
Emergence of Social Norms through Collective Learning in
Networked Agent Societies

Chao Yu, Minjie Zhang and Fenghui Ren
School of Computer Science and Software

Engineering
University of Wollongong

Wollongong, NSW, 2522, Australia
cy496@uowmail.edu.au,
{minjie,fren}@uow.edu.au

Xudong Luo
Institute of Logic and Cognition

Sun Yat-sen University
Guangzhou, Guangdong, 510275, China

luoxd3@mail.sysu.edu.cn

ABSTRACT
Social norms play a pivotal role in sustaining social order by
regulating individual behaviors in a society. In normative
multiagent systems, social norms have been used as an ef-
ficient mechanism to govern virtual agent societies towards
cooperation and coordination. In this paper, we study the
emergence of social norms via learning from repeated lo-
cal interactions in networked agent societies. We propose
a collective learning framework, which imitates the opinion
aggregation process in human decision making, to study the
impact of agent local collective behaviors on norm emer-
gence in different situations. In the framework, each agent
interacts repeatedly with all of its neighbors. At each step,
an agent first takes a best-response action towards each of
its neighbors and then combines all of these actions into
a final action using ensemble learning methods. We con-
duct extensive experiments to evaluate the framework with
respect to different network topologies, learning strategies,
numbers of actions, and so on. Experimental results reveal
some significant insights into norm emergence in networked
agent societies achieved through local collective behaviors.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; I.2.6 [Artificial Intelligence]:
Learning; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Sociology

General Terms
Experimentation, Design

Keywords
Norm Emergence, Multiagent Learning, Collective Decision
Making, Social Networks

1. INTRODUCTION
Social norms, such as driving on a particular side of the

road, tipping in restaurants and not littering in parks, are

ubiquitous in our daily life, and play a pivotal role in regu-
lating and guiding individual behaviors in human societies.
Conformity to norms can reduce social conflicts, mitigate
cognitive load on humans and thus sustain social order in the
whole society [21]. In recent years, researchers from norma-
tive Multiagent Systems (MASs) have used social norms as
an efficient mechanism to regulate agent behaviors in virtual
societies such as electronic institutions [6], agent-supported
virtual enterprizes [7] and norm-governed Ad-hoc networks
[1]. Due to the expense and inefficiency of having a central-
ized policing enforcer to formulate and specify social norms
in a prescriptive manner, it is more desirable to enable social
norms to evolve and emerge on their own without relying on
any centralized authority. Understanding what mechanisms
can contribute to the emergence of social norms is of great
interest in the research of normative MASs [9, 21, 25].
Learning is a robust mechanism to facilitate the emer-

gence of social norms in a bottom-up manner for distributed
agents [19]. Some researchers have thus focused on equip-
ping agents with a learning capability to establish a norm for
an agent society. For example, Sen et al. [21, 14] proposed a
framework for the emergence of norms through social learn-
ing based on private local interactions; and Savarimuthu et
al. [18] discussed three aspects of active learning of norm
emergence in agent societies. All these investigations han-
dled the issue of norms in the context of an unstructured
agent society and showed that a random learning by agents
can be efficient for the emergence of robust social norms
without relying on a centralized authority.
In the real world, however, people often interact with each

other under some physical constraints. In other words, who
meets whom is not random, but is determined by some spa-
tial relationship or social network [15]. Actually, social net-
work provides the topology and the infrastructure through
which social norms can be exchanged and influenced, and
thus are fundamental in determining the process of norm
emergence. For this reason, a number of researchers have
studied norm emergence by considering the underlying net-
work topology of the agents. For example, Sen et al. [20]
studied how varying topologies of social networks would af-
fect norm emergence in scale-free, fully-connected and ring
networks; Villatoro et al. [25, 26] investigated the effects
of the memory of past activities during learning on norm
emergence in different network structures, and used two so-
cial instruments (i.e., rewiring and observation) to facilitate
norm emergence in networked agent societies.
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All these studies, however, are based on a simple interac-
tion protocol: each agent must be paired for interaction with
one of its neighbors, randomly or preferentially, so that this
agent can directly learn from the interaction. This interac-
tion protocol simplifies real-life situations when individuals
can collectively make a decision from multiple alternatives
before them. This collective decision making is inherent in
human nature because people often seek several opinions
before making a final decision [16]. To reach a group con-
sensus, people often interact with others at the same time
and learn simultaneously from all these interactions. It is
not clear, however, if in this collective decision making con-
text, a norm will still emerge successfully, and what impacts
this collective decision making will have on norm emergence
under different conditions (e.g., different network topologies
or heterogeneity of agents).
To answer these questions, this paper proposes a collective

