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ABSTRACT

Ants show an incredible ability to collectively transport com-
plex irregular-shaped objects with seemingly simple coor-
dination. Achieving similarly effective collective transport
with robots has potential applications in many settings, from
agriculture to construction to disaster relief. In this pa-
per we investigate a simple decentralized strategy for collec-
tive transport in which each agent acts independently with-
out explicit coordination. Using a physics-based model, we
prove that this strategy is guaranteed to successfully trans-
port a complex object to a target location, even though each
agent only knows the target direction and does not know
the object shape, weight, its own position, or the position
and number of other agents. Using two robot hardware plat-
forms, and a wide variety of complex objects, we validate the
strategy through extensive experiments. Finally, we present
a set of experiments to demonstrate the versatility of the
simple strategy, including transport by 100 robots, trans-
port of an actively moving object, adaptation to change in
goal location, and dealing with partially observable goals.
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I.2.11 [Distributed Artificial Intelligence]: Multiagent
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1. INTRODUCTION
Ants show an incredible ability to collectively transport

complex irregularly shaped objects, even man-made ones,
without a priori knowledge of object shape and mass [1, 2,
3]. This form of transport allows the ant colony to collec-
tively achieve a task that individuals cannot achieve, as well
as other benefits such as faster transport speeds, robust-
ness to individual failure, and better adaptability to varying
object sizes. Collective transport with multi-robot systems
has the potential for many of the same benefits in a number
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Figure 1: (Left) 100 robots transporting an “H” object.

(Right) Kilobots transporting an actively moving object.

of settings, such as agriculture, disaster relief, warehouses,
mining, etc. Effective algorithms for collective transport
would allow robots with fixed capabilities to cooperatively
transport large, heavy objects, and adapt team size to trans-
port a variety of object sizes efficiently and simultaneously.

In this paper, we focus on a problem of multi-agent coor-
dination in collective transport: can a large group of agents
successfully transport an arbitrarily shaped heavy object to
a target destination, without a priori knowledge of the de-
tails of object shape and mass or even the number of other
agents taking part in the goal? Studies suggest that ants
achieve a high level of success with complex objects, not
through coordinated deliberation and communication, but
rather through decentralized actions of many individuals ap-
plying forces to a single object [1, 2]. In swarm robotics, re-
searchers have developed collective transport strategies in-
spired by social ants [5, 6]; these algorithms have shown
great promise, but have not been analyzed and generalized
to complex shapes. Other more analytical approaches have
also been developed; however, these tend to depend on so-
phisticated robots that maintain full knowledge of object
shape, position, and orientation at all times [8, 9, 10].

In this paper we investigate a simple decentralized strat-
egy for collective transport, in which each agent indepen-
dently grips the object and applies a force in the direction
of a goal, without any explicit coordination between agents.
Using a theoretical model, we show that this strategy is prov-
ably guaranteed to successfully transport a complex object
to a target location – even though each agent has no knowl-
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edge of the object shape, weight, its own position on the ob-
ject perimeter, or the position and number of other agents
– so long as there are enough agents to overcome static fric-
tion. Furthermore, we can theoretically predict many im-
portant properties, such as speed of transport, minimum
number of agents required, and scalability of performance
as a function of number of robots, and show that the object
trajectory and rotation are near optimal. We implement and
evaluate the strategy through extensive experiments using
two hardware testbeds, the Kilobot robot swarm [11] and
the r-one robot swarm [12], and a wide variety of complex
object choices. Our results show that the behavior of real
robots is well captured by the theoretical model, including
predicted performance and scalability, in spite of the many
unmodeled sensing and motion errors that real robots ex-
hibit. We also demonstrate an extension to the simple de-
centralized strategy for the case where the target location
is only observed by a few robots; the extension makes use
of an algorithmic analogy between collective transport and
flocking with informed agents [15]. Finally, we present a set
of demonstrations to show that, while the decentralized ap-
proach is seemingly very simple, it is still quite versatile. We
show several complex collective transport scenarios, includ-
ing transport by 100 robots (Fig. 1), transporting an actively
moving object, and adapting to changes in goal location.

