are binary ifm = 2; in this case we assume that
Aj = {0j , 1j} for each j ∈ I. For each issue j ∈ I each voter
i ∈ N has preferences over the set of alternatives for this issue,
which are represented by a total order Rj

i over Aj . An outcome is
a vector of alternatives, one for each issue, i.e., an element of the
Cartesian product A = A1 × · · · ×Ak.

The voters are allocated into k committees S1, . . . , Sk; the j-th
committee is responsible for making the decision on issue j, i.e., it
has to select an alternative from Aj . For ease of presentation, we
assume that every voter can serve on every committee, but no voter
can serve on two committees simultaneously; in Section 7 we show
that both of these constraints can be relaxed. The committee sizes
are fixed in advance: we are given a vector (s1 . . . sk) ∈ Nk, and it
is required that |Sj | = sj for each j ∈ I. We set s = maxj∈I s

j .
We assume that s1 + · · · + sk ≤ n, and the inequality may be
strict, i.e., there may be voters that are not assigned to any of the
committees.

Once a committee Sj is formed, its members sincerely report
their preferences over Aj . An alternative in Aj is then selected
by applying a voting rule F , i.e., a mapping that for every set of
committee members and a list of their preferences over Aj outputs
a unique alternative in Aj . Note that we require voting rules to be
defined for an arbitrary number of voters; while it is more standard
to keep the number of voters fixed, the current definition is more
convenient for our purposes, as committee sizes may vary.

In this paper, we will mostly focus on a family of voting rules
known as r-Approval, r ≥ 1. Under r-Approval an alternative
receives one point from each voter that ranks it in top r positions,
and the winner is the alternative with the highest number of points,
with ties broken according to a fixed lexicographic ordering over
the alternatives. That is, if T ⊆ Aj is the set of alternatives for
issue j that received the highest number of r-Approval points, then
the winner is the alternative ajt that satisfies ajt ∈ T , ajℓ ̸∈ T for
every ℓ < t. The 1-Approval rule is also known as Plurality, and
the (m−1)-Approval rule (where m is the number of alternatives)
is known as Veto. A number of other voting rules are often con-
sidered in the literature and could be applied to our setting; these
include, for instance, Borda, Copeland, Maximin, and Bucklin, to
name a few. For each of these rules the problems considered in
this paper can be easily shown to be NP-hard even for k = 1, by
modifying the known hardness proofs for the closely related CCDV
problem. We omit the formal definitions of these rules due to space
constraints (an interested reader is referred to, e.g., [1]); we will,
however, briefly discuss the corresponding hardness results in Sec-
tion 6.

We are interested in the situation where the assignment of voters
to the committees is performed by a self-interested central author-
ity (or, center). In Sections 3–6 we assume that the center has a
specific outcome a = (a1i1 , . . . , a

k
ik
) ∈ A in mind, and his goal

is to assign voters to committees so that for each j ∈ I the voting
rule F outputs ajij when applied to the preferences of the voters in
Sj ; we consider more general models of the center’s preferences in
Section 7. Thus, the center’s decision problem, which will be the
main focus of this paper, can be formalized as follows.

DEFINITION 2.1. Given a voting rule F , an instance of the F -
DELEGATION problem is given by a set of issues I = {1, . . . , k}, a

list of k committee sizes s1, . . . , sk, a set of votersN = {1, . . . , n},
a set of alternatives Aj , |Aj | = m, for each issue j ∈ I, an out-
come a = (a1i1 , . . . , a

k
ik
) ∈ A1 × · · · × Ak, and, for each issue

j ∈ I and each voter i ∈ N , a preference order Rj
i over Aj .

It is a “yes”-instance if there exists a subset of voters N ′ ⊆ N
and a mapping λ : N ′ → I such that for each j ∈ I the set
Sj = λ−1(j) satisfies |Sj | = sj and, furthermore, the voting rule
F applied to the preferences of voters in Sj outputs ajij ; otherwise
it is a “no”-instance.

The description of our problem involves several parameters: the
number of voters n, the number of issues k, the number of alter-
natives for each issue m, and the committee size s. Unfortunately,
even for very simple voting rules, such as Plurality and Veto, we
were not able to find a general efficient procedure that solves DEL-
EGATION for arbitrary values of these parameters. Thus, in what
follows we describe algorithms that run in polynomial time when
one or more of these parameters can be assumed to be small; while
some of these algorithms work for arbitrary polynomial-time com-
putable voting rules, others are designed for specific voting rules,
such as Plurality, Veto, or 2-Approval. We will also prove that for
sufficiently complex voting rules our problem is computationally
hard, even for restricted values of the parameters.

3. GENERAL CASE: EASINESS RESULTS
We first observe that F -DELEGATION is easy for any polynomial-
time computable voting rule F if n is bounded by a constant. In-
deed, we can enumerate all possible assignments of voters to com-
mittees (the number of such assignments is bounded by (k + 1)n,
which is polynomial in the input size if n is bounded by a constant),
and, for every such assignment, check if it results in the center’s
preferred outcome. A similar argument applies if both s and k are
bounded by a constant: in this case, we have at most sk slots to fill,
and there are at most n ways of filling each slot, so we have nsk

assignments to consider. Thus, we obtain the following results.

PROPOSITION 3.1. Let F be a polynomial-time computable vot-
ing rule. Then F -DELEGATION admits (a) an algorithm that runs
in time (k + 1)n · poly(n,m, k, s); (b) an algorithm that runs in
time nsk · poly(n,m, k, s).

Another easy case is that of binary domain, i.e., m = 2. Recall
that a voting rule is said to be anonymous if its output is uniquely
determined by the number of voters who submit each preference
ranking (rather than their identities); further, a voting rule over
{0, 1} is said to be monotone if its output cannot change from 1 to 0
when some voter’s preferred alternative changes from 0 to 1 (see [1]
for formal definitions). We will now show F-DELEGATION with
m = 2 is in P for any polynomial-time computable voting rule over
{0, 1} that is anonymous and monotone.