learning framework to study the emergence of social norms
in networked agent societies. In this framework, norms
evolve as agents learn over repeated interactions with their
neighbors using multiagent reinforcement learning algorithms
[23]. Each interaction is framed as a stage game, which has
multiple equilibria. These multiple equilibria make coor-
dination between agents uncertain. At each time step, an
agent chooses a best-response action for each of its neighbors
and aggregates all of these actions into an overall action us-
ing a number of ensemble techniques. The agent then plays
the aggregated action with all its neighbors and receives a
corresponding reward towards each neighbor. Finally, the
learning information regarding each neighbor will be up-
dated using the reward. The agent cannot observe its neigh-
bors’ payoffs but it can observe the neighbors’ current ac-
tions (perfect but incomplete information). This makes our
work differ from most existing work on norm emergence in
the framework of evolutionary game theory [12, 24], in which
each agent can observe its neighbors’ payoffs so that the
population can evolve according to specific strategies (e.g.,
Imitate-Best-Neighbor). We investigate a number of key
issues such as neighborhood and population size, agent cog-
nitive deficiency and learning strategy, and their influences
on norm emergence under the collective learning framework.
The remainder of the paper is organized as follows. Sec-

tion 2 describes the collective learning framework in net-
worked agent societies. Section 3 presents the detailed en-
semble learning methods. Section 4 shows the experimental
studies. Section 5 discusses related work. Finally, Section 6
concludes the paper with some directions for future research.

2. COLLECTIVE LEARNING FRAMEWORK
Before introducing the proposed learning framework, we

first give formal descriptions of a networked agent society
and an agent’s interacting neighbors.

Definition 1. A networked agent society can be rep-
resented as an undirected graph 𝐺 = (𝑉,𝐸), where 𝑉 =
{𝑣1, ..., 𝑣𝑛} is a set of vertices (agents), and 𝐸 ⊆ 𝑉 ×𝑉 rep-
resents a set of edges, each of which connects two interacting
vertices (agents).

Definition 2. Given a networked agent society (𝑉,𝐸), the
neighbors of agent 𝑖, which are denoted as 𝑁(𝑖), are a set
of agents so that 𝑁(𝑖) = {𝑣𝑗 ∣ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸}, and 𝑁(𝑖) ⊂ 𝑉 .

This paper focuses primarily on the following three types
of topologies to represent a networked agent society.
(1) Grid networks. A grid network is a two-dimensional

lattice with four neighbors for each inner node, three neigh-
bors for each boundary node and two neighbors for each cor-
ner node. In reality, parallel computing clusters and multi-
core processors are usually organized as a grid network. We
use 𝐺𝑅𝑁 to denote a grid network, where 𝑁 stands for the
number of nodes.
(2) Small-world networks. This kind of network is pro-

posed to represent the small-world phenomenon in many
social and computer networks, where each node has only a
small number of neighbors and yet can reach any other node
in a small number of hops. Small-world networks feature a
high clustering coefficient and a short average path length.
This kind of networks appears in many real-world social net-
works such as the collaboration networks of film actors and
the friendship networks of students [3]. We use 𝑆𝑊 𝑘,𝜌

𝑁 to
denote a small-world network, where 𝑘 is the average neigh-
borhood size of a node and 𝜌 is the re-wiring probability to
indicate the different orders of network randomness.
(3) Scale-free networks. This kind of network is char-

acterized by the power law of degree distribution of nodes,
which means that a few “rich” nodes have high connectivity
degrees, while the remaining nodes have low connectivity de-
grees. The probability that a node has 𝑘 neighbors is roughly
proportional to 𝑘−𝛾 . Examples of scale-free networks in the
real-world include the network of citations of scientific pa-
pers [17] and links between web pages on the World Wide
Web [3]. These real networks exhibit the feature of “prefer-
ential attachment”, which means that the likelihood of con-
necting to a node depends on the connectivity degree of this
node. We use 𝑆𝐹 𝑘,𝛾

𝑁 to denote a scale-free network.

Algorithm 1: The collective learning framework

Initialize network and learning parameters;1

for each step t (t=1,...,T) do2

for each agent 𝑖 (i=1,...,n) do3

for each neighbor 𝑗 ∈ 𝑁(𝑖) of agent 𝑖 do4

Agent 𝑖 chooses a best-response action 𝑎𝑖→𝑗5

regarding agent 𝑗 using a learning policy
with exploration;

Agent 𝑖 combines all the actions 𝑎𝑖→𝑗 into6

action 𝑎𝑖 using ensemble methods;
Agent 𝑖 plays action 𝑎𝑖 with all neighbors and7

receives reward 𝑟𝑗𝑖 for each interaction;
Agent 𝑖 updates learning information towards8

each neighbor using action-reward pair (𝑎𝑖, 𝑟
𝑗
𝑖 );

