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ABSTRACT

Two fundamental notions in microeconomic theory are ef-
ficiency—no agent can be made better off without making
another one worse off—and strategyproofness—no agent can
obtain a more preferred outcome by misrepresenting his pref-
erences. When social outcomes are probability distributions
(or lotteries) over alternatives, there are varying degrees of
these notions depending on how preferences over alterna-
tives are extended to preference over lotteries. We show
that efficiency and strategyproofness are incompatible to
some extent when preferences are defined using stochastic
dominance (SD) and therefore introduce a natural weaken-
ing of SD based on Savage’s sure-thing principle (ST). While
random serial dictatorship is SD-strategyproof, it only sat-
isfies ST-efficiency. Our main result is that strict maximal
lotteries—an appealing class of social decision schemes due
to Kreweras and Fishburn—satisfy SD-efficiency and ST-
strategyproofness.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences - Economics
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1. INTRODUCTION
Two fundamental notions in microeconomic theory are

efficiency—no agent can be made better off without mak-
ing another one worse off—and strategyproofness—no agent
can obtain a more preferred outcome by misrepresenting
his preferences. The conflict between these two notions
is already apparent in Gibbard and Satterthwaite’s semi-
nal theorem, which states that the only single-valued social
choice functions that satisfy non-imposition—a weakening of
efficiency—and strategyproofness are dictatorships [15, 25].
In this paper, we study efficiency and strategyproofness in
the context of social decision schemes (SDSs), i.e., functions
that map a preference profile to a probability distribution (or

lottery) over a fixed set of alternatives (e.g., [16, 2]). Ran-
domized voting methods have a surprisingly long tradition
going back to ancient Greece and have recently gained in-
creased attention in political science (see, e.g., [27]). Within
computer science, randomization has become a very success-
ful technique for designing (computationally) efficient algo-
rithms and has also been analyzed in the context of voting
(e.g., [9, 23, 31]).

In a probabilistic framework, the meaning of the concepts
of efficiency and strategyproofness depends on how prefer-
ences over alternatives are extended to preferences over lot-
teries. We will refer to these extensions as lottery extensions.
One of the most studied lottery extensions is stochastic dom-
inance (SD), which states that one lottery is preferred to
another iff the former first-order stochastically dominates
the latter. This extension is of particular importance be-
cause it coincides with the extension in which one lottery is
preferred to another iff, for any utility representation consis-
tent with the ordinal preferences, the former yields at least
as much expected utility as the latter (see, e.g., [8]). Set-
tings in which the existence of an underlying utility function
cannot be assumed may call for weaker lottery extensions. A
natural example is deterministic dominance, which merely
states that one lottery is preferred to another iff all alterna-
tives in the support of the former are strictly preferred to
all alternatives in the support of the latter. Clearly, each of
these lottery extensions gives to rise to different variants or
degrees of efficiency and strategyproofness.

Perhaps the most well-known SDS is random dictatorship
(RD), in which one of the agents is uniformly chosen at ran-
dom and then picks his most preferred alternative. Note that
RD is only well-defined for strict preferences. Gibbard [16]
has shown that RD is the only (strongly) SD-strategyproof
SDS that never puts positive probability on Pareto domi-
nated alternatives. It is easily seen that RD even satisfies
the stronger condition of SD-efficiency. A drawback of Gib-
bard’s beautiful result, however, is that it strongly relies on
the non-existence of ties in the agents’ preferences. In many
important domains of social choice such as house allocation,
matching, and coalition formation, ties are unavoidable be-
cause agents are indifferent among all outcomes in which
their allocation, match, or coalition is the same (e.g., [26]).
In the presence of ties, RD is typically extended to random
serial dictatorship (RSD), where dictators are invoked se-
quentially and ties between most-preferred alternatives are
broken by subsequent dictators.

While RSD still satisfies SD-strategyproofness, it violates
SD-efficiency. This was first observed by Bogomolnaia and
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Figure 1: SML is SD-efficient and ST-strategyproof,

but not SD-strategyproof. On the other hand, RSD

is SD-strategyproof and ST-efficient, but not SD-

efficient.

Moulin [4] in the restricted domain of house allocation. The
example by Bogomolnaia and Moulin [4] can be translated to
a preference profile with 24 alternatives in the general social
choice setting. We give an independent example with four
alternatives and show that this example is minimal by prov-
ing that RSD does satisfy SD-efficiency for three alternatives
in Section 4. We doubt that there exists an anonymous SDS
that satisfies both SD-efficiency and SD-strategyproofness
and prove the incompatibility of these two properties for the
subclass of majoritarian SDSs. In order to obtain positive
results we then introduce a new lottery extension that lies in
between stochastic dominance and deterministic dominance
and is based on Savage’s sure-thing principle (ST). SD and
ST are then used to demonstrate an interesting tradeoff (see
Figure 1). Random serial dictatorship is SD-strategyproof,
but only satisfies ST-efficiency. On the other hand, schemes
from a little known class of SDSs due to Kreweras and
Fishburn called strict maximal lotteries (SML), satisfy SD-
efficiency and ST-strategyproofness. Strict maximal lotter-
ies correspond to the mixed quasistrict Nash equilibria of
the plurality game underlying the preferences of the voters.
While ST-strategyproofness is quite weak, it is important to
note that virtually all common Pareto optimal SDSs (except
RSD) violate even much weaker strategyproofness notions.
Moreover, SML satisfies a number of other desirable prop-
erties violated by RSD such as Condorcet-consistency and
composition-consistency [18, 20].