2. RELATED WORK
There has been a considerable amount of research on col-

lective transport in social insects [1, 2, 3] as well as groups
of robots [1, 4, 6, 9]. In this section we primarily focus on
transport strategies for autonomous mobile robots that use
grippers to move objects, and where collective behavior is
required to move objects too heavy for a single robot.

In the control theory community, many approaches have
been developed using centralized planners, leader-follower
schemes, or distributed coordination between robots [8, 9,
10]. Much of this work focuses on a slightly different
task called distributed planar manipulation, where robots
transport a lightweight object of known shape along a pre-
specified global trajectory with control of both object orien-
tation and total force, e.g., in a factory setting. An advan-
tage of these methods is that they are analytically tractable
and generalize to complex object shapes. A disadvantage
is that the task and methods rely on robots knowing global
object position and orientation at all times, and many meth-
ods also rely on knowing position of all other team members.
This requires sophisticated robots that can estimate object
geometry and can track absolute position and orientation of
the object and other robots. This limits the applicability
and scalability of the strategies.

A complementary approach has been pursued by swarm
robotics research, where decentralized transport strategies
have been developed using inspiration from social insects
or through evolutionary computation [1, 5, 6]. These al-
gorithms rely on simple local sensing by individual robots,
with no explicit knowledge of object shape or explicit coor-
dination between robots. An advantage of these methods
is that they rely on simple robot capabilities, and many
have been experimentally tested on platforms such as the
Swarmbots [5]. This research has also pursued interesting
extensions, such as robots forming pulling chains. A disad-
vantage of the decentralized methods is that they have not
been theoretically analyzed, and evaluation is done only in

simulation or through limited robot experiments; in one in-
teresting exception [4], the cooperative behavior is analyzed
but requires a leader-follower strategy. The lack of analy-
sis makes it unclear whether the ant-inspired decentralized
approaches generalize to more complex object geometries or
larger numbers of robots. In general, for both types of prior
research, experimental verification of the transport strategy
has been limited to small numbers of robots (2-6) and simple
object shapes (e.g., circles, squares, “L” shape).

Our work builds on the swarm robotics approach and we
present an analysis of a simple decentralized strategy that
generalizes to complex shapes; furthermore, we present ex-
perimental results with large numbers of robots and complex
objects to show that the method is robust to noise and vari-
ation present in real robots.

3. PHYSICAL MODEL FOR

COLLECTIVE TRANSPORT
The act of collective transport can be broken down into

two phases. In the first phase, independent agents scattered
in the environment seek out the object to be transported,
and move themselves to a location around the object and
grip it. The second phase involves the agents applying forces
to the object to transport it to the goal. In this paper we
explore a model for this second phase of collective transport.
Because the agents are all attached to a single object, this
object forms an implicit means of coordinating the effects
of their actions. As we show in section 4.2, this model also
provides insights that aid in the first phase of transport.

3.1 Physics-Based Model
We model the object to be transported as an arbitrary

connected 2D shape, with N agents applying forces to it
at arbitrary points. The object has mass m, and can slide
across a level planar environment with coefficients of static
and kinetic friction µs, µk respectively. We assume a quasi-
static system, meaning the friction forces dominate inertial
forces. With this assumption, we treat the model as a first-
order system, allowing us to neglect inertial terms.

Each agent i applies a force ~fi to the object in the plane.

We assume each agent can apply ~fi in any direction, inde-
pendent of how or where it is attached. This can be achieved
with an appropriate choice of robotic platform, e.g., using
omnidirectional grippers [5] or holonomic movement [13].

We consider the force applied by each agent ~fi to be depen-
dent on the agent’s velocity ~vi as

~fi = C(Vmax − ~vi · d̂)d̂ , (1)

where Vmax is an agent’s maximum speed, C = f0/Vmax

where f0 is the magnitude of the maximum force an agent
can apply, and d̂ is a unit vector in the direction the agent is
applying force. Intuitively, this means an agent applies its
maximum force f0 to the object when it is stationary, and
can apply no force when moving at its maximum velocity in
the direction d̂. This is a simplified model of force applica-
tion by mobile robots. For this paper we will assume that
f0 and Vmax are identical for all agents, and all agents have
speed in the range 0 ≤ ‖~vi‖ ≤ Vmax .