Our algorithm for this problem, as well as many other algorithms
in this paper, is based on reducing our problem to that of find-
ing a feasible circulation. Recall that an instance of the circula-
tion problem is given by a directed graph G = (V, E), and, for
each arc (v, w) ∈ E , an upper bound u(v, w) and a lower bound
ℓ(v, w) on the flow from v to w. A feasible circulation is a collec-
tion of values {f(v, w)}(v,w)∈E that satisfies the flow conservation
constraints and the capacity constraints, i.e.,

∑
(z,v)∈E f(z, v) =∑

(v,w)∈E f(v, w) for each v ∈ V and ℓ(v, w) ≤ f(v, w) ≤
u(v, w) for each (v, w) ∈ E . It is known that if all capacities
are integer and the set of feasible circulations is non-empty, then
an integer-valued feasible circulation exists and can be found in
polynomial time [17].
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Figure 1: An instance of the circulation problem

All instances of the circulation problem that will be constructed
in this paper have similar structure: They have two special nodes x
and z (intuitively, the “source” and the “sink”), a node vi for each
voter i ∈ N and a “gadget” (a node or a collection of intercon-
nected nodes) Gj for each issue j ∈ I. For each i ∈ N there is
an arc (x, vi) with ℓ(x, vi) = 0 and u(x, vi) = 1; a unit of flow
on this arc is interpreted as an indication that voter i is assigned to
some committee. The arc(s) from vi to Gj encode voter i’s pref-
erences over Aj ; the flow on such arcs indicates that voter i is as-
signed to the j-th committee. Each gadget Gj has arc(s) to z; the
capacity constraints on these arcs are usually used to ensure that the
j-th committee has exactly sj members and votes in favor of ajij .
Finally, there is a “backflow” arc from z to x with ℓ(z, x) = 0,
u(z, x) = +∞. The overall structure of our circulation problem is
illustrated in Figure 1. We will refer to the arcs of the form (x, vi)
and (z, x) as generic; in what follows, when describing an instance
of the circulation problem, we only specify non-generic arcs and
their capacities.

We are now ready to present our algorithm for binary domains.

THEOREM 3.2. For every anonymous monotone poly-time com-
putable voting rule F over {0, 1} the problem F -DELEGATION
with m = 2 can be solved in time poly(n, k, s).

PROOF. Assume without loss of generality that the center’s pre-
ferred outcome is (11, . . . , 1k). Any anonymous monotone voting
rule over {0, 1} can be defined by a family of thresholds {Tn}n∈N:
given an election with n voters, the rule outputs 1 if at least Tn

voters prefer 1 to 0 and 0 otherwise [16, 6]; polynomial-time com-
putability of F means that Tn can be computed efficiently given
n. Consider an anonymous monotone voting rule F that corre-
sponds to a family of thresholds {Tn}n∈N. Given an instance of
F-DELEGATION with m = 2, we construct an instance of the cir-
culation problem as follows. The node set V of our directed graph
is {x, z} ∪ {vi | i ∈ N} ∪ I. The arc set E contains all the
generic arcs. Also, for each voter i ∈ N and each issue j ∈ I such
that i prefers 1j to 0j , E contains an arc (vi, j) with ℓ(vi, j) = 0,
u(vi, j) = 1. Finally, for each j ∈ I the set E contains an arc
(j, z) with u(j, z) = +∞ and ℓ(j, z) = Tsj .

An integer feasible circulation in (V, E) corresponds to an as-
signment of “good” voters to committees: we have (i, j) ∈ E if
and only if i’s preferences on issue j coincide with those of the
center. The lower bound on the arc (j, z) ensures that there suffi-
ciently many “good” voters on the j-th committee. Each committee
can then be filled up to capacity with the remaining voters in an ar-
bitrary way. Conversely, it is not hard to see that any assignment of
voters to the committees that satisfies the center can be converted
into a feasible circulation.

The restriction to binary domains is rather severe, and the reader
may wonder if DELEGATION remains easy if m may be larger

than 2, but is nevertheless bounded by a constant. We do not know
if this is true in general; however, we can show that this is indeed
the case if we additionally assume that k is bounded by a constant
and F is anonymous and polynomial-time computable.

THEOREM 3.3. For any anonymous polynomial-time compu-
table voting rule F the problem F-DELEGATION can be solved
in time (s+ 1)m!k · poly(n,m, k, s).

PROOF. The proof is similar to that of Theorem 3.2, but we will
consider (s+1)m!k instances of the circulation problem. All these
instances will have the same underlying graph G; however, the up-
per and lower bounds on the flow through some or the arcs will
vary from one instance to another. The graph G = (V, E) is con-
structed as follows. We set V = {x, z}∪{vi | i ∈ N}∪W , where
W = {wj,t | j ∈ I, t = 1, . . . ,m!}. The nodes wj,1, . . . , wj,m!

correspond to all possible orderings of the elements of Aj . For
each i ∈ N the node vi has k outgoing arcs: there is an arc from
vi to wj,t with ℓ(vi, wj,t) = 0, u(vi, wj,t) = 1 if the preferences
of voter i over issue j are given by the ordering that corresponds to
wj,t. Also, E contains an arc from wj,t to z for each wj,t ∈ W ,
as well as all the generic arcs. To complete the description of the
instance, it remains to describe the bounds on the flow along the
arcs that lead from W to z.

We will say that a list of non-negative integers K = {κj,t | j ∈
I, t = 1, . . . ,m!} is a valid list of capacities if

(1) 0 ≤ κj,t ≤ s for all j ∈ I and all t = 1, . . . ,m!,

(2)
∑

t=1,...,m! κj,t = sj for each j ∈ I, and

(3) for each j ∈ I it holds that in the election with the alterna-
tive set Aj where exactly κj,t voters submit the preference
ordering that corresponds to wj,t the F -winner is ajij .