2. PRELIMINARIES
Let N = {1, . . . , n} be a set of voters with preferences over

a finite set A of alternatives. The preferences of voter i ∈ N
are represented by a complete and transitive preference re-
lation Ri ⊆ A × A. The set of all preference relations will
be denoted by R. The interpretation of (a, b) ∈ Ri, usu-
ally denoted by a Ri b, is that voter i values alternative a
at least as much as alternative b. In accordance with con-
ventional notation, we write Pi for the strict part of Ri,
i.e., a Pi b if a Ri b but not b Ri a. A preference profile
R = (R1, . . . , Rn) is an n-tuple containing a preference re-
lation Ri for every voter i ∈ N . The set of all preference
profiles is thus given by Rn.
Let furthermore ∆(A) denote the set of all lotteries (or

probability distributions) over A, i.e.,

∆(A) =

{
∑

x∈A

p(x) · x : p(x) ≥ 0 ∀x ∈ A,
∑

x∈A

p(x) = 1

}
.

The support of a lottery p ∈ ∆(A), denoted p̂, is the set of

all alternatives to which p assigns positive probability, i.e.,

p̂ = {x ∈ A : p(x) > 0}.

A lottery p is degenerate if |p̂| = 1, and we usually identify
degenerate lotteries with the respective alternatives.

For any λ ∈ [0, 1] and p, q ∈ ∆(A), the lottery

λp+ (1− λ)q =
∑

x∈A

(λp(x) + (1− λ)q(x)) · x

is called a convex combination of p and q. Every lottery p
can be written as the convex combination of |p̂| degenerate
lotteries. For a subset B ⊆ A of alternatives, ∆(B) is the set
of all lotteries that assign probability zero to all alternatives
outside B, i.e., ∆(B) = {p ∈ ∆(A) : p̂ ⊆ B}.

Our central object of study are social decision schemes,
i.e., functions that map the individual preferences of the
voters to a lottery over alternatives.

Definition 1. A social decision scheme (SDS) is a func-
tion f : Rn → ∆(A).

Aminimal fairness condition for SDSs is anonymity, which
requires that f(R) = f(R′) for all R,R′ ∈ Rn and permu-
tations π : N → N such that R′

i = Rπ(i) for all i ∈ N .

2.1 Lottery Extensions
In order to reason about the outcomes of SDSs, we need

to make assumptions on how voters compare lotteries. A
lottery extension maps preferences over alternatives to (pos-
sibly incomplete) preferences over lotteries.1 We will now
define the lottery extensions considered in this paper. For a
more detailed account of lottery extensions and their prop-
erties, we refer to Cho [8].

Throughout this section, let Ri ∈ R be a preference rela-
tion and p, q ∈ ∆(A). The trivial lottery extension can only
compare degenerate (or identical) lotteries. Since we identify
degenerate lotteries with alternatives, the trivial extension
is denoted simply by Ri. Formally, p Ri q iff p = q or

∃x 6= y ∈ A : p(x)q(y) = 1 and x Pi y.

The deterministic dominance extension, denoted R̂i, pre-
scribes that every alternative in the support of p is pre-

ferred to every alternative in the support of q, i.e., p R̂i q iff
p = q or

∀x 6= y ∈ A : p(x)q(y) > 0 ⇒ x Pi y.

Next, we introduce a lottery extension that has not been
considered before. The sure thing (ST) extension uses the
same criterion as the deterministic dominance extension, but
ignores all pairs of alternatives that are assigned the same
probability in both lotteries. Let δ(p, q) = {x ∈ A : p(x) 6=
q(x)} and define p RST

i q iff p = q or

∀x 6= y ∈ A : {x, y}∩ δ(p, q) 6= ∅ and p(x)q(y) > 0 ⇒ x Pi y.

The idea underlying ST is that the comparison of two
lotteries should be independent of the part in which they
coincide. This is strongly related to von Neumann and Mor-
genstern’s independence axiom [30] and has also been used

1Since we are mainly interested in strict preferences over
lotteries, we do not require that indifference between alter-
natives extends to indifference between the corresponding
degenerate lotteries.
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for defining preference extensions from alternatives to sets
of alternatives [14].
Finally, stochastic dominance (SD) prescribes that for

each alternative x ∈ A, the probability that p selects an
alternative that is at least as good as x is greater or equal to
the probability that q selects such an alternative. Formally,
p RSD

i q iff

∑

x∈A:xRiy

p(x) ≥
∑

x∈A:xRiy

q(x) for all y ∈ A.