Using this model, we investigate the following question:
if all agents {1,2,..,N} apply forces in the direction of the
goal, what is the object’s resulting translation and rotation?
We assume the goal is defined and sensed by agents in such
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Figure 2: Example of object with 2 agents (red circles)

applying force in the goal direction. All r vectors origi-

nate at the marked object center-of-mass.

a way that all agent forces are parallel, e.g., agents may
aim for a given compass direction or a distant point source.
First, we show that the object’s center of mass will travel in a
straight line towards the goal and we compute the object’s
steady-state speed when its translational velocity is much
greater than its rotational velocity. Second, we show that
during transport an object’s rotational velocity will become
negligible compared to its translational velocity, with total
rotation no more than 180◦.

3.2 Translation
Multiple forces applied by the agents cause both transla-

tion and rotation of the object. Rigid body dynamics states
that the translation of an object’s center-of-mass due to mul-
tiple forces on the object is the same as if those forces were
all applied at the object center-of-mass. The agent forces in

the direction of the goal are opposed by friction ~ffric , so the
total force on the object is

~Ftot =

N
∑

i=1

~fi − ~ffric . (2)

If we assume the object is not yet moving or it is translating
with negligible rotation, then its velocity is the same at all
points: ~vi for all agents i equals the center-of-mass velocity
~vobj . This allows the following simplification of the force
from all agents

N
∑

i=1

~fi = NC(Vmax − ~vobj · d̂)d̂ . (3)

Because of the quasi-static assumption, if the object is mov-
ing, ~vobj is pointed in the direction of the total agent force

on the object; therefore ~vobj · d̂ = ‖~vobj ‖. This allows us to
rewrite eq. 2 as

N
∑

i=1

~fi = NC(Vmax − ‖~vobj ‖)d̂ . (4)

The condition for the robots to be able to overcome static
friction and move an object initially at rest is

NCVmax > µsmg . (5)

The steady-state velocity ~vss for a moving object is that

at which kinetic friction ~ffric = −µkmgd̂ balances the force
exerted by agents. Setting this equal to the sum of the agent
forces and solving for ‖~vobj‖ gives

‖~vobj ‖ = ‖~vss‖ =
(

Vmax −
µkmg

NC

)

. (6)

Thus the steady-state speed ‖~vss‖ at which N agents can
transport an object approaches the maximum speed of an
unencumbered agent Vmax asymptotically as N increases.

3.3 Rotation
The translation speed calculation above assumes the ob-

ject is translating much faster than rotating, allowing us to
neglect the effects of rotation on an agent’s velocity. Here
we justify that assumption by showing that for any initial
configuration, the object undergoes a maximum rotation of
180◦ in a single direction. As inertial terms are neglected due
to the quasi-static assumption, there will be no overshoot or
oscillation of the object rotation. This stable bounding of
rotation guarantees that rotational speed will ultimately be-
come negligible, justifying the approximation in sec. 3.2.

We define ~rref as a vector from the object’s center of mass
to an arbitrary but fixed reference edge location on the ob-
ject (see fig. 2). This vector ~rref forms an angle θ with the
goal direction. We also define a vector ~ri from the object’s
center-of-mass to the location of each agent i; the angle be-
tween ~rref and ~ri is a constant θi (fig. 2).

The total torque on the object due to agent forces is
∑

i

~τi =
∑

i

(

‖~ri‖‖~fi‖ sin(θ + θi)
)

(−k̂) , (7)

where k̂ is a unit vector pointing out of the plane. If the
object is moving, then agent i’s speed in the direction of the
goal is

~vi · d̂ = (~vobj + ~vr,i) · d̂ = vobj + ~vr,i · d̂ , (8)

where vobj is the object’s center-of-mass speed (as per section
3.2, its direction is toward the goal), and ~vr,i is agent i’s
velocity due purely to object rotation; ~vr,i has magnitude

‖~ri‖θ̇ and angle (θ+θi+π/2), so that ~vr,i · d̂ = ‖~ri‖θ̇ cos(θ+

θi + π/2) = −‖~ri‖θ̇ sin(θ + θi). Therefore the force applied
by each agent is

~fi = C(Vmax − vobj + ‖~ri‖θ̇ sin(θ + θi))d̂ . (9)