Condition (1) ensures that there are at most (s + 1)m!k valid lists
of capacities; also, since F is polynomial-time computable and
anonymous, condition (3) can be checked in time poly(n,m, k, s).
For each valid list of capacities K, we complete the description
of our circulation problem by setting ℓ(wj,t, z) = u(wj,t, z) =
κ(j, t) for each j ∈ I and each t = 1, . . . ,m!. An integer feasible
circulation in the resulting instance corresponds to an assignment
of voters to committees in which each voter is assigned to at most
one committee, the j-th committee has exactly sj members, and the
center is satisfied with the outcome of the vote in each committee.
Thus, to solve F -DELEGATION, it suffices to enumerate all valid
lists of capacities and check if any of them corresponds to an in-
stance of the circulation problem admitting a feasible solution.

We remark that for some voting rules, such as, e.g., r-Approval
with r bounded by a constant, we can modify the algorithm de-
scribed in the proof of Theorem 3.3 so that the dependence of its
running time on m becomes singly exponential (rather than doubly
exponential, as in Theorem 3.3). Indeed, it is easy to see that for
r-Approval, instead of creating a node for each of the possible m!
orderings ofAj , it suffices to create a node for each r-element sub-
set of Aj , and the number of such subsets can be bounded by mr .
We obtain the following corollary.

COROLLARY 3.4. r-Approval-DELEGATION can be solved in
time (s+ 1)m

rk · poly(n,m, k, s).

We will now briefly discuss what happens if we place restrictions
on the number of committees k or the maximum committee size s.

Bounding k alone is unlikely to lead to efficient algorithms for
our problem for general voting rules: in Section 6 we will show
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that F -DELEGATION is NP-hard even for k = 1 for a number of
common voting rules, including 3-Approval. However, for certain
simple voting rules, such as Plurality and Veto, our problem can
be solved efficiently if k is bounded by a constant (see Section 4).
For 2-Approval, the complexity increases as we move from k = 1
to k = 2: in Section 5 we show that 2-Approval-DELEGATION is
easy if k = 1, but becomes NP-hard if k ≥ 2.

For small values of s, the situation is more complicated. If s = 1
(i.e., each committee consists of a single voter), F -DELEGATION
admits a very simple matching-based algorithm. Specifically, we
construct a bipartite graph where the nodes on the left-hand side
correspond to voters, the nodes on the right-hand side correspond
to committees, and there is an edge from a voter i to a committee
j if and only if F(Rj

i ) = ajij ; clearly, a matching of size k in this
graph corresponds to an assignment of voters to committees that
makes the center happy. (Note that for committees of size 1 it is
natural to assume that F outputs the unique voter’s most preferred
alternative, but this assumption is not necessary for our algorithm
to work correctly). Thus, we obtain the following result.

PROPOSITION 3.5. For s = 1 and any polynomial-time com-
putable voting rule F the problem F -DELEGATION can be solved
in time poly(n,m, k).

For some values of s > 1 we can still obtain easiness results for
Plurality and Veto (see Section 4), but it is not clear if they can be
extended to other voting rules. In fact, even assuming that both m
and s are bounded by a constant does not seem to lead to efficient
algorithms for our problem, even for the Plurality rule.

4. PLURALITY AND VETO
In this section, we present efficient algorithms for Plurality-DE-
LEGATION and Veto-DELEGATION assuming that the number of
issues k is bounded by a constant. We also prove easiness results
for these two rules under some assumptions on the maximum com-
mittee size s (and, in the case of Plurality, on the tie-breaking rule).

THEOREM 4.1. Both Plurality-DELEGATION and Veto-DELE-
GATION can be solved in time sk · poly(n,m, k, s).

PROOF. The proof is similar to that of Theorems 3.2 and 3.3:
we reduce our problem to solving at most sk instances of the cir-
culation problem. We will describe the construction for Plurality-
DELEGATION; it is straightforward to modify our argument so that
it applies to the Veto rule. For each of our instances, we set V =
{x, z} ∪ {vi | i ∈ N} ∪

∪
j∈I

(
Aj ∪ {zj}

)
. In addition to the

generic arcs, the arc set E contains an arc (zj , z) with ℓ(zj , z) =
u(zj , z) = sj for each j ∈ I. Also, for each i ∈ N and each
j ∈ I the set E contains an arc (vi, a

j
t), where ajt is voter i’s fa-

vorite alternative inAj , with ℓ(vi, ajt) = 0, u(vi, ajt) = 1. Finally,
for each j ∈ I and each a ∈ Aj there is an arc from a to zj . It
remains to set the bounds on the flow through these arcs; these will
differ from one instance to another.

We will say that a list of non-negative integers K = {κj | j ∈ I}
is a valid list of capacities if 1 ≤ κj ≤ sj for all j ∈ I; note that
there are at most sk valid lists of capacities. Now, fix a valid list
of capacities K and define the bounds on the flow through the arcs
that lead into z1, . . . , zk as follows. For each j ∈ I and each
t = 1, . . . ,m, set

• ℓ(ajt , z
j) = κj , u(ajt , z

j) = sj if t = ij ;

• ℓ(ajt , z
j) = 0, u(ajt , z

j) = κj − 1 if t < ij , and

• ℓ(ajt , z
j) = 0, u(ajt , z

j) = κj if t > ij .