The sketch of our collective learning framework is given
by Algorithm 1. All agents in the society interact repeatedly
and simultaneously with all their neighbors. An agent is not
assumed to know its neighbors’ payoff. The only available
information is the immediate reward from the environment
after each interaction and each neighbor’s played action. At
each time step, an agent chooses a best-response action for
each neighbor. The actions for all the neighbors are then
aggregated to an overall action using a number of ensemble
methods (which will be described in detail in Section 3).
The agent then plays the aggregated action with all of its
neighbors and receives a corresponding reward. Finally, the
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learning information for each neighbor will be updated by
using the aggregated action and the corresponding reward.
Our collective learning framework is significantly different

from the pairwise learning framework that has been adopted
in most previous studies [20, 25, 26]. In the pairwise learn-
ing framework, at each time step, each agent is randomly
paired with one of its neighbors for interaction and the agent
directly learns from this interaction either through a best re-
sponse rule [20] or a memory-based rule [26]. Our collective
learning framework, however, imitates the opinion aggrega-
tion process in human decision making because people usu-
ally seek several opinions before making a final decision [16].
As the final decision of an agent is affected by all its neigh-
bors, this collective learning can have a significant influence
on the emergence of social norms in the whole society in
different conditions (e.g., different network topologies, en-
semble methods or heterogeneities of agents).
To ensure an optimal policy, exploration is required in

the learning process. In Algorithm 1, the exploration pro-
cess is conducted during an agent’s local interactions with
each of its neighbors. This means that the agent conducts
exploration for each neighbor before combining all the ac-
tions together into a final deterministic action. We call this
kind of exploration local exploration. The exploration pro-
cess can also be conducted globally, which means that the
agent determines the greedy action according to the learning
information for each of its neighbors and then aggregates all
these actions into an overall action. Exploration is then con-
ducted when the agent chooses a final action based on the
aggregated overall action. We call this kind of exploration
global exploration. In this paper, we adopt the 𝜀-greedy pol-
icy as the basic exploration policy.

3. ENSEMBLE METHODS IN AGENT
LEARNING

The basic idea behind ensemble methods is to weigh sev-
eral individual classifiers first and then combine them in or-
der to make a final decision that will be better than the
one made by each of them separately [16]. Although en-
semble methods are used with the same aim of increasing
learning speed and improving final performance, they have
been employed in different forms in a reinforcement learn-
ing setting. The different ways in which ensemble learning is
used lies in the different ways of defining the action choices.
For example, the action choices can be defined as differ-
ent learning algorithms [29], diversified function approxima-
tions in terms of neural network topologies and weights [8],
or state-value functions [11]. In our framework, however,
the actions that need to be aggregated are the focal agent’s
best-response actions for each of its neighbors in every in-
teraction. The agent needs to combine all these actions to
make a final decision by considering each neighbor’s position
(e.g., degree of connectivity) as well as the neighbor’s perfor-
mance in past interactions. The ensemble learning imitates
the human collective decision making process in that people
usually consult with many others before they make a final
decision. They consider not only these people’s individual
characteristics, such as intelligence and knowledge, but also
their reputation, their position and power in the society.
Formally, let 𝑎∗𝑡,𝑗 be the best-response action regarding

neighbor 𝑗 at time 𝑡 and let 𝑎𝑡 be the aggregated final action.
We enumerate the set of possible actions for each agent as

𝐴 = {𝑎[1], ..., 𝑎[𝑚]}, where 𝑚 is the number of actions avail-
able. The selection of this final action is then denoted as
𝜋𝑡(𝑎[𝑖]), 𝑎[𝑖] ∈ 𝐴. The value of 𝑝𝑡(𝑎[𝑖]) represents the focal
agent’s preference for the action 𝑎[𝑖]. The final action 𝑎𝑡 can
then be determined by:

𝜋𝑡(𝑎[𝑖]) =

{
1 if 𝑎[𝑖] = argmax

𝑎
𝑝𝑡(𝑎),

0 otherwise.
(1)

The calculation of 𝑝𝑡(𝑎[𝑖]) uses the following methods:
(1) Majority voting. The preference values are calcu-

lated by the majority voting ensemble method as follows:

𝑝𝑡(𝑎[𝑖]) =
𝑛∑

𝑗=1

𝐼(𝑎[𝑖], 𝑎∗𝑡,𝑗) (2)

where 𝑛 is the number of neighbors and 𝐼(𝑎[𝑖], 𝑎∗𝑡,𝑗) is an
indicator function defined by:

𝐼(𝑎[𝑖], 𝑎∗𝑡,𝑗) =
{
1 if 𝑎[𝑖] = 𝑎∗𝑡,𝑗 ,
0 otherwise.

(3)

The most preferred action is simply the one that is sug-
gested by most of the neighbors. The principle of this method
reflects the fact that people are social beings and can be
influenced by each other so that people are more prone
to accept the opinion or strategy that is adopted by the
most/majority of their neighbors.
(2)Weighted voting. The majority voting method sim-

ply counts the number of each action as the preference for
corresponding action. However, each agent in the network
can occupy different positions and thus can play a different
role in shaping the norms of the whole society. For exam-
ple, in scale-free networks, the power law distribution of the
degree of connectivity of the nodes means that a few “rich”
nodes can have high degrees of connectivity. The decisions
of these powerful nodes are pivotal in the society. Thus, it
is necessary to consider the “social ranks” of different agents
in the calculation of the preference for each action. Assume
that the decision from learner (neighbor) 𝑗 is weighed by
weight 𝑤𝑡,𝑗 . The weighted voting method can be given by:

𝑝𝑡(𝑎[𝑖]) =
𝑛∑

𝑗=1

𝑤𝑡,𝑗𝐼(𝑎[𝑖], 𝑎
∗
𝑡,𝑗) (4)

Several different ways can be used to determine weights
𝑤𝑡,𝑗 . Here, we propose two approaches as follows:

∙ Structure-based approach. This approach consid-
ers the different structural position of each agent in
the network. A straightforward way of defining the
structure-based weight of each agent is to use the agent’s
degree of connectivity. Therefore, the weight 𝑤𝑡,𝑗 of
neighbor 𝑗 can be calculated as follows:

𝑤𝑡,𝑗 =
𝑁𝑛𝑒𝑖,𝑗

𝑛∑
𝑖

𝑁𝑛𝑒𝑖,𝑖

(5)

where 𝑁𝑛𝑒𝑖,𝑗 is the connectivity degree of agent 𝑗 and
𝑛 is the number of neighbors of the focal agent.

∙ Performance-based approach. This approach de-
termines each neighbor’s weight according to past in-
teraction experience between this neighbor and the fo-
cal agent. If a neighbor’s action is always consistent

477



with the agent’s own action, the agent will then con-
sider the neighbor to be more trustworthy and accord-
ingly assign a higher weight to this neighbor. This is
driven by the fact that in the real world a person who
has a higher reputation will have a greater influence
on biasing the opinions in a society. So, we have:

𝑤𝑡,𝑗 = 𝑤𝑡−1,𝑗 + 𝛽(𝑠− 𝑤𝑡−1,𝑗) (6)

where 𝑤0,𝑗 =
1

𝑁𝑛𝑒𝑖,𝑗
(𝑁𝑛𝑒𝑖,𝑗 is the number of neighbors

of agent j); 𝛽 is a learning rate to adjust the weight;
and 𝑠 = 1 if interaction at time 𝑡 − 1 is successful,
otherwise 𝑠 = 0.

4. EXPERIMENTAL STUDIES
This section presents the experimental studies. First, we

give the basic settings of the experiments. We then present
the results and analysis by evaluating the proposed frame-
work in a number of different settings.

4.1 Experimental Setting
The learning framework for norm emergence is proposed

to study how agents can learn to establish a social conven-
tion/law in a networked agent society via local collective
decision making. A social convention/law (i.e., a restriction
on the set of actions available to agents) is said to have been
established when all (or at least the majority of) agents in
the society have complied with the same action [22]. In
this study, we use learning “rules of the road” [21, 30] as a
metaphor to study the emergence of norms. In this scenario,
agents strive to establish a convention/law of driving either
on the left (L) side or on the right (R) side of the road. This
interaction can be viewed as a pure coordination game [30]
with the payoff matrix as displayed in Table 1.

Table 1: Payoff matrix of the Coordination Game
Left (L) Right (R)

Left (L) 1,1 -1,-1
Right (R) -1,-1 1,1

Although its payoff matrix appears simple, the coordina-
tion game poses a very challenging puzzle for human beings
to solve efficiently. The game has two pure Nash-equilibria:
both agents drive left or both agents drive right. Classical
game theory, however, does not give a coherent account of
how people would play a game like this. The problem is that
there is nothing in the structure of the game itself that al-
lows the players (even purely rational players) to infer what
they ought to do. In reality, people can play such games
because they can rely on some contextual cues to agree on
a particular equilibrium [30]. One such contextual cue is so-
cial norms (i.e., conventions and laws) that can be used to
guide agent behavior when moral or rational reasoning does
not provide clear guidance because of the myopic behavior
and the limited processing ability of individuals [5].
The purpose of this experiment is to study the emergence

of social norms in different agent societies (e.g., with differ-
ent topologies, agent learning strategies or population sizes)
by using the proposed collective learning framework. The
performance metrics are the convergence ratio of the social
norms (i.e., how many agents in the society can reach a final
consensus after a period of interaction) and the time needed
to reach such a consensus (i.e., how quickly a social norm
emerges). A social norm is said to be established when at

least 90% of the agents have adopted the same action. We
let 𝑇%90 denote the convergence time when such a norm
emerges. We use the Watts-Strogatz model [28] to generate
a small-world network, and use the Barabasi-Albert model
[3] to generate a scale-free network. We start with 5 agents
and add a new agent with 1 edge to the network at every
time step. This network evolves into a scale-free network fol-
lowing a power law with an exponent 𝛾 = 3. In this study,
unless stated otherwise, we use the small-world network as
the default network topology due to the variety of this kind
of network, Q-learning as the learning strategy with learn-
ing rate of 0.1, local exploration as the exploration mode
and majority voting as the ensemble method.