From eqs. 7 and 9 the total torque due to the agents is
∑

i

~τi =−
∑

i

(‖~ri‖C(Vmax − vobj + ‖~ri‖θ̇ sin(θ + θi))

· sin(θ + θi))k̂ ,

(10)

which using harmonic addition can be written as
∑

i

~τi = (K1 sin(θ +K2)−K3θ̇)k̂ , (11)

with K3 = C
∑

i
‖~ri‖

2 sin2(θ + θi) and constants

K1 = −C(Vmax − vobj) ·
√

√

√

√

(

∑

i

‖~ri‖ cos θi

)

2

+

(

∑

i

‖~ri‖ sin θi

)

2

(12)

K2 = tan−1

(∑

i
‖~ri‖ sin θi

∑

i
‖~ri‖ cos θi

)

. (13)

From the quasi-static assumption, without inertial terms the
sign of the object’s rotational velocity matches that of the
total agent torque on the object; in particular,

∑

~τi = 0 iff

θ̇ = 0. We can express this as
∑

~τi = θ̇F , where F is a
strictly positive-valued function.
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We can then rewrite eq. 11 as an expression for θ̇:

θ̇ =
K1 sin(θ +K2)

F +K3

. (14)

To characterize the object’s rotation, we are concerned only
with the sign of θ̇ as a function of θ. The denominator of eq.
14 is strictly positive, so θ̇ takes the sign of the numerator.
Friction torque opposes rotation, so it will affect the speed
of rotation but not its sign.

There are two cases to consider:
(A) K1 = 0. In this case

∑

~τi = 0 for any θ; there is no
preferred direction, and no rotation will occur regardless of
the initial angle.

(B) K1 < 0. In this case, there are two equilibrium points

(i.e.,
∑

~τi = θ̇ = 0), where sin(θ + K2) = 0. Around θ =
−K2, rotation acts to oppose small angular displacements
(θ̇(−K2 + ǫ) < 0, θ̇(−K2 − ǫ) > 0 for ǫ > 0); around θ =
π −K2, small initial angular displacements increase.

Thus, eq. 10 has either (A) a neutral equilibrium for all
angles, or (B) one stable equilibrium at θ = −K2 and one
unstable equilibrium at θ = π − K2, with K2 given by eq.
13. In the former case, there is no rotation; in the latter, for
any initial orientation, the object will rotate away from the
unstable equilibrium until it reaches the stable equilibrium,
a rotation of no more than 180◦. This bound implies that
rotation must stop or become negligible.

3.4 Key Properties of the Model
Using our physics-based model for collective transport, we

can make the following claims about the strategy in which
all agents apply force in the goal direction.

1. Transport Success: Given enough agents to over-
come static friction (eq. 5), we can guarantee the ob-
ject will eventually reach the goal following an optimal
straight path, with at most 180◦ of initial rotation.

2. Agnostic: The strategy is agnostic to the object
shape, location of object center-of-mass, attachment
location of agents, and number of agents (assuming
they can overcome static friction). By agnostic, we
mean that the agent’s behavior and transport success
do not change based on any of these factors.

3. Scalability: From eq. 6, we can compute the steady
state transport speed as a function of object mass, µk,
number of agents, and agent parameters C, Vmax . This
allows us to predict how the performance of this strat-
egy scales with the number of agents and the object
mass. In particular, the transport speed for a given ob-
ject will approach the maximum agent velocity Vmax

asymptotically as 1/N where N agents are participat-
ing. Also, for a given µk and agent force model, the
transport steady-state speed is determined solely by
the ratio of object mass to the number of agents, and
does not decline due to conflicts as more agents par-
ticipate.

These properties suggest that simple agents — without
any knowledge of object shape, their attachment point to
the object, or complex inter-agent communication — can be
very effective at collective transport. Furthermore we can
strongly reason about the collective behavior, such as path
and speed traveled, even for complex objects.