A feasible circulation in the resulting network corresponds to an
assignment of voters to committees in which (a) each voter is as-
signed to at most one committee, (b) the size of the j-th committee
is exactly sj , and (c) committee Sj contains at least κj voters that
vote for ajij , and, for each a ∈ Aj \ {ajij}, the number of voters
that vote for a is at most κj − 1 if the tie-breaking rule favors a
over ajij and at most κj otherwise. Clearly, under this assignment
the center is satisfied. Thus, it suffices to go through all valid lists
of capacities and check if any of them corresponds to an instance
that admits a feasible circulation; the running time of this algorithm
is sk · poly(n,m, k, s).

An argument similar to the one given in the proof of Theorem 4.1
can be used to show that Plurality-DELEGATION is easy if s ≤ 3
(while k can be arbitrary), under an additional assumption on the
tie-breaking rules.

THEOREM 4.2. Plurality-DELEGATION can be solved in time
poly(n,m, k) if s ≤ 3 and, furthermore, (a) for every j ∈ I such
that sj = 3 the ties are broken adversarially to the center (i.e.,
ij = m), and (b) for every j ∈ I such that sj = 2 the ties are
broken either adversarially to the center or in the center’s favor
(i.e., ij = 1 or ij = m).

PROOF. We will use the same graph as in the proof of Theo-
rem 4.1, and argue that under the conditions of the theorem we
only need to consider a single valid list of capacities. Indeed, if
sj = 1, we can ensure the desired outcome for issue j if and only
if we have one vote in favor of ajij , so we set κj = 1. If sj = 2 and

ij = 1, it suffices to ensure that ajij gets at least one vote, as any
tie will be broken in its favor, so we set κj = 1. If sj ∈ {2, 3} and
ij = m, ajij needs exactly two votes to win, so we set κj = 2. It is
not hard to check that an integer feasible circulation in the resulting
network corresponds to an assignment of voters to committees that
satisfies the center, and vice versa.

Note that the argument on the proof of Theorem 4.2 does not go
through if for some issue j with sj = 3 the ties are broken in the
center’s favor. Indeed, in this case the center can get ajij elected

either by recruiting two voters who support ajij , or by recruiting
one such voter and ensuring that the two other committee members
support different alternatives; thus, we need to consider both κj =
1 and κj = 2. A similar difficulty arises if sj = 2, but the tie-
breaking rule is neither adversarial nor favorable to the center.

Observe also that Theorem 4.2 does not deal with Veto-DELE-
GATION. In fact, it is not clear if Veto-DELEGATION is easy for
small values of s. However, interestingly, we can show that Veto-
DELEGATION is in P as long as s < m; this holds even if s is not
bounded by a constant.

THEOREM 4.3. The problem Veto-DELEGATION can be solved
in time poly(n,m, k, s) if s < m.

PROOF. We say that a voter i on a committee Sj vetoes a ∈ Aj

if a is i’s least preferred alternative in Aj . Fix an issue j ∈ I
and a committee Sj . Since sj < m, by the pigeonhole principle
some alternative in Aj is not vetoed by any of the voters in Sj .
Thus, ajij is elected if and only if (a) no voter in Sj vetoes ajij and

(b) each alternative ajt with t < ij is vetoed by at least one voter
in Sj . We will now use this observation in order to reduce Veto-
DELEGATION to finding a feasible circulation. Our construction is
similar to the one used in the proof of Theorem 4.1. Specifically,
we build a graph G = (V, E) as follows. We set V = {x, z} ∪
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{vi | i ∈ N} ∪
∪

j∈I

(
(Aj \ {ajij}) ∪ {zj}

)
. In addition to the

generic arcs, the arc set E contains an arc (zj , z) with ℓ(zj , z) =
u(zj , z) = sj for each j ∈ I. Also, for each i ∈ N and each j ∈ I
the set E contains an arc (vi, a

j
t) if and only if ajt is voter i’s least

favorite alternative in Aj ; we set ℓ(vi, ajt) = 0, u(vi, ajt) = 1.
Finally, for each j ∈ I and each ajt ∈ Aj \ {ajij} there is an arc

(ajt , z
j) such that u(ajt , z

j) = sj and, moreover, ℓ(ajt , z
j) = 1 if

t < ij and ℓ(ajt , z
j) = 0 otherwise.

Clearly, an integer feasible circulation in this graph corresponds
to an assignment of voters to committees where no voter is assigned
to Sj if he vetoes ajij , the size of the j-th committee is sj , and for

each issue j it holds that every alternative that is favored over ajij
by the tie-breaking rule is vetoed by at least one voter. As argued
above, under such an assignment the center’s preferred outcome is
achieved, and conversely, any assignment that satisfies the center
can be converted into a feasible circulation in G.

5. 2-APPROVAL
We will now consider a voting rule that is somewhat more complex
than Plurality or Veto, namely, 2-Approval. For this rule, Lin [15]
showed that the CCDV problem can be reduced to the problem of
finding a b-matching (see [17] or the proof of Proposition 5.1 for a
definition of b-matchings), and is therefore in P. This reduction can
be modified to show that 2-Approval-DELEGATION with k = 1 is
in P as well; for completeness, we provide a proof of this fact.

PROPOSITION 5.1. For k = 1, 2-Approval-DELEGATION can
be solved in time poly(n,m, s).

PROOF. Let A = A1 and suppose that the center’s goal is to get
a given alternative a ∈ A elected by appointing a committee of size
s. Let N ′ be the set of voters that rank a in the first two positions;
we can assume without loss of generality that all voters in N ′ rank
a first.

Suppose first that |N ′| ≥ s. Then if s ≥ 2 and not all voters in
N ′ rank the same alternative second, we are done: we identify two
distinct alternative (say, b and c) that are ranked second by some
voters in N ′, and pick s voters from N ′ so as to include at least
one voter who ranks b second and at least one voter who ranks c
second. In the resulting election a gets s 2-Approval points, while
any other alternative gets at most s − 1 2-Approval points, so a
wins. If s ≥ 2 and all voters in N ′ rank the same alternative (say,
b) second, the outcome depends on how the ties are broken: if the
tie-breaking rule favors a over b, the center can achieve its goal by
appointing arbitrary s alternatives from N ′, and if the tie-breaking
rule favors b over a, alternative a will not be elected no matter
which committee is appointed. Finally, if s = 1, one has to check
if there exists an alternative b ∈ A\{a} such that some voter inN ′

ranks b second and the tie-breaking rule favors a over b; if this is
the case, the center can achieve its goal by appointing a voter who
ranks a first and b second, and otherwise a cannot win.