4.2 Results and Analysis

4.2.1 Convergence of social norms
Some previous studies (e.g., [14, 21]) have shown that a

social norm can always emerge when each agent learns ran-
domly from another agent in the population. Other studies
(e.g., [15, 20, 25, 26]), which consider a networked inter-
action topology of the agents, have demonstrated that a
robust social norm can also evolve successfully when each
agent plays in pairs with a random neighbor. It is not clear,
however, whether a social norm can successfully emerge in
the whole society under the collective learning framework.
If a social norm does emerge, what is the ratio of such an
emergence? Can the social norm emerge more quickly when
using collective learning than when using pairwise learning?
To answer these questions, we first test the proposed frame-
work in small-world network 𝑆𝑊 12,0.8

100 and compare it with
the pairwise learning framework to demonstrate the merits
of our collective learning framework. We ran 1000 indepen-
dent runs and the overall results are shown in Table 2.

Table 2: The norm emergence during 1000 runs in
a small-world network with 100 agents

Norm(L) Norm(R) Success(%) Reward Speed(𝑇%90)
Pairwise learning 506 494 100 0.80 33
Collective learning-l 493 507 100 0.99 7
Collective learning-g 522 478 100 0.80 10

Table 2 shows the frequency and success ratio of converg-
ing to a social norm, the final average agent reward for the
society and the time steps needed to evolve a norm. From
Table 2, we can see that a social norm can emerge under the
three different frameworks (with 100% probability) and that
agents converge to norm (Left) and norm (Right) with an al-
most equal probability. This makes sense because the game
structure itself does not give any preference for any partic-
ular action to be the norm. The norm to which the whole
population of agents converges depends on which norm is
detected by the agents at first glance during the dynam-
ics of agent interaction. The average reward in the society
using collective learning with local exploration (which is de-
noted as collective learning-l) is almost 1, which means that
nearly all the agents have reached a consensus on which
action should be the norm. The rewards using collective
learning with global exploration (which is denoted as collec-
tive learning-g) and pairwise learning are much lower than
that using collective learning with local exploration because
agents are exploring the environment with a probability of
𝜀 = 0.1. However, as agents using collective learning-l ex-
plore the environment locally and make a final decision col-
lectively, the uncertainties caused by the exploration de-
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crease. The time steps needed for 90% of the agents to
choose the same action as a social norm under three learn-
ing frameworks differ dramatically. The collective learning
framework is able to evolve a norm much faster than the
pairwise learning. This faster emergence of norms indicates
the merits of collective learning against pairwise learning.
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Figure 1: Emergence of social norms in 𝑆𝑊 12,0.8
100 (Re-

sults are averaged over 1000 independent runs).

Figure 1 (a) shows the dynamics of the average reward of
the whole population. Figure 1 (b) shows the frequency of
each action adopted by the agents when norm (L,L) emerges
in the population. Initially, each agent randomly chooses an
action, so there are about 50% of the agents choosing ac-
tion L and the other 50% choosing action R. This results
in the average payoff of 0 in the whole population. As the
learning process moves on, however, the number of agents
who choose action L as the norm increases. This means that
more and more agents have reached a consensus on which
action should be the norm, and this consensus correspond-
ingly increases the average payoff dramatically. From Fig-
ure 1, we can also see that the norm emerges faster under
the collective learning framework than under the pairwise
learning framework. This is because agents using collective
learning can learn directly from all of their neighbors at the
same time to decrease the diversity among the agents. These
results confirm that our collective leaning framework is an
efficient mechanism for the emergence of social norms.

4.2.2 Influence of agents’ cognitive deficiencies
To better understand the advantages of the collective learn-

ing framework over the pairwise learning one, we test both
frameworks in heterogeneous societies where the agents have
varying cognitive capabilities by receiving feedbacks from
the environment with different levels of uncertainty. Each
agent has a probability of 𝑝𝑐 to receive a transformed payoff,
which is 𝑟 ± 𝜎2 (𝑟 = ±1 is the original payoff). The prob-
ability of 𝑝𝑐 and the variant of payoff value 𝜎

2 indicate the
different cognitive capabilities of the agents. We set 𝑝𝑐 to 0.2
and choose 𝜎2 from the set of {1, 3, 4, 5} in this study. Figure
2 shows the dynamics of the action frequency in 𝑆𝑊 12,0.8

100

with different cognitive deficiency 𝜎2. From the results, we
can see that a society in the collective learning framework is
able to maintain a high level of convergence ratio and quick
convergence speed, whereas a society in the pairwise learning
framework is only able to achieve a low level of convergence
ratio and slow convergence speed. In both cases, as the cog-
nitive deficiency 𝜎2 increases, the convergence speed slows
down. This is because it is more difficult for the agents in
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Figure 2: Dynamics of the action frequency with
different cognitive deficiencies.

societies with larger values of 𝜎2 to distinguish the effects
of their actions on the environment, and these uncertainties
can hinder the agents from reaching consensuses. However,
the difference in the convergence speed using collective learn-
ing is not as significant as that using pairwise learning. This
indicates that the collective learning framework can mitigate
the uncertainties caused by the agents’ cognitive deficiency,
and is more efficient and robust for norm emergence com-
pared with the pairwise learning framework.