It is well-known that p RSD

i q iff the expected utility from
p is higher than that from q for any utility function that is
compatible with Ri.
It is straightforward to check that the four lottery exten-

sions introduced above form an inclusion hierarchy.

Proposition 1. Ri ⊆ R̂i ⊆ RST

i ⊆ RSD

i for all Ri ∈ R.

Even though the SD extension is the finest lottery exten-
sion among the four, it is still incomplete. For example, the
lotteries 1

2
a+ 1

2
c and b are incomparable for a voter prefer-

ring a to b to c.
We will mainly be concerned with the SD and ST exten-

sions, and write P SD

i and P ST

i for the strict parts of the
relations RSD

i and RST

i , respectively.
We conclude the discussion of lottery extensions with a

useful characterization of P ST

i . The easy proof is omitted
due to restricted space.

Proposition 2. Let Ri ∈ R and p, q ∈ ∆(A). Then,
p P ST

i q iff 2

(i) p̂ \ q̂ 6= ∅ and q̂ \ p̂ 6= ∅,

(ii) (p̂ \ q̂) Pi (p̂ ∩ q̂) Pi (q̂ \ p̂), and

(iii) p(x) = q(x) for all x ∈ p̂ ∩ q̂.

2.2 Efficiency
Efficiency prescribes that there is no lottery that all voters

prefer to the one returned by the SDS. Each lottery exten-
sion yields a corresponding notion of efficiency. Out of these,
efficiency with respect to SD and ST will be of main interest
in this paper.

Definition 2. Let E ∈ {SD, ST}. Given a preference
profile R, a lottery p E-dominates another lottery q if p RE

i q
for all i ∈ N and p P E

i q for some i ∈ N . An SDS f is E-
efficient if, for every R ∈ Rn, there does not exist a lottery
that E-dominates f(R).

Since RST

i ⊆ RSD

i , SD-efficiency implies ST-efficiency. A
standard efficiency notion that cannot be phrased in terms
of lottery extensions is (ex post) Pareto optimality. An SDS
is Pareto optimal if it assigns probability zero to all Pareto-
dominated alternatives. It can be shown that SD-efficiency
implies Pareto optimality and that Pareto optimality implies
ST-efficiency.

2For B1, B2, B3 ⊆ A, we write B1 Pi B2 Pi B3 if b1 Pi b2,
b1 Pi b3, and b2 Pi b3 for all bj ∈ Bj , j ∈ {1, 2, 3}.

2.3 Strategyproofness
Strategyproofness prescribes that no voter can obtain a

more preferred outcome by misrepresenting his preferences.
Again, we obtain varying degrees of this property depending
on the underlying lottery extension.

Definition 3. Let E ∈ {SD, ST}. An SDS f is E-ma-
nipulable if there exist preference profiles R and R′ with
Rj = R′

j for all j 6= i such that f(R′) P E
i f(R). An SDS is

E-strategyproof if it is not E-manipulable.

Since RST

i ⊆ RSD

i , SD-strategyproofness implies ST-
strategyproofness. Note that our definition of strategyproof-
ness does not require that f(R) RE

i f(R′) for all R′ with
R′

j = Rj for all j 6= i. This stronger strategyproofness no-
tion, which is for instance used in Gibbard’s [16] proof, seems
unduly restrictive for lottery extensions in which most lot-
teries are incomparable. The weaker notion employed here
is for example also used by Postlewaite and Schmeidler [22]
for the SD extension.

Another strengthening of strategyproofness that is often
considered is group-strategyproofness. It prescribes that no
group of voters can jointly benefit from misrepresenting
their preferences. All positive results in this paper concern-
ing strategyproofness also hold for group-strategyproofness,
while the negative ones even hold for individual strate-
gyproofness.

3. AN IMPOSSIBILITY
Interestingly, it seems very difficult (if not impossible)

to satisfy SD-efficiency and SD-strategyproofness simultane-
ously without violating anonymity. Randomizing over the
winning sets of various commonly used social choice func-
tions such as Borda’s rule, Copeland’s rule, plurality with
runoff, Hare’s rule, Coombs’s rule, or the weak Condorcet
rule fails to be SD-strategyproof because all these rules can
even be manipulated with respect to the trivial lottery ex-
tension [28, Theorem 2.2]. Known SD-strategyproof SDSs
that are assigning probabilities to alternatives in proportion
to their Borda or Copeland scores (see e.g., [3, 9, 23]), on
the other hand, trivially fail to satisfy Pareto optimality
(and therefore also SD-efficiency).

In this section, we prove a weak version of this incom-
patibility by showing that no majoritarian SDS is both SD-
efficient and SD-strategyproof. An SDS f is said to be ma-
joritarian if the lottery returned by f only depends on the
unweighted majority graph induced by the majority com-
parisons between pairs of alternatives.

Theorem 1. There exists no SD-efficient and SD-
strategyproof majoritarian SDS on four or more alternatives.

Proof. We prove the stronger statement that there ex-
ists no Pareto optimal and SD-strategyproof majoritarian
SDS on four or more alternatives.