Now, suppose that |N ′| < s. In this case, our committee will in-
clude all voters in N ′ as well as some additional voters, which will
be selected as follows. Recall that a b-matching in an undirected
(multi)graph G = (V,E) with given vertex capacities {u(v)}v∈V

is a collection of edges E′ ⊆ E such that each vertex v ∈ V is
incident to at most u(v) edges of E′. Given a bound B, we can de-
cide in polynomial time whether a given (multi)graph with a given
list of vertex capacities admits a b-matching of size at least B [17].
We will now show that our problem can be reduced to finding a
b-matching of size s− |N ′| in a certain graph.

Specifically, consider a multigraph G that has A \ {a} as its ver-
tex set and contains an edge between b and c for each voter that

x1

x1

x4

¬x1
x1

x1 ¬x4

x4

¬x2

¬x1

¬x1

x3

¬x3

x2
¬x1

¬x3x1

¬x2

x1

Figure 2: Fragments of the graphs G1 (top) and G2 (bottom)
constructed in the proof of Theorem 5.2. Bold edges show a
pair of matchings that correspond to the truth assignment x1 =
⊤, x2 = ⊤, x3 = ⊥, x4 = ⊤, . . . . The dashed arrows show the
bijection µ.

ranks b and c in the top two positions (i.e., the number of parallel
edges between b and c is the number of voters that rank b and c in
the top two positions). For each c ∈ A, let rc be the number of
2-Approval points that c receives from the voters in N ′. For each
vertex c ∈ A \ {a} we set its capacity u(c) to be ra − rc if the
tie-breaking rule favors a over c and ra−rc−1 otherwise. It is not
hard to see that a b-matching of size s−|N ′| in this multigraph cor-
responds to a set of voters that, together with the voters inN ′, form
a committee that elects a. Conversely, if there exists a committee
S, |S| = s, that gets a elected, our graph admits a b-matching
of size s − |N ′|; to see this, observe that we can assume without
loss of generality that S contains all voters in N ′, and therefore the
set of edges that correspond to voters in S \ N ′ has to satisfy the
capacity constraints.

However, if k > 1, 2-Approval-DELEGATION becomes NP-
hard. To show this, we proceed in two steps: We first define a
graph-theoretic problem, which we show to be NP-hard by a re-
duction from a variant of 3-SAT, and then we reduce this graph-
theoretic problem to 2-Approval-DELEGATION.

An instance of our graph-theoretic problem, which we will call
P-MATCHING, is given by two undirected graphs G1 = (V1, E1)
and G2 = (V2, E2) such that |E1| = |E2|, a bijection µ : E1 →
E2, and two thresholds τ1 and τ2. It is a “yes”-instance if we can
find two matchings E′

1 ⊆ E1 and E′
2 ⊆ E2 such that |E′

1| ≥ τ1,
|E′

2| ≥ τ2 and e ∈ E′
1 implies µ(e) ̸∈ E′

2. P-MATCHING is a
special case of the NP-hard MULTIPLE CHOICE MATCHING prob-
lem [11]; however, we were not able to obtain a direct reduction
from MULTIPLE CHOICE MATCHING to P-MATCHING (or reduce
MULTIPLE CHOICE MATCHING to 2-Approval-DELEGATION), so
we will now give a different NP-hardness proof for our problem.

PROPOSITION 5.2. P-MATCHING is NP-complete.

PROOF. It is easy to see that this problem is in NP. To prove
NP-hardness, we reduce from a variant of EXACT 3-SAT. Recall
that an instance of EXACT 3-SAT is given by a set of Boolean vari-
ables X = {x1, . . . , xq} and a collection of clauses Cl , where
each clause cl ∈ Cl is a disjunction of exactly three literals (i.e.,
variables from X or their negations). It is a “yes”-instance if we
can set the value of each variable in X to ⊤ (“true”) or ⊥ (“false”)
so that each clause in C is satisfied (i.e., contains at least one literal
that is set to ⊤); otherwise it is a “no”-instance. EXACT 3-SAT is
known to be NP-hard [11]. This holds even for the restricted ver-
sion of this problem known as BALANCED EXACT 3-SAT (which
we will abbreviate to BE 3-SAT), where we additionally require
that for each i = 1, . . . , q the literals xi and ¬xi occur the same
number of times in Cl .
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We will now reduce BE 3-SAT to P-MATCHING. Given an in-
stance (X,Cl) of BE 3-SAT with X = {x1, . . . , xq} and Cl =
{cl1, . . . , clr}, we construct an instance of P-MATCHING as fol-
lows. The graph G1 consists of r cycles of length 3. For conve-
nience, we label the edges of the j-th cycle with the literals that ap-
pear in clj (here we use the fact that each clause in Cl contains ex-
actly three literals). The graph G2 consists of q cycles C1, . . . , Cq .
The length of the i-th cycle is 2di, where di is the number of oc-
currences of xi in Cl . We number the edges of Ci clockwise (start-
ing from an arbitrary edge), and label the odd-numbered and even-
numbered edges with xi and ¬xi, respectively. Note that since
(X,Cl) is balanced, G1 and G2 have the same number of edges.
Further, there is a natural bijection µ between the edges of G1 and
those of G2. Namely, µ maps the edge of G1 that corresponds to
the j-th occurrence of xi (respectively, ¬xi) in Cl to the 2j-th (re-
spectively, (2j − 1)-st) edge of Ci. Note that an edge labeled with
xi is mapped to an edge labeled with ¬xi, and vice versa (see Fig-
ure 2). Finally, we set τ1 = r, τ2 =

∑
i=1,...,q di. We leave it to

the reader to see that the reduction is correct.