4.2.3 Influence of agent learning strategies
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Figure 3: Dynamics of the average reward when us-
ing different learning strategies.

We are also interested in whether the proposed framework
is robust enough for different learning strategies adopted
by the agents. Thus, we use three basic learning strategies
for agent interaction: Q-Learning [27] with 𝜀-greedy explo-
ration, WoLF-PHC (Win or Learn Fast-policy hill climb-
ing) [4] and Fictitious Play (FP) [10]. Q-learning has been
widely used in MASs, but converges only to pure strategies.
The learning rate 𝛼 is set to 0.1 in this study. WoLF-PHC
can learn mixed strategies and is guaranteed to converge to
a Nash equilibrium in a 2-person, 2-action game against a
given opponent. However, it is not clear whether it is guar-
anteed to converge in the collective learning framework. The
learning rate 𝛼𝑤 is set to be 0.04 when the agent is winning
and the learning rate 𝛼𝑙 is set to be 0.01 when the agent is
losing. Finally, an FP player uses the historical frequency
count of its opponent’s past actions and tries to maximize
the expected payoff by playing a best response to that mixed
strategy, represented by this frequency distribution. The
learning rate is set to be 0.1 for an FP player. We test the
three different learning strategies in a homogeneous and a
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heterogeneous society of 100 agents. In the homogeneous
society, all the agents use the same learning strategy when
interacting with their neighbors, while in the heterogeneous
society, agents are equally divided according to the strate-
gies they adopt. This heterogeneity of society models the
real-life situations, in which people have different learning
capabilities in the same circumstance.
Figure 3 shows the dynamics of the average reward in the

society using the three learning strategies. As we can see,
societies in the collective learning framework can evolve a
social norm using all three learning strategies. The quickest
one is using Q-learning, followed by WoLF-PHC and Ficti-
tious play. Norms evolve very slowly using Fictitious play
because agents need a great deal of time to estimate the
frequency distribution of neighbors’ past actions. The time
in the heterogeneous society to evolve a norm falls between
the time taken by the corresponding homogeneous societies.
These results are consistent with the previous study [21], in
which agents learn randomly in an unstructured population.

4.2.4 Influence of population size, number of neigh-
bors and actions
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Figure 4: Dynamics of the average payoff with dif-
ferent numbers of agents.

The population size of the society and the number of
neighbors are important factors that can influence the emer-
gence of social norms [21, 26]. To show the effects of these
two factors on norm emergence under the collective learn-
ing framework, we vary the agent number 𝑁 in 𝑆𝑊 12,0.8

𝑁

in [50, 1000], and the number of neighbors 𝑘 in the set of

{4, 6, 8, 12, 20} in 𝑆𝑊 𝑘,0.8
100 . The dynamics of average agent

reward with different agent populations is shown in Figure
4, from which we can see that the more agents in the society,
the longer it takes for the entire society to converge to a so-
cial norm. This result occurs because the larger the society,
the more difficult to diffuse the effect of local learning to the
whole society. This phenomenon can be seen in human soci-
eties where small groups and clans can more easily establish
social norms than those larger societies, as argued in [21].
Figure 5 shows the dynamics of average agent reward with

different neighborhood size 𝑘, from which we can see that
when the average number of neighbors is increased, the con-
vergence time is steadily reduced. This effect is due to
the clustering coefficient of the network. When the average
number of neighbors increases, the number of links between
agents also increases, and therefore agents located in dif-
ferent parts of the network only need a smaller number of
interactions to reach a consensus.

It has been shown that the number of actions available
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Figure 5: Dynamics of the average reward with dif-
ferent numbers of neighbors.
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Figure 6: Dynamics of the average reward with dif-
ferent numbers of actions.

to the agents is an important factor in norm emergence
[21, 20]. Thus, we vary the number of actions in the set
𝑁𝑎 = {2, 4, 6, 10, 20} to investigate its impact on norm emer-
gence. Only when two agents choose the same action will
they receive a payoff of 1. Otherwise, they receive a pay-
off of −1. Figure 6 shows the effect of different numbers
of actions on norm emergence. As can be seen, a larger
number of available actions results in a delayed convergence
of norms. This is because a larger number of actions may
produce more varied local sub-norms, leading to diversity
across the society. It thus takes a longer time for the agents
to eliminate this diversity to achieve a final consensus, and
thus norm emergence is prolonged throughout the network.

4.2.5 Influence of ensemble methods
Figure 7 shows norm emergence using different ensemble

methods as well as pairwise learning method in three differ-
ent kinds of networks. In the grid and small-world network,
the majority voting method and structure-based method
outperform the pairwise learning method throughout the
whole learning period. Norms using the performance-based
method converge very slowly at the beginning and then
quickly outperform those using the pairwise learning method
afterwards. In the scale-free network, however, the three
methods under the collective learning framework have al-
most the same performance, and all outperform the pair-
wise learning method throughout the whole learning period.
These results show that the proposed ensemble methods can
bring about different patterns of norm emergence in the
three different kinds of networks, and further confirm that
our collective learning framework is more efficient for norm
emergence than the pairwise learning framework.
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Figure 7: Norm emergence in three networks using different ensemble methods (averaged over 100 runs).