However, the model also makes some simplifying assump-
tions that may not be true for real robots. For example, we

assumed all agents are identical, massless, frictionless, and
can apply force instantaneously without error in the desired
direction. Due to sensing and locomotion errors, real robots
may take time to apply force in the goal direction and may
not always apply a force directly towards the goal. Another
simplifying assumption is that all agents know the direction
of the goal at all times. While there are many examples of all
agents knowing the goal location, such as in social insects [2]
or in some robot systems [9], there are also many scenarios
where this may not be true. For example, visual occlusion
of the goal or the use of low-cost short-range sensors may
prevent some robots from directly observing the goal.

In the next section we present a series of robot experi-
ments using real robot hardware to demonstrate that the
key properties of the physical model still hold, even in sys-
tems that do not perfectly match the simplifying assump-
tions made for the model.

4. COLLECTIVE TRANSPORT:

EXPERIMENTAL VALIDATION
In this section we present a series of robot experiments

using two hardware platforms – the open-source, commer-
cially available Kilobot [11] and the open-source r-one [12]
– to both verify and extend the collective transport model.

First, with the Kilobot platform, we demonstrate that the
simple physics-based model is in fact a good predictor of the
second phase of collective transport. The transport success,
agnostic, and scalability properties still hold, even when im-
plemented with noisy and very limited sensing and locomo-
tion. Then, using the more capable r-one platform, we use
a gripper design compatible with the physics-based model,
and demonstrate both the first and second phase of collec-
tive transport. Additionally, the r-one platform allows us
to present an extension where only a few robots can di-
rectly sense the goal location. We show that by an analogy
between heading alignment in flocking and collective trans-
port, the r-ones can achieve the same properties with only
a few informed agents by exploiting inter-agent communi-
cation. Finally, the generality of the approach allows us
to demonstrate some unique collective transport tasks, such
as changing goal location mid-way through transport and
transporting an actively moving or “squirming” object.

4.1 Model Validation
To show that the transport success, agnostic, and scala-

bility properties hold in a real robot system, we used the
Kilobot robot platform (fig. 3). The Kilobot is a low-cost
robot that allows one to easily test collective algorithms with
large numbers of robots. The Kilobot moves on a flat surface
using differential drive with two vibration motors, and has a
sensor to detect local ambient light levels; this allows us to
implement phototaxis (i.e., moving towards a light source).
With only a single light sensor, the implementation of pho-
totaxis on Kilobots requires a slight rotation back and forth
across the direction of travel in order to determine the direc-
tion to the light. This slight side-to-side rotation will cause
the force applied by the robot to not always be perfectly
aligned to the light direction, and on rare occasions sensor
or locomotion noise may cause a robot to apply force in a
completely different direction to the light source, taking tens
of seconds to re-align to the light direction. By marking the
target location with a light source (fig. 3), this phototaxis
behavior allows Kilobot to apply forces in the goal direction.
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Figure 3: (Upper left) A single Kilobot robot, with

motors (A), light sensor (B), and forward direction (C)

marked. (Upper right) A Kilobot robot in an object

gripping ring. (Bottom) Experimental setup showing a

test object with robots (D), the goal light source (E),

and camera tracking system (F).

The objects to be transported are laser-cut from foam core
poster-boards, and elevated to the same height as a Kilo-
bot using metal legs. The object’s center-of-mass path and
orientation are tracked using an overhead camera system.
Since Kilobot does not have any way to grip the object, we
emulate a gripper by creating circular rings along the edge
of the object to be transported, and place the robots within
these rings (see fig. 3). A Kilobot can rotate within this
ring, allowing it to apply forces to the object in any direc-
tion, matching the model.

The first set of Kilobot experiments is designed to eval-
uate the transport success and agnostic properties of the
collective transport model. This means that the object’s
center-of-mass should always move in a straight line to the
goal independent of the object shape, center-of-mass loca-
tion, number of robots, and robot attachment points. Also,
the object should rotate no more than 180◦.

To test this we designed four different experiments that
varied different factors, shown in fig. 4: (A) Shape of objects:
four different object shapes with the same mass, (B) Object
center-of-mass: for a single shape, placing a metal weight
in one of four locations, (C) Robot positions: for a single
shape, using different locations of the six robots, (D) Num-
ber of robots: for a single shape, using 4, 8, or 12 robots. All
objects are approximately 20 cm in size, and were started
in the orientation shown in fig. 4. The objects were then
transported until they reached a goal approximately 80 cm
away. The object’s center-of-mass x,y position and orienta-
tion was recorded ten times a second for every trial. Each
initial condition (4 different shapes, 4 center-of-mass loca-
tions, 4 different starting locations, and 3 different numbers
of robots) was tested three times for a total of 45 trials.