Let f be a Pareto optimal SDS. We will show that f is
SD-manipulable. Consider the profile (R1, R2, R3) given by3

1 : a, b, c, d

2 : b, c, d, a

3 : d, a, b, c

3Alternatives are listed in decreasing order of preference.
For instance, the first voter strictly prefers a to b to c to d.
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a

b

c

d

p1

p2

0

p3

Figure 2: Majority graph G of the profile (R1, R2, R3).
An edge from node x to node y means that there is

a majority of voters preferring x over y. All missing

edges point downwards.

and let p = f((R1, R2, R3)). Since b Pareto dominates c in
this profile, p(c) = 0. The assumption that f is majoritar-
ian can be utilized as follows. Figure 2 depicts the majority
graph G of (R1, R2, R3). Whenever a preference profile has
a majority graph that is isomorphic to the one in Figure 2,
then f assigns probability zero to the alternative that is third
from the top (like c in the profile above). Majoritarianism
also implies that the probabilities of the three remaining al-
ternatives are fixed for all profiles that produce a majority
graph isomorphic to G. Define p1 = p(a), p2 = p(b), and
p3 = p(d). Thus, for every preference profile that produces
a majority graph that looks like G, the SDS f assigns prob-
ability p1 to the top alternative, probability p2 to the second
alternative, and probability p3 to the bottom alternative.
Let us now introduce eight additional voters with prefer-

ences as follows.

4 : a, c, b, d 6 : c, b, d, a 8 : c, d, a, b 10 : c, d, b, a

5 : d, b, c, a 7 : a, d, b, c 9 : b, a, d, c 11 : a, b, d, c

Define R = (R1, . . . , R11) and observe that the majority
graph of R is identical to that of (R1, R2, R3). The reason
is that the new voters come in pairs which cancel each other
out: the preferences of voter 4 are opposite to the preferences
of voter 5, and so on. Therefore, we have f(R) = p. We will
use a case distinction to show that f is SD-manipulable.
Case 1: p3 ≥ p1. Consider the profile that is identical to

R except that voter 4 has changed his preferences

from R4 : a, c, b, d to R′
4 : c, a, b, d.

The resulting majority graph is depicted in Figure 3(i). This
graph is isomorphic to G, and consequently we know from
the arguments above that f assigns probability p1 to b, prob-
ability p2 to c, probability 0 to d, and probability p3 to a.
This is summarized in the following table.

a c b d

R4 : a, c, b, d p1 0 p2 p3
R′

4 : c, a, b, d p3 p2 p1 0

Since we have assumed that p3 ≥ p1, it follows that voter 4
prefers the new lottery to the original lottery with respect
to SD. Thus, voter 4 can benefit from misrepresenting his
preferences.
Case 2: p1 > p3 ≥ p2. Voter 6 can manipulate as follows.

By strengthening d versus b, the majority graph changes
from G to the graph in Figure 3(ii).

c b d a

R6 : c, b, d, a 0 p2 p3 p1
R′

6 : c, d, b, a p3 0 p1 p2

b

c

d

a

p1

p2

0

p3

(i) (a, c) inverted

d

a

b

c

p1

p2

0

p3

(ii) (b, d) inverted

a

b

d

c

1
3

1
3

1
3

0

(iii) (c, d) inverted

Figure 3: Majority graphs that result from G by

inverting edges. All missing edges point downwards.

Case 3: p3 < 1
3
and p2 ≥ p1. Voter 8 can manipulate

as follows. By strengthening d versus c, the majority graph
changes from G to the graph in Figure 3(iii). For this graph,
similar arguments as above imply that every majoritarian
SDS yields the lottery 1

3
a+ 1

3
b+ 1

3
d.

c d a b

R8 : c, d, a, b 0 p3 p1 p2
R′

8 : d, c, a, b 0 1
3

1
3

1
3

Case 4: p3 < 1
3
and p1 ≥ p2. Voter 10 can manipulate

as follows. By strengthening d versus c, the majority graph
changes from G to the graph in Figure 3(iii).

c d b a

Ri : c, d, b, a 0 p3 p2 p1
R′

i : d, c, b, a 0 1
3

1
3

1
3

In each case, we have found a successful manipulation.
Thus, f is SD-manipulable.

No anonymous SD-efficient and SD-strategyproof SDS—
majoritarian or not—is known. Clearly, it would be very
desirable to strengthen Theorem 1 by extending the state-
ment to the class of anonymous SDSs.

4. RANDOM SERIAL DICTATORSHIP
In this section, we examine random serial dictatorship

(RSD)—an extension of random dictatorship to the case
where voters may express indifference among alternatives.
RSD is commonly used in house allocation, matching, and
coalition formation domains where ties are ubiquitous [1, 7].
In these contexts, RSD is sometimes also referred to as the
random priority mechanism.

In order to formally define RSD, we first introduce serial
dictatorships, where dictators are invoked according to some
fixed order and ties between most-preferred alternatives are
broken by subsequent dictators. For a preference profile R
and a permutation π of N , let

σ(R, π) = ∆(max
Rπ(n)

( max
Rπ(n−1)

(. . . (max
Rπ(1)

(A)) . . . ))).