5. RELATED WORK
The emergence of social norms has gained increasing at-

tention in the area of MASs. Much work on norms has been
done using simulation models, analysis methods and theoret-
ical concepts from MASs [19]. Most of the work, however,
focuses on the logic, rule-based specification and declara-
tion of norms by assuming a centralized authority and com-
plete knowledge [21]. Comparatively, not much work has
been done on the decentralized emergence of social norms
in a bottom-up manner via learning from local interactions.
Shoham and Tennenholtz [22] pioneered this research area
by proposing a reinforcement learning approach based on
the Highest Cumulative Reward (HCR) rule to study the
emergence of social norms. According to this rule, an agent
chooses the strategy that has yielded the highest reward in
the past 𝑚 iterations. The history of the strategies chosen
and the rewards for each strategy are stored in a memory
of a certain size. Their experiments showed that the rate
of updating strategy and interval between memory flushes
had a significant impact on the efficiency of norm emer-
gence. Sen et al. [21, 14] proposed a mechanism for the
emergence of norms through social learning in which agents
learn norms based on private interactions. They experi-
mented with three reinforcement learning algorithms and
studied the influence of the population size, the set of pos-
sible actions and the heterogeneity of the population on
norm emergence. More recently, Savarimuthu et al. [18]
discussed three aspects of active learning (i.e., experiential,
observational and communication-based learning) of norm
emergence in an agent society, and demonstrated the use-
fulness of combining these three aspects of norm learning
to boost the convergence of social norms. All these stud-
ies handled the issue of norm emergence via learning in the
context of an agent population, in which each agent can in-
teract randomly with other agents. Our work differs from all
these studies because we focus on the emergence of norms
under a networked agent society in which the interactions
of agents are physically constrained. In addition, agents in
our model learn simultaneously with all their neighbors to
achieve a final consensus by using ensemble techniques. This
is in contrast to the sequential learning process in all the pre-
vious studies, in which each agent is selected sequentially to
interact with another agent in the population.
A number of researchers have studied norm emergence by

examining the underlying network topology of agents. Sen et
al. [20] evaluated how varying topologies of social networks
affected the emergence of norms through social learning in
these networks. Three different kinds of network topolo-

gies (i.e., scale-free, fully-connected and ring networks) were
studied to show how quickly norms converged in social net-
works depending on parameters such as the topology of the
network, the population size and the number of actions avail-
able. Villatoro et al. [26] investigated the effects of mem-
ory and the history of past activities during learning on the
success and rate of emergence of social norms in different
network structures. The authors confirmed that different
characteristics of the topology in which agents are located
could produce different convergence rates for reaching a so-
cial norm. Later, Villatoro et al. [25] used two social instru-
ments (i.e., rewiring and observation) to effectively address
the frontier effect problem caused by the sub-conventions
so as to facilitate norm emergence in the whole network.
Recently, Mahmoud et al. [13] further extended Axelrod’s
seminal model [2] by considering the topological structures,
in particular, scale-free networks. All these studies, how-
ever, were based on a simple interaction protocol: each agent
must be paired with one of its neighbors for interaction so
that this agent can learn directly from this interaction. This
interaction protocol simplifies real-life situations when indi-
viduals can collectively decide among multiple alternatives.
In our study, an agent interacts with all of its neighbors si-
multaneously and learns from these interactions collectively.
The focus is to study the impact of local collective behaviors
on the overall emergence of norms in the whole society in a
number of different conditions. This focus differentiates our
work from all these previous studies.
In the area of reinforcement learning, ensemble techniques

have been widely used to boost learning efficiency and to im-
prove learning performance. Wiering and Hasselt [29] used
different ensemble methods to combine multiple indepen-
dently reinforcement learning algorithms to choose the best
action. Hans and Udluft [11] used ensemble techniques to
make reinforcement learning more robust and less depen-
dent on the various parameters. Various ways of aggregat-
ing single learners are proposed to learn a combined pa-
rameterized state-value function of multiple agents. In a
more recent work, Fauer and Schwenker [8] proposed sev-
eral ensemble methods to learn a combined parameterized
state-value function of multiple agents. All these studies
employed ensemble learning in reinforcement learning with
the aim of enhancing learning speed and improve final per-
formance. In our work, however, the ensemble methods are
used to combine the focal agent’s best-response actions for
each of its neighbors to make a final decision. Our focus is
not on the learning efficiency, but on the different patterns of
norm emergence achieved through local collective behaviors
of agents in networked agent societies.
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6. CONCLUSION AND FUTURE WORK
In this paper, we studied the emergence of social norms