We are now ready to prove the main hardness result of this section.

THEOREM 5.3. 2-Approval-DELEGATION is NP-complete even
if k = 2.

PROOF. Clearly, 2-Approval-DELEGATION is in NP. To prove
NP-hardness, we give a reduction from P-MATCHING. Given an
instance (G1, G2, µ, τ1, τ2) of P-MATCHING withG1 = (V1, E1),
G2 = (V2, E2), V1 = {a1, . . . , aℓ}, and V2 = {b1, . . . , bt}, we
construct an instance of 2-Approval-DELEGATION with k = 2 as
follows. Assume without loss of generality that ℓ ≤ t. We set
A1 = V1 ∪ {aℓ+1, . . . , at} ∪ {a, a′}, A2 = V2 ∪ {b, b′}. We then
set n = |E1| + 2 = |E2| + 2, and construct n voters as follows.
Let E1 = {e1, . . . , en−2}. Let i ∈ {1, . . . n − 2}, and suppose
that ei = (ax, ay) and µ(ei) = (bz, bw). Then the i-th voter’s top
two alternatives in A1 and A2 are ax, ay and bz, bw, respectively.
The voters n − 1 and n have identical preferences: their top two
alternatives in A1 and A2 are a, a′ and b, b′, respectively. Set s1 =
|τ1|+1 and s2 = |τ2|+1. By renaming the alternatives if necessary
we can assume that the tie-breaking rule for A1 (respectively, A2)
favors a (respectively, b) over all other alternatives. Finally, let the
center’s preferred outcome be (a, b). We leave it to the reader to
see that the reduction is correct.

6. 3-APPROVAL AND OTHER VOTING
RULES: HARDNESS RESULTS

In this section, we show that for many voting rules, the DELEGA-
TION problem is NP-hard even for k = 1. We will prove this for-
mally for r-Approval with r ≥ 3 by modifying the proof for CCDV
given in [15]. We then discuss the implications of the known hard-
ness results for related problems (CCDV and winner determination
in lot-based voting rules) for our setting.

THEOREM 6.1. For every r ≥ 3 the problem r-Approval-DE-
LEGATION is NP-complete even if k = 1.

PROOF. We first give the proof for r = 3; later, we will show
how to modify it for other values of r.

It is easy to see that 3-Approval-DELEGATION is in NP. To prove
hardness, we give a reduction from EXACT COVER BY 3-SETS
(X3C) [11]. Recall that an instance of X3C is given by a ground
set X = {x1, . . . , x3q} and a collection of subsets C ⊆ 2X , where
|C| = 3 for each C ∈ C. It is a “yes”-instance if there exists a
subcollection C′ ⊆ C such that |C′| = q and ∪C∈C′C = X and a
“no”-instance otherwise.

Given an instance (X, C) of X3C, we construct an instance of 3-
Approval-DELEGATION with k = 1 as follows. We set A = A1 =
{x1, . . . , x3q, z, y1, y2} and let s = s1 = q + 1. For each C ∈ C
we create a voter vC that ranks the alternatives in C in top three
positions (in any order); there is also a voter vz that ranks z, y1,
and y2 in the top three positions. We let z be the center’s preferred
alternative. By renaming alternatives if necessary, we can assume
that the tie-breaking rule favors z over all other alternatives.

Clearly, for the committee to elect z it has to include voter vz
as well as q other voters. Moreover, no alternative other than z
should receive two or more 3-Approval points, which means that
these voters correspond to an exact cover of X . Conversely, if C′ is
an exact cover of X , then {vC | C ∈ C′} ∪ {vz} is a committee of
size s that gets z elected.

For r > 3, we can modify this proof by adding |C|+1 blocks of
dummy alternatives of size r − 3 each so that the i-th voter ranks
the dummy alternatives in the i-th block in positions 4, . . . , r; the
rest of the proof goes through unchanged.

Let LOT-THEN-F denote the problem of deciding whether a
given alternative has a positive chance of winning an election un-
der a lot-based voting rule that uses the voting rule F at the sec-
ond stage. Walsh and Xia prove that LOT-THEN-Borda is NP-hard
(Theorem 6 in [18]). This implies that Borda-DELEGATION is NP-
hard even for k = 1. The hardness of Bucklin-CCDV is proved
in [8] (Theorem 3.15); one can check that this proof also applies
to Bucklin-DELEGATION with k = 1. Similarly, the existing hard-
ness proofs for Copeland-CCDV (Theorems 4.18 and 4.19 in [10])
and Maximin-CCDV (Theorem 5.6 in [9]) can be used to prove
the hardness of our problem for k = 1. Briefly, to show this, we
observe that the proofs in [8], [10] and [9] proceed by a reduction
from X3C, with voters corresponding to sets, and either the deleted
voters or the surviving voters encoding an exact cover. Thus, the
number of voters to be deleted can be read off the instance descrip-
tion, which means that these proofs apply to our setting as well.