That is, σ(R, π) randomizes over the set of alternatives left
when voters in order of π throw away those alternatives from
the working set which are not maximally preferred. The
set σ(R, π) is almost always a singleton: if σ(R, π) contains
multiple lotteries, then every voter needs to be indifferent
between all alternatives in the support of any of these lot-
teries.

458



RSD is the convex combination of n! lotteries, each one of
which is obtained by selecting σ(R, π) for a distinct permu-
tation π. Let π1, . . . , πn! be an enumeration of the permu-
tations over N and define

RSD(R) =

{
n!∑

j=1

1

n!
pj : pj ∈ σ(R, πj) ∀j ∈ {1, . . . , n!}

}
.

Clearly, the set RSD(R) can only contain more than one
lottery if there is some j such that σ(R, πj) contains more
than one lottery. An SDS is called an RSD scheme if it
always selects a lottery from the set RSD(R).

Definition 4. An SDS f is an RSD scheme if f(R) ∈
RSD(R) for all R ∈ Rn.

If Φ is a property such as efficiency or strategyproofness,
we write “RSD satisfies Φ” if every RSD scheme satisfies Φ.
It is well known that the serial dictator rule is SD-

strategyproof. Any convex combination of serial dictator
rules is also SD-strategyproof.

Proposition 3. RSD is SD-strategyproof.

It is furthermore well-known that RSD is Pareto optimal.
Since Pareto optimality implies ST-efficiency, we immedi-
ately have the following.

Proposition 4. RSD is ST-efficient.

However, RSD is not SD-efficient.

Proposition 5. For |A| ≥ 4, RSD is not SD-efficient.

Proof. We show that no RSD scheme is SD-efficient.
Consider the following preference profile.4

1 : {a, c}, b, d

2 : {b, d}, a, c

3 : a, d, {b, c}

4 : b, c, {a, d}

The unique RSD lottery is 5
12
a+ 5

12
b+ 1

12
c+ 1

12
d, which is

SD-dominated by 1
2
a + 1

2
b. In fact, it is even the case that

all voters strictly prefer the latter lottery according to SD.
Therefore RSD is not SD-efficient even for four voters and
four alternatives.

The lack of SD-efficiency of RSD was first discovered by
Bogomolnaia and Moulin [4] in the context of house alloca-
tion.5 What the proposition above actually shows is that for
any utility representation consistent with the ordinal prefer-
ences of the voters, there exists a lottery which gives strictly
more expected utility to each voter than the (unique) RSD
lottery. We conclude this section by noting that Proposi-
tion 5 is tight. The proof is omitted due to restricted space.

Proposition 6. For |A| ≤ 3, RSD is SD-efficient.

4We use curly braces to denote indifference. For instance,
the first voter is indifferent between a and c.
5If the example by Bogomolnaia and Moulin [4] is translated
to the general social choice setting, there are 24 alternatives.

5. STRICT MAXIMAL LOTTERIES
Maximal lotteries were first considered by Kreweras [17]

and independently rediscovered and studied in detail by
Fishburn [12]. Interestingly, maximal lotteries or vari-
ants thereof have been rediscovered again by economists,
mathematicians, political scientists, and computer scientists
[18, 11, 13, 24].

In order to define maximal lotteries, we need some nota-
tion. For a preference profile R ∈ Rn and two alternatives
x, y ∈ A, the majority margin gR(x, y) is defined as the dif-
ference between the number of voters who prefer x to y and
the number of voters who prefer y to x, i.e.,

gR(x, y) = |{i ∈ N | x Ri y}| − |{i ∈ N | y Ri x}|.

Thus, gR(y, x) = −gR(x, y) for all x, y ∈ A. A maximal
element, a.k.a. (weak) Condorcet winner, is an alternative
x ∈ A with gR(x, y) ≥ 0 for all alternatives y ∈ A. It is
well known that maximal elements may fail to exist. This
drawback can however be remedied by considering lotteries
over alternatives. The function gR can be extended to pairs
of lotteries by computing expected majority margins. For
p, q ∈ ∆(A), define

gR(p, q) =
∑

(x,y)∈A×A

p(x)q(y)gR(x, y).

The set of maximal lotteries is then defined as

ML(R) = {p ∈ ∆(A) | gR(p, q) ≥ 0 for all q ∈ ∆(A)}.

Von Neumann’s minimax theorem [29] implies that ML(R)
is non-empty for all R ∈ Rn. In fact, gR can be interpreted
as the payoff matrix of a symmetric zero-sum game—the so-
called plurality game—and maximal lotteries as the mixed
maximin strategies (or Nash equilibria) of this game. Inter-
estingly, ML(R) is a singleton in most cases. In particular,
this holds if all voters have strict preferences and the number
of voters is odd [19, 21].

A particularly interesting subclass of ML(R) is given by
the set of strict maximal lotteries, which corresponds to the
set of quasistrict Nash equilibria of the plurality game. It
can be shown that, within symmetric zero-sum games, these
equilibria precisely correspond to the maximal lotteries with
maximal support [10, 6].