through collective learning from local interactions in net-
worked agent societies. The goal of this work is to investigate
whether such collective learning can successfully establish a
social norm as a bottom-up process so that coordination
can be achieved across the whole society. We showed that
the collective learning framework is more efficient and ro-
bust than the pairwise learning framework which has been
adopted in most previous studies. We investigated the in-
fluence of various essential issues on the ratio and speed of
norm emergence. The experimental studies confirmed that
the collective learning framework is robust and efficient for
evolving stable norms in networked agent societies.
The long-term goal of this research is to design robust

mechanisms capable of predicting social behavior and facili-
tating social order in agent societies through analyzing local
collective behaviors. Such robust mechanisms can not only
provide us with a better understanding of the formation and
evolution process of opinions and conventions in human soci-
ety, but also enable us to build and design robust MASs such
as electronic institutions. This paper is a step towards this
goal, however, much more work still remains to be done. For
example, to better imitate real-life societies, relationships
between agents need to be added to the network structure.
In addition, more varied local learning behaviors can be de-
fined and further investigated, for example, by considering
the multiple transitive states of agents.

7. REFERENCES

[1] A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A
protocol for resource sharing in norm-governed ad hoc
networks. Declarative agent languages and technologies
II, LNAI 3476, pages 221–238, 2005.

[2] R. Axelrod. An evolutionary approach to norms. Am.
Polit. Sci. Rev., 80(4):1095–1111, 1986.

[3] A. Barabási and R. Albert. Statistical mechanics of
complex networks. Rev. Modern Phys., 74:47–97, 2002.

[4] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artif. Intel., 136:215–250,
2002.

[5] L. Brooks, W. Iba, and S. Sen. Modeling the
emergence and convergence of norms. In Proc. of 22nd
IJCAI, pages 97–102, 2011.

[6] N. Criado, E. Argente, A. Garrido, J. Gimeno,
F. Igual, V. Botti, P. Noriega, and A. Giret. Norm
enforceability in electronic institutions? Coordination,
Organizations, Institutions, and Norms in Agent
Systems VI, LNAI 6541, pages 250–267, 2011.

[7] P. Davidsson and A. Jacobsson. Aligning models of
normative systems and artificial societies: Towards
norm-governed behavior in virtual enterprises. In
Proc. of NorMAS07, 2007.

[8] S. Faußer and F. Schwenker. Ensemble methods for
reinforcement learning with function approximation.
Multiple Classifier Systems, LNCS 6713, pages 56–65,
2011.

[9] H. Franks, N. Griffiths, and A. Jhumka. Manipulating
convention emergence using influencer agents. Auton.
Agent Multi-Agent Syst.,
DOI:10.1007/s10458-012-9193-x, 2012.

[10] D. Fudenberg and D. Levine. The theory of learning in
games. The MIT press, 1998.

[11] A. Hans and S. Udluft. Ensembles of neural networks
for robust reinforcement learning. In Proc. of 9th
ICMLA, pages 401–406, 2010.

[12] L. Hofmann, N. Chakraborty, and K. Sycara. The
evolution of cooperation in self-interested agent
societies: a critical study. In Proc. of 10th AAMAS,
pages 685–692, 2011.

[13] S. Mahmoud, N. Griffiths, and J. Keppens. Norm
emergence: Overcoming hub effects in scale free
networks. In Proc. of COIN, pages 136–150, 2012.

[14] P. Mukherjee, S. Sen, and S. Airiau. Norm emergence
under constrained interactions in diverse societies. In
Proc. of 7th AAMAS, pages 779–786, 2008.

[15] H. Ohtsuki, C. Hauert, E. Lieberman, and M. Nowak.
A simple rule for the evolution of cooperation on
graphs and social networks. Nature, 441:502–505, 2006.

[16] R. Polikar. Ensemble based systems in decision
making. IEEE Circuits Syst. Mag., 6(3):21–45, 2006.

[17] S. Redner. How popular is your paper? an empirical
study of the citation distribution. Eur. Phys. J. B.,
4(2):131–134, 1998.

[18] B. Savarimuthu, R. Arulanandam, and M. Purvis.
Aspects of active norm learning and the effect of lying
on norm emergence in agent societies. Agents in
Principle, Agents in Practice, LNAI 7047, pages
36–50, 2011.

[19] B. Savarimuthu and S. Cranefield. Norm creation,
spreading and emergence: A survey of simulation
models of norms in multi-agent systems. Multi-Agent
Grid Syst., 7(1):21–54, 2011.

[20] O. Sen and S. Sen. Effects of social network topology
and options on norm emergence. Coordination,
Organizations, Institutions and Norms in Agent
Systems V, LNAI 6069, pages 211–222, 2010.

[21] S. Sen and S. Airiau. Emergence of norms through
social learning. In Proc. of 20th IJCAI, pages
1507–1512, 2007.

[22] Y. Shoham and M. Tennenholtz. On the emergence of
social conventions: modeling, analysis, and
simulations. Artif. Intel., 94(1-2):139–166, 1997.

[23] R. Sutton and A. Barto. Reinforcement learning: An
introduction. The MIT press, 1998.
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