7. EXTENSIONS
We will now briefly discuss several possible extension of our basic
model.

Assigning Voters to Committees In the model described in Sec-
tion 2 each voter can be assigned to at most one committee, and
every voter can serve on every committee. However, all of our al-
gorithmic results generalize to the more realistic setting where for
each voter i there is a bound bi on the number of committees she
can serve on (in which case the constraint on the total size of all
committees becomes s1 + · · ·+ sk ≤ b1 + · · ·+ bn), and for each
voter i there is a subset of issues Ii such that i can only be assigned
to a committee Sj with j ∈ Ii. Indeed, we can replace a voter that
can serve on bi committees with bi identical voters that can serve
on one committee each; clearly, the new instance admits a solu-
tion if and only if the original one does. Further, if some “voter,
committee” pairs are not allowed, we can modify our circulation-
based and matching-based algorithms by removing the respective
edges from the graph; as for enumeration-based algorithms (i.e.,
Proposition 3.1), we can simply ignore the assignments that con-
tain “illegal” pairs. Also, our algorithms can still be used when
the center does not get to select the entire committee, but rather
has to fill a few slots on an existing committee (assuming that it
knows the preferences of the already appointed committee mem-
bers). We omit the detailed description of the modified algorithms
due to space constraints.

Approval Preferences So far, we have assumed that the center can
only be satisfied with a single outcome. However, in practice the
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center’s preferences may be more complex: for instance, the cen-
ter may accept several combinations of alternatives, i.e., it may be
equally happy with any outcome in a set X ⊆ A. In this case,
we will say that the center has approval preferences. We will now
discuss how to extend the results of the previous sections to this
setting. We will focus on binary domains (i.e., m = 2), both be-
cause it is one of the cases where DELEGATION admits an efficient
algorithm (Theorem 3.2) and because there is a natural formalism
for representing the center’s preferences under this assumption (see
below); also, we assume that our voting rule is Majority, i.e., the
rule that outputs the alternative(s) supported by at least half of the
voters (combined with some tie-breaking rule).

Observe first that even for m = 2 we have |A| = 2k, and there-
fore the size of the set X may be exponential in the number of
committees. Thus, if we are interested in an efficient algorithm
for committee selection in this model, we need a succinct way of
describing the center’s preferences. It will be convenient to use
the language of Boolean formulas for this purpose. Specifically,
we identify each issue j ∈ I with a Boolean variable ξj , and say
that an outcome (a1, . . . , ak) satisfies a Boolean formula ϕ over
{ξ1, . . . , ξk} if ϕ is satisfied by the truth assignment that for each
j ∈ I sets ξj = ⊤ (“true”) if aj = 1j and ξj = ⊥ (“false”) if
aj = 0j . Then every formula ϕ over {ξ1, . . . , ξk} naturally de-
fines a set of outcomes Xϕ = {a ∈ A | a satisfies ϕ}. Clearly,
for every set X ⊆ A there exists a Boolean formula ϕ such that
X = Xϕ, i.e., this language is complete for representing approval
preferences over binary domains; while the size of ϕ is not guar-
anteed to be polynomial in k, there are many interesting classes of
approval preferences that can be represented by small formulas. We
remark that this model fits into the framework of prioritized goals
for preference modelling (see, e.g., [14]).

An instance of the center’s computational problem in this setting,
which we will refer to as APP-DELEGATION, is described in the
same way as an instance of DELEGATION (restricted to the binary
domain), with one exception: instead of specifying the center’s pre-
ferred outcome (a1, . . . , ak), we specify a Boolean formula that
encodes a set X ⊆ A as described above.

Not surprisingly, if we allow arbitrary Boolean formulas in the
description of the center’s preferences, APP-DELEGATION is com-
putationally hard; this holds even if each committee is a singleton.

THEOREM 7.1. APP-DELEGATION is NP-complete. This hard-
ness result holds even if s = 1.

PROOF. To see that APP-DELEGATION is in NP, observe that
we can guess an assignment of voters to committees, determine the
election outcome in each committee, and then check if the corre-
sponding truth assignment satisfies ϕ.

To prove that this problem is NP-hard, we give a reduction from
SAT. Recall that an instance of SAT is given by a set of Boolean
variables X = {x1, . . . , xq} and a Boolean formula ψ over X; it
is a “yes”-instance if and only if ψ is satisfiable. Given an instance
(X,ψ) of SAT, we construct an instance of APP-DELEGATION as
follows. We set k = q, s1 = · · · = sk = 1. Further, we set n = 2k
and construct n voters as follows. Voter 2j − 1, j = 1, . . . , k,
prefers 0t to 1t for all t = 1, . . . , k. Voter 2j, j = 1, . . . , k,
prefers 1j to 0j and prefers 0t to 1t for all t ̸= j. Finally, ϕ is
obtained from ψ by replacing each occurrence of xj with ξj for
j = 1, . . . , k.

Suppose first that ψ is satisfiable, and let x′1, . . . , x′q be a satis-
fying assignment for ψ. We then assign voters to committees as
follows: for each j = 1, . . . , k, if x′j = ⊤, we set Sj = {2j},
and if x′j = ⊥, we set Sj = {2j − 1}. It is easy to see that the
resulting outcome satisfies the center. Conversely, if there is an as-

signment of voters to committees that satisfies the center, then ϕ is
satisfiable, and hence so is ψ.

On the other hand, if k is bounded by a constant, APP-DELEGA-
TION can be reduced to Majority-DELEGATION (which is is in P by
Theorem 3.2). Indeed, we can obtain an explicit list of outcomes in
Xϕ by enumerating all 2k truth assignments for ϕ, and then use our
algorithm for Majority-DELEGATION to check if any of these out-
comes can be achieved. This argument extends to the case where ϕ
is given in disjunctive normal form (DNF), and its DNF consists of
at most poly(k) conjunctions.

However, there are interesting scenarios that that are not captured
by this approach. Suppose, for instance, that k is even, and the
center is satisfied if for every pair of issues (2j, 2j−1) at least one
of the corresponding committees votes for 1; that is, ϕ = (ξ1 ∨
ξ2) ∧ · · · ∧ (ξk−1 ∨ ξk). While the formula ϕ itself is easy to
satisfy, it admits 3k/2 satisfying assignments, so it is not clear how
we can efficiently find an assignment of voters to committees that
makes the center happy. More generally, the complexity of APP-
DELEGATION under natural restrictions on the formula ϕ (such as,
e.g., monotonicity) is an intriguing question for future research.