Fig. 5 shows the x,y paths of some representative trans-
port runs. As can be seen, the paths of the objects form
a relatively straight line towards the goal. The divergence
of the paths as they approach the goal is because the light

Figure 4: Objects and starting orientations for exper-

iments. (A) Four test shapes with the same mass. (B)

Same shape with four locations of center-of-mass, us-

ing metal washers to shift center-of-mass. (C) Same

shape with different robot attachment positions. (D)

Same shape moved by increasing numbers of robots. (E)

The order in which robots are added to measure change

of speed vs. number of robots. (F) Objects that keep

weight proportional to number of robots for 32,16,8,4,2

robots. Note: objects without robots shown had robots

in every circular ring.

source marking the goal is a light bulb, not a point light
source, and the spread is approximately the same as the
diameter of the bulb (6 cm). To quantitatively show how
straight the paths are, we computed a straightness-metric
for each path which is distmin/disttraveled where distmin is
the distance between object starting point and object end-
ing point, and disttraveled is the length of the actual path
traveled by the object. The average straightness-metric for
all 45 runs was .997 and the minimum was .987.

For experiment set (B), the objects undergo rotation that
can be predicted from the location of the center of mass and
the locations of the robots relative to the center of mass. Fig.
5 shows with each starting orientation, the object rotates to
approximately the same equilibrium orientation, and does
so by rotating less than 180◦, as predicted by the model.

Another key property of the physical model is the scala-
bility of transport. This property predicts that if all other
factors are kept the same, the steady state speed of trans-
port will asymptotically approach the maximum agent ve-
locity Vmax as more agents participate. To demonstrate this,
we created experiment set (E) where a single object shape
is transported by increasing numbers of robots. The steady
state speed of the object was measured. At least three robots
were needed to overcome static friction for this object. As
fig. 6 shows, the steady state object speed asymptotically
approaches .55 cm/s, which is near the average measured
speed of .58 cm/s for an unencumbered Kilobot moving to-
wards a light source.

The scalability property also predicts that the steady
state object speed vss will stay constant with varying object
masses m and number of robots N , so long as the ratio m/N
is maintained. To demonstrate this, we created a series of
objects that allowed 2,4,8,16,and 32 robots to transport the
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Figure 5: (Left) The recorded path of object transport under varying conditions and objects. Path colors for ex-

periment (A) are red, (B) are green, (C) are black, (D) are blue. The object starts at (0,0) and the goal is on the

right. (Right) The recorded orientation of object transport under varying starting orientations for experiment (B).

Illustrations of three object orientations are shown; the object is a black box and center-of-mass location is the dot.

Figure 6: (Left) Screen captures of an example experiment. (Center) The speed of transport as number of robots

increases if all other factors are kept constant, with 4 experiments per robot number. The blue line shows the least

squares best fit of the form a1 − a2/N where a1 and a2 are constants, the same form as eq. 6. (Right) The speed of

transport as the number of robots increases proportionally to the object mass, with at least 5 experiments per robot

number. The black line shows the average speed for all experiments in this graph. In both graphs, the result from

each experiment is marked with a blue circle, and the average for each N is marked in red.

object while keeping the mass/robot constant (experiment
F in fig. 4). The object was constructed so that its mass
maintained a ratio of 2.2 grams per robot. Fig. 6 shows that
each of these objects is transported at approximately the
same steady state speed, further verifying the scalability of
the transport model.