Definition 5. Let R ∈ Rn. The set of strict maximal
lotteries of R is given by

SML(R) = {p ∈ ML(R) | q̂ ⊆ p̂ for all q ∈ ML(R)}.

Convexity of the set ML(R) implies that SML(R) is non-
empty and that all elements of SML(R) have the same sup-

port, which we denote by ŜML(R). This support can more-
over be characterized as follows.

Lemma 1. Let p ∈ SML(R) and x ∈ A. Then,

x ∈ ŜML(R) ⇔ gR(x, p) = 0, and

x /∈ ŜML(R) ⇔ gR(x, p) < 0.

Proof. The statements follow from Lemma 4.2 by Dutta
and Laslier [10].

An SDS is called an SML scheme if it always selects a
strict maximal lottery and if the selection only depends on
the set of strict maximal lotteries.
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Definition 6. An SDS f is an SML scheme if f(R) ∈
SML(R) for all R ∈ Rn and f(R) = f(R′) whenever
SML(R) = SML(R′).

If Φ is a property such as efficiency or strategyproofness,
we write “SML satisfies Φ” if every SML scheme satisfies Φ.

5.1 Efficiency
In this subsection, we prove that every SML scheme is SD-

efficient. This result contrasts with our earlier observation
that RSD fails SD-efficiency.
With each preference relation Ri on A we can associate a

function φi : A×A → {−1, 0, 1} such that for all x, y ∈ A,

φi(x, y) =






1 if x Pi y,

−1 if y Pi x, and

0 otherwise.

Lemma 2. Let p, q ∈ ∆(A) with p RSD

i q. Then,
∑

(x,y)∈A×A

p(x)q(y)φi(x, y) ≥ 0.

Proof. The following equivalences are easily verified.

p RSD

i q ⇔
∑

x∈A:xPiy

p(x)−
∑

x∈A:xPiy

q(x) ≥ 0 for all y ∈ A

⇔
∑

x∈A:yPix

p(x)−
∑

x∈A:yPix

q(x) ≤ 0 for all y ∈ A

Now, for any i ∈ N ,
∑

(x,y)∈A×A

p(x)q(y)φi(x, y) =
∑

(x,y)∈A×A

p(x)q(y)φi(x, y)− 0

=
∑

(x,y)∈A×A

p(x)q(y)φi(x, y)−
∑

(x,y)∈A×A

q(x)q(y)φi(x, y)

=
∑

y∈A




∑

x:xPiy

p(x)q(y)(+1) +
∑

x:yPix

p(x)q(y)(−1)





−
∑

y∈A




∑

x:xPiy

q(x)q(y)(+1) +
∑

x:yPix

q(x)q(y)(−1)





=
∑

y∈A

q(y)




∑

x:xPiy

p(x)−
∑

x:xPiy

q(x)





−
∑

y∈A

q(y)




∑

x:yPix

p(x)−
∑

x:yPix

q(x)





≥ 0.

The last step is easily seen in view of the equivalences
stated at the beginning of the proof.

Theorem 2. SML is SD-efficient.

Proof. Let R ∈ Rn and q ∈ SML(R). Assume for con-
tradiction that there exists a lottery p that SD-dominates q,
i.e., p RSD

i q for all i ∈ N and p P SD

i q for some i ∈ N .
Lemma 2 yields

∑

(x,y)∈A×A

p(x)q(y)φi(x, y) ≥ 0 for all i ∈ N , and

∑

(x,y)∈A×A

p(x)q(y)φi(x, y) > 0 for some i ∈ N .

Summing up, we get
∑

i∈N

∑

(x,y)∈A×A

p(x)q(y)φi(x, y) > 0.

Since the sum on the left exactly equals gR(p, q), the latter
inequality contradicts the assumption that q is a maximal
lottery.

5.2 Strategyproofness
Whereas SML fares well on the efficiency front, it does

not do as well from the point of view of strategyproofness.

Proposition 7. SML is not SD-strategyproof.

Proof. We show that every SML scheme is SD-
manipulable. Let A = {a, b, c} and consider the following
preference profile R.

1 : a, c, b

2 : a, b, c

3, 4 : b, c, a

5 : c, a, b

With the help of Lemma 1, it can be verified that SML(R) =
{ 1
3
a+ 1

3
b+ 1

3
c}. However, if voter 1 misrepresents his prefer-

ences between b and c by voting a P ′
i b P ′

i c, the outcome for
the new preference profile R′ is SML(R′) = { 3

5
a+ 1

5
b+ 1

5
c}.

Thus, f(R′) P SD
1 f(R) for any SML scheme f .

On the other hand, we show that SML is at least ST-
strategyproof.6 We need the following lemma, which states

that weakening alternatives outside ŜML(R) does not alter
the set SML(R). The proof of this lemma utilizes Lemma 1
and is omitted due to restricted space.