Ordered Preferences Another natural way to generalize our basic
model is to assume that the center’s preferences are given by a total
order ≻ over the set A of all possible outcomes; in this case, we
will say that the center’s preferences are ordered. In this setting,
a natural goal for the center is to implement the best feasible out-
come, i.e., identify an outcome a such that a can be achieved for
some list of committees (S1, . . . , Sk), whereas no outcome a′ ≻ a
can be achieved.

In this section, we study a special case of this problem where
the center’s preferences are lexicographic. That is, we assume that
for each issue j ∈ I the center has a preference ordering ≻j over
Aj , and it prefers (a1, . . . , ak) to (b1, . . . , bk) if and only if there
exists a j ∈ {1, . . . , k} such that at = bt for t < j and aj ≻j bj ;
we will refer to this problem as LEX-DELEGATION. We will now
argue that LEX-DELEGATION reduces to DELEGATION.

THEOREM 7.2. For any voting rule F the problem F-LEX-
DELEGATION can be reduced to solving at most (m−1)k instances
of F -DELEGATION.

PROOF. To simplify the presentation, we assume that m = 2
and the center prefers 1j to 0j for each j ∈ I.

We use binary search, and construct an outcome (a1, . . . , ak) as
we proceed. We start by asking if there is a way of assigning voters
to committees so that for issue 1 alternative 11 is selected. This
amounts to solving an instance of F -DELEGATION that is obtained
from our input instance of F-LEX-DELEGATION by removing is-
sues 2, . . . , k and the voters’ preferences overA2, . . . , Ak from the
description of the instance, and setting the center’s desired outcome
for the only remaining issue to be 11. If the answer is “yes”, we set
a1 = 11, and otherwise we set a1 = 01.

At step j, j = 2, . . . , k, we ask if there is a way of assigning
voters to committees so that for each t = 1, . . . , j − 1 committee
St selects the alternative at, and committee Sj selects 11. Again,
this amounts to solving F-DELEGATION for a reduced instance of
the original problem. We set aj = 1 if the answer is “yes” and
aj = 0 if the answer is “no”.

In the end we obtain a feasible outcome a = (a1, . . . , ak). Now,
suppose that there is a feasible outcome b = (b1, . . . , bk) that the
center prefers to a. This means that there exists a j ∈ {1, . . . , k}
such that at = bt for t < j and bj = 1j , aj = 0j . Since b is
feasible, the call to F -DELEGATION at step j should have returned
“yes”; this is a contradiction with aj = 0j .
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For m > 2, at step j we consider all alternatives in Aj in the
order of center’s preferences, starting with the center’s most pre-
ferred one. For each alternative a ∈ Aj except for the last one
we use a call to F -DELEGATION to determine whether the vec-
tor (a1, . . . , aj−1) constructed so far can be extended with a. Note
that we do not need to call F-DELEGATION once we reach the cen-
ter’s least preferred alternative in Aj : there is always some way to
extend (a1, . . . , aj−1).

More generally, the center’s preferences can be described by
some language for representing preferences over combinatorial do-
mains, such as CP-nets [4] or weighted goals [5]; exploring whether
Theorem 7.2 can be extended to such languages is an interesting di-
rection for future work.

8. CONCLUSIONS AND FUTURE WORK
We have put forward a formal model for the problem of strategic
delegation of decisions to committees that consist of voters with
known preferences, and investigated the computational complexity
of this problem for a number of voting rules, under various assump-
tions on the problem parameters. Our algorithmic results are sum-
marized in Table 1. Of course, not all constraints on the values of
the parameters listed in Table 1 are equally realistic, and hence not
all of these results are equally important: while the number of com-
mittees k is likely to be fairly small in many settings (and hence
Theorem 4.1 is likely to be quite useful), and decisions are often
made over binary issues (in which case Theorem 3.2 applies), the
number of voters n can often be fairly large (and hence the value
of Proposition 3.1(a) is mostly theoretical). However, we believe
that all results listed in Table 1 are valuable, as they contribute to
providing a broader picture of the complexity of our problem.

Assumption Rules Reference
n < C poly-time Prop. 3.1(a)

s, k < C poly-time Prop. 3.1(b)
m = 2 anonymous, monotone, poly-time Thm. 3.2

m, k < C anonymous, poly-time Thm. 3.3
s = 1 poly-time Prop. 3.5
k < C Plurality, Veto Thm. 4.1
s ≤ 3 Plurality (adv./fav. tie-breaking) Thm. 4.2
s < m Veto Thm. 4.3
k = 1 2-Approval Prop. 5.1

Table 1: Algorithmic results (C is a constant, n is the number
of voters, k is the number of issues, m is the number of alterna-
tives for each issue, and s is the maximum committee size).

Perhaps the most pressing open question is the complexity of
Plurality-DELEGATION when k can be arbitrary; while this prob-
lem appears to be computationally difficult, we did not manage to
show that it is NP-hard. There are also other values of the problem
parameters for which we have neither polynomial-time algorithms
nor NP-hardness results, such as, e.g., the case where both m and
s are bounded by a constant.

Also, for the richer models of the center’s preferences, such as
the ones described in Section 7, our analysis is far from complete,
and we have explicitly suggested some questions about these mod-
els that, in our opinion, are worth investigating. Further afield, it
would be interesting to explore the setting where not only the cen-
ter, but also the voters themselves have complex preferences, i.e., a
voter’s ranking of alternatives for issue j may depend on the alter-
native selected for issue j′.

Finally, one can ask what happens if the committee has to be ap-
pointed by two or more parties who nominate committee members
subject to given quotas, either sequentially or simultaneously, giv-
ing rise to a strategic game; indeed, many real-life committees are
formed in this manner.
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