4.2 Attachment and Transport
For the second part of the experimental validation, we use

a more capable robot platform, the r-one (fig. 7), which is
a fully autonomous open-source robot platform [12]. The
r-one can move on the floor using wheeled differential drive,
detect the direction of a light source using four light sen-
sors, and determine if it has collided with objects in the
environment using a bump sensor. The r-one also has an
infra-red (IR) communication system that can detect head-
ing difference between itself and neighbors, allowing each
robot to determine the relative orientation between itself
and its neighbors. We use an overhead camera system with
AprilTag fiducial markers [14] placed on each robot and the
object to automatically log robot and object position and
orientation during experiments. For object transport, we
designed an omni-directional gripper (fig. 7) inspired by the

SwarmBot gripper design [6]. This gripper surrounds the
r-one, and has a bearing-like design that allows the gripper
to freely rotate around the robot. The gripper can attach
to the object using a gendered Velcro lining. The object to
be transported is a flat piece of wood with Velcro along its
perimeter. As the r-one can freely rotate within the gripper
to apply forces in any direction, it is compatible with the
physical model.

This r-one platform allows us to evaluate both phases of
collective transport, where the individual robots approach
and grip (phase one) and then transport the object to the
goal (phase two) using the same decentralized strategy as
before. The individual robots use a simple finite state au-
tomaton program to switch between two states: finding and
attaching to the object, and moving towards the goal marked
by the light source. In the starting state, each robot spirals
outward from its starting location until it bumps the object
and attaches to it. Once attached, the robot detects the
direction of the light source using its four light sensors, and
maintains its heading towards the light source while mov-
ing forward, thus applying a force on the object in the goal
direction.
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Note that the robot does not plan or control exactly where
it attaches along the object perimeter; however, we know
from the model in section 3 that robot positions should not
affect transport success. Also note that the robots are not
synchronized, so they may attach and start attempting to
move the object towards the goal at different times.

Fig. 8 shows an experimental run of the full transport al-
gorithm, showing the paths of the three robots before and
after attachment as well as the path of the object center-of-
mass. Five such tests were run, where three robots transport
a triangular-shaped object (side length 30 cm and weight
650 grams) a distance of approximately 2 meters starting
from a detached state. For the five tests, the paths of the
object center-of-mass are shown in fig. 8 and the average
straightness-metric was .934. The results suggest that the
r-one second phase transport behavior closely matches the
Kilobots, as expected by the model. The straightness-metric
value is lower with the r-one than with Kilobots, because the
r-one uses multiple uncalibrated light sensors to determine
the direction to the goal, and variances between these sen-
sors result in larger errors in moving towards a light source.

4.3 Consensus-Based Collective Transport
In many scenarios, not all agents may be capable of de-

tecting the goal location, e.g., due to visual occlusion of the
goal by the object, or due to only some robots having GPS
capabilities. A fundamental assumption behind the decen-
tralized strategy presented so far is that all agents align their
forces by orienting their motion towards the common goal di-
rection. This reliance on alignment of forces and movement
allows us to make an analogy between collective transport
and another well-known collective behavior: flocking[15, 16].
In flocking, agents observe the headings of their neighbors
and use that to modify their own heading; this iterative pro-
cess results in the whole group provably achieving consensus
and aligning their heading even in the absence of a target
destination. Couzin et al. [15] demonstrated an extension
of this process where a few informed individuals, who know
the goal location, can influence the whole flock to align in
the desired direction.

Using this flocking consensus behavior, we can extend the
basic decentralized strategy from section 3 to the scenario
where only a few agents observe the goal, if all agents are al-
lowed to communicate relative heading with their neighbors.
This strategy was first introduced and explored experimen-
tally in [7] using 4 Swarmbots and circular objects; our main
contribution is the theoretical guarantee that the approach
will work correctly for more complex shapes and scenarios.
We tested this strategy using the r-one robots, that can com-
municate heading and implement flocking motion [12].

Figure 7: (Left) Picture of an r-one with an omnidirec-

tional velcro gripper (A), light sensors (B), AprilTag (C)

and IR communication sensors (D). (Right) Picture of 4

robots pushing the object to a light source.

Figure 8: (Upper left) The paths of three robots (red

during phase 1 and green during phase 2) and object

(black). (Lower left) The path of object center-of-mass

over five trials. (Right) Image of robots in starting posi-

tion, after attachment, and after transport. For all cases,

the goal is on the right.