Lemma 3. Let R ∈ Rn and a ∈ A with a /∈ ŜML(R). Let
furthermore R′ ∈ Rn be such that gR′(b, a) > gR(b, a) for
some b ∈ A \ {a} and gR′(x, y) = gR(x, y) for all x, y ∈ A
with {x, y} 6= {a, b}. Then, SML(R′) = SML(R).

Theorem 3. SML is ST-strategyproof.

Proof. Assume for contradiction that there is an SML
scheme f that is not ST-strategyproof. Then, there are two
preference profiles R and R′ such that Rj = R′

j for all j 6= i

and f(R′) P ST

i f(R).
For two alternatives x, y ∈ A we say that x is

strengthened against y if either (1) y Ri x and x P ′
i y,

or (2) y Pi x and x R′
i y. Define ∆(R,R′) = {(x, y) :

x is strengthened against y}. This set can be partitioned
into the following four subsets.

∆1 = {(x, y) ∈ ∆(R,R′) : y /∈ p̂}

∆2 = {(x, y) ∈ ∆(R,R′) : x /∈ q̂} \∆1

∆3 = {(x, y) ∈ ∆(R,R′) : x ∈ q̂, y ∈ p̂, and {x, y} * p̂ ∩ q̂}

∆4 = {(x, y) ∈ ∆(R,R′) : x ∈ q̂, y ∈ p̂, and {x, y} ⊆ p̂ ∩ q̂}

We now construct two new preference profiles R̃ and R̃′

based on R and R′. The idea behind this construction is to

6The first part of this proof recycles an argument that was
used by Brandt [5] to characterize set-valued social choice
functions that are strategyproof with respect to determinis-
tic dominance.
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make R and R′ agree on as many pairs as possible, while
maintaining the invariant that the outcomes are p and q,
respectively.
R̃ is identical to R except that for all pairs (x, y) ∈ ∆1,

we strengthen x against y in the preferences of voter i such
that R̃i agrees with R′

i on all such pairs.7 Lemma 3 implies
that f(R̃) = f(R) = p. Analogously, R̃′ is identical to R′

except that for all pairs (x, y) ∈ ∆2, we strengthen y against

x in the preferences of voter i such that R̃′
i agrees with Ri

on all such pairs. Lemma 3 implies that f(R̃′) = f(R′) = q.

By definition, R̃ and R̃′ differ only on pairs that are
contained in ∆3 or ∆4. Observe, however, that ∆3 = ∅.
To see this, assume for contradiction that there is a pair
(x, y) ∈ ∆(R,R′) with x ∈ q̂, y ∈ p̂, and {x, y} * p̂ ∩ q̂.
There are three cases: (1) x ∈ q̂ \ p̂ and y ∈ p̂ \ q̂, (2)
x ∈ q̂ \ p̂ and y ∈ p̂ ∩ q̂, and (3) x ∈ p̂ ∩ q̂ and y ∈ p̂ \ q̂. In
each case, q P ST

i p implies x Pi y (see Proposition 2). Since
(x, y) ∈ ∆(R,R′) implies y Ri x, we have a contradiction.

We thus have that ∆3 = ∅, and, consequently, that R̃
and R̃′ only differ on pairs of alternatives that are contained
in ∆4. In particular, gR̃ and gR̃′ agree on all pairs of alter-
natives that do not lie in p̂ ∩ q̂, i.e.,

gR̃(a, b) = gR̃′(a, b) for all a, b with {a, b} * p̂ ∩ q̂.

For such pairs, we omit the subscript and write g(a, b) in-
stead of gR̃(a, b). Likewise, we write g(a, p) for gR̃(a, p)
whenever a /∈ p̂ ∩ q̂ and p ∈ ∆(A).
Let x ∈ A and define a function s : A → [0, 1] via

s(x) =






p(x) if x ∈ p̂

q(x) if x ∈ q̂

0 otherwise.

Note that s is well-defined because p(z) = q(z) for all z ∈
p̂ ∩ q̂, and that s does not correspond to a lottery because
the individual probabilities do not add up to one.
For a /∈ p̂ ∩ q̂ and a subset B ⊆ A of alternatives,

let furthermore s(a,B) =
∑

b∈B
s(b)g(a, b). If B = q̂,

we have s(a, q̂) =
∑

b∈q̂ s(b)g(a, b) =
∑

b∈q̂ q(b)g(a, b) =∑
b∈A

q(b)g(a, b) = g(a, q). Analogously, s(a, p̂) equals
g(a, p).
Lemma 1 implies that g(x, p) = 0 and g(x, q) < 0 for all

x ∈ p̂\q̂, as well as g(y, p) < 0 and g(y, q) = 0 for all y ∈ q̂\p̂.
Therefore, we get

s(x, q̂) = g(x, q) < 0 = g(x, p) = s(x, p̂) for all x ∈ p̂ \ q̂, and

s(y, p̂) = g(y, p) < 0 = g(y, q) = s(y, q̂) for all y ∈ q̂ \ p̂.