Algorithmically, each robot uses one of two behaviors. A
robot that can see the goal uses the strategy from section
4.2, which is to align towards the goal while moving forward.
A robot that cannot see the goal uses its IR sensors to deter-
mine the heading difference between itself and its neighbors.
It rotates in order to minimize its total heading or consen-
sus error between itself and all its N neighbors, including
neighbors that can see the goal. Consensus error is defined

as
N
∑

i=1

‖θi‖, where θi is the heading difference between a

robot and its neighbor i, and −π ≤ θi ≤ π. As shown in [15,
16], if the robots form a connected network and at least one
can see the goal, this results in the robots achieving head-
ing consensus in the direction of the goal. If the robots also
move forward as they adjust their heading, then once head-
ing consensus is reached, all robots will be applying forces
towards the goal, matching the model in section 3.

To test this consensus-based collective transport, we ran
five trials where four r-ones were attached to the object in
random orientations and positions and only one of the robots
was allowed to sense the light direction. For these five tri-
als, the object was successfully transported to the goal, and
the path of the object had an average straightness-metric of
.921 which is similar to the case where all robots can sense
the goal. Since robots are aligning and transporting at the
same time, not all robots will be applying force to the ob-
ject in the correct direction. We expect that transport speed
should be higher when more robots are aligned. Fig. 9 shows
how the average consensus error relates to overall transport
speed. As expected, the scatterplot shows an obvious in-
verse relationship between object speed and consensus error
over the five runs. The second plot shows the speed and
error over time for a single experiment, including the initial
startup phase when robots are not yet aligned as well as a
manual disturbance phase where the robots were purpose-
fully rotated to break alignment consensus. In both cases,
we see that high alignment error results in low speed, due to
many opposing forces on the object, but that as the head-
ings align, the robots are able to successfully recover and
transport the object.

4.4 Complex Transport Tasks
As the described method for collective transport can suc-

ceed under a wide range of conditions, it allows for demon-
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Figure 9: (Left) The average consensus error and object

speed during a test of consensus-based transport during

startup and during a manual disturbance (at time=18 s)

to robot headings. (Right) A scatterplot of object speed

vs. average consensus error for 1/10th of a second inter-

vals during 5 tests of consensus-based transport.

Figure 10: The path of an object during four experi-

ments where the goals changes mid-experiment. Object

starts on left, moves towards first goal to the right, then

goal moves to lower left.

strations that are unique to this method. For example,
the simplicity and scalability of this method allowed for a
demonstration of 100 Kilobots transporting an object (fig.
1). Since this method for transport is agnostic to object
shape, it can even transport an object whose shape is slowly
changing or an actively moving shape. In nature, ants have
been observed carrying wiggling worms, but this has never
been shown in artificial systems. To demonstrate this, an ex-
periment was designed where Kilobots transported a shape
that had an actively articulated joint, which caused the ob-
ject to “squirm” while it was transported, see fig. 1. Addi-
tionally, as the algorithm is memoryless, it can allow chang-
ing or moving goal location. Fig. 10 shows the path of
transport during an experiment where the goal location is
changed mid-experiment.

5. CONCLUSION
In this paper, we investigate a simple decentralized

method for collective transport and present both theory and
experiments to evaluate this method. Using a physics-based
model, we are able to show that, given enough agents to
overcome static friction, the method is guaranteed to move
the object in an optimal straight-line path to the goal with
no more than 180◦ of rotation. Additionally, this method
does not require agents to know object shape, center-of-
mass, precise attachment points, or number of other agents.
This method allows for agents with limited capabilities to
complete complex transport tasks, provided an agent can
determine goal direction. We also show how simple inter-
agent communication of heading, similar to flocking, can al-
low agents to collectively transport objects even when some
or most lack knowledge of goal location.

For future work, this physical model may be useful for
analyzing other collective transport strategies, for example
strategies where robots can only apply forces in a limited
direction (e.g., only push) and therefore may need to detach
and reattach in different locations to move the object [1].
Another area of future research is to compare our model to
transport by ants, such as Pheidologeton diversus [2], where
ants appear to apply force in the nest direction by surround-
ing the object such that ants in front are walking backwards
and pulling, ants in the back push, and ants on the sides
shuffle sideways [2]. By designing specific objects and sce-
narios [3], it may be possible to compare the behavior of ant
transport with the results from our models and experiments.
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