The inequality s(x, q̂) < s(x, p̂) remains valid if s(x, p̂ ∩ q̂)
is subtracted from both sides. Since s(x, q̂) − s(x, p̂ ∩ q̂) =
s(q̂ \ p̂), we obtain

s(x, q̂ \ p̂) < s(x, p̂ \ q̂) for all x ∈ p̂ \ q̂, and

s(y, p̂ \ q̂) < s(y, q̂ \ p̂) for all y ∈ q̂ \ p̂.

Multiplying both sides of these inequalities with a positive
number, and writing s′(a,B) for s(a) · s(a,B) results in

s′(x, q̂ \ p̂) < s′(x, p̂ \ q̂) for all x ∈ p̂ \ q̂, and

s′(y, p̂ \ q̂) < s′(y, q̂ \ p̂) for all y ∈ q̂ \ p̂.

7Note that R̃i might not be transitive. Therefore, we do not
assume transitivity of preferences in this proof. In fact, the
statement of Theorem 3 becomes stronger but is easier to
prove for general—possibly intransitive—preferences.

We finally summarize over q̂ \ p̂ and q̂ \ p̂, respectively, and
get

∑

x∈p̂\q̂

s′(x, q̂ \ p̂) <
∑

x∈p̂\q̂

s′(x, p̂ \ q̂), and (1)

∑

y∈q̂\p̂

s′(y, p̂ \ q̂) <
∑

y∈q̂\p̂

s′(y, q̂ \ p̂). (2)

In order to arrive at a contradiction, we state two straight-
forward identities that are based on the skew-symmetry of g.
∑

a∈B

s′(a,B) = 0 for all B ⊆ A \ (p̂ ∩ q̂), and (3)

∑

b∈B

s′(b, C)+
∑

c∈C

s′(c, B) = 0 for all B,C⊆A\(p̂ ∩ q̂). (4)

Now (3) implies that the right hand side of both (1) and (2)
is zero, and therefore

∑

x∈p̂\q̂

s′(x, q̂ \ p̂) < 0 and
∑

y∈q̂\p̂

s′(y, p̂ \ q̂) < 0.

However, (4) implies that
∑

x∈p̂\q̂

s′(x, q̂ \ p̂) +
∑

y∈q̂\p̂

s′(y, p̂ \ q̂) = 0,

a contradiction.

ST-strategyproofness is rather weak, but it seems as if
this is one of the highest degrees of strategyproofness one
can hope for when also insisting on SD-efficiency. While
ST-strategyproofness does allow manipulators to skew the
resulting distribution, gross manipulative attacks such as
distorting the outcome from one degenerate lottery to
another—an attack that many common SDSs suffer from
(see Section 3)—or from one support to another disjoint one
are futile.

6. CONCLUSION
We pointed out an interesting tradeoff between efficiency

and strategyproofness in randomized social choice, exempli-
fied by two social decision schemes: random serial dictator-
ship and strict maximal lotteries. While the former satisfies
the strong notion of SD-strategyproofness, it only satisfies
ST-efficiency. For strict maximal lotteries, this is exactly
the other way round (see Figure 1).

An important open question is whether SD-efficiency, SD-
strategyproofness, and anonymity are incompatible in gen-
eral. We only proved this statement for the rather lim-
ited class of majoritarian social decision schemes. An-
other interesting question concerns other schemes that sat-
isfy SD-strategyproofness and ST-efficiency. Most of the
schemes captured by Gibbard’s characterization of strongly
SD-strategyproof schemes [16, 2] also satisfy ST-efficiency.
However, in contrast to RSD, they fail to satisfy Pareto
optimality. The complementary question—schemes that
satisfy SD-efficiency and ST-strategyproofness—is perhaps
even more interesting. It can be shown that both prop-
erties are satisfied by all strict maximal lottery schemes,
even when applying odd monotonic mappings to the ma-
jority margin as described by Fishburn [12]. On the other
hand, we have counter-examples showing that other attrac-
tive schemes known to be strategyproof with respect to de-
terministic dominance [5] either fail SD-efficiency or ST-
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strategyproofness. Perhaps, strict maximal lotteries can
even be characterized using these properties.
There are also challenging computational problems as-

sociated with RSD. Of course, RSD can be implemented
efficiently so as to return a single alternative, but we are
not aware of a polynomial-time algorithm for computing the
probabilities of an actual RSD lottery.8 SMLs, on the other
hand, can be easily computed in polynomial time via linear
programming.
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payoffs. Économie publique, 17(2):187–195, 2005.

[22] A. Postlewaite and D. Schmeidler. Strategic behaviour
and a notion of ex ante efficiency in a voting model.
Social Choice and Welfare, 3:37–49, 1986.

[23] A. Procaccia. Can approximation circumvent
Gibbard-Satterthwaite? In Proc. of 24th AAAI
Conference, pages 836–841. AAAI Press, 2010.

[24] R. L. Rivest and E. Shen. An optimal single-winner
preferential voting system based on game theory. In
Proc. of 3rd International Workshop on
Computational Social Choice, pages 399–410, 2010.

[25] M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

[26] T. Sönmez and M. U. Ünver. Matching, allocation,
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