
Monitoring Norm Violations in Multi-Agent Systems

Nils Bulling
Department of Informatics

Clausthal University of
Technology

bulling@in.tu-
clausthal.de

Mehdi Dastani
Intelligent Systems Group

Utrecht University
m.m.dastani@uu.nl

Max Knobbout
Intelligent Systems Group

Utrecht University
m.knobbout@students.uu.nl

ABSTRACT
The use of norms is widely accepted as an effective approach
to control and regulate the behaviour of agents in multi-
agent systems. Existing work on normative multi-agent sys-
tems has mainly focussed on how norms can influence the
behaviour of agents by assuming that the agents’ behaviours
are perfectly monitored. In this paper we focus on monitor-
ing mechanisms, propose different types of monitors, provide
a logical analysis of monitors, study the relations between
monitors and norms to be monitored, and finally explore
computational aspects of norm monitoring.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification, Languages

Keywords
Normative Environment, Monitoring, Normative Systems,
Logic and Reasoning

1. INTRODUCTION
In an open multi-agent system the behaviours of individ-

ual agents need to be controlled and coordinated in order
to ensure the global system objectives. Norms are gener-
ally conceived as standards of behaviour that can be used
to specify good behaviours and to guide the agents’ activi-
ties [7]. Norms can be used by an individual agent to decide
which actions to perform by reasoning and balancing be-
tween on the one hand the importance of its own objectives
that may conflict with the norms, and on the other hand
the consequence of norm violations [1]. However, norms can
also be used by the designer of open multi-agent systems
to detect violating behaviours and to impose corresponding
sanctions [3]. In this paper we focus on the latter use of
norms and assume that individual agents are autonomous

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in the sense that they decide themselves whether to obey or
violate norms and that multi-agent systems have the ability
to detect and enforce norms. In particular, we consider norm
monitoring as a mechanism that can observe agents’ activ-
ities, evaluate them with respect to a given set of norms,
and signal norm violations. In the rest of this paper, we
use the term normative multi-agent systems to refer to open
multi-agent systems where agents’ behaviours are regulated
by means of norms and sanctions.

Existing literature on normative multi-agent systems of-
ten assumes that monitors are perfect in the sense that they
can fully observe all agents’ activities and correctly evaluate
them with respect to a given set of norms. For example,
consider the scenario where two cars approach a road bot-
tleneck from opposite directions at the same time. Suppose
the norm is that cars coming from the right have priority
and that cars cannot pass the road bottleneck at the same
time. Existing approaches assume that all cars’ activities
can be monitored, e.g., for each car it can be observed if the
car is just before, within, and just after the road bottleneck.
However, this is not a realistic assumption as monitors often
can only observe a limited set of events or activities. For ex-
ample, a monitor may only be able to observe that the car
coming from the right is just before the road bottleneck or
that a car is within the road bottleneck. In general, the no-
tion of norm monitors is neither defined nor analysed such
that it is not possible to study whether and to which extent
a monitor can be effective in detecting some norm violations.
The existing (perfect) monitors are inherently coupled to a
set of norms in the sense that for a given set of norms the
corresponding monitor can observe all agents’ activities and
evaluate them with respect to the given set of norms.

In this paper we aim at relaxing these assumptions by
providing a logical and computational framework to specify
various types of norm monitors. The framework is composi-
tional in the sense that basic monitors can be composed to
build more complex and powerful norm monitors. We study
formal properties of monitors in order to determine whether
a specific monitor can be effective for a specific set of norms.
We also consider computational problems of norm monitors
such as whether a given monitor can detect violations of a
specific set of norms, whether there exists such a monitor,
and if there exists a combination of some given monitors to
detect the violation of a given set of norms.

2. SYSTEMS, NORMS AND MONITORS
In this section, we introduce the basic class of models

that we want to study and define the concept of norms and

491

monitors. Later, in Section 3, we show how norms can be
defined by means of temporal logic.

2.1 The Abstract Setting
In this paper, the class of models that we use to study

and describe (multi-agent) systems are transition systems.
Such systems, which we will formally define shortly, consist
of states and transitions between states. The intuition is
that such a model merely describes all possible transitions of
states that can occur within the system, and does not neces-
sarily state which transitions will occur during run-time. For
example, in the agent-based setting, each transition might
correspond to an action belonging to an agent.

Definition 1 (Transition system). A transition sys-
tem is a tuple T = (Q,→, q0) where Q is a set of states,
→⊆ Q×Q a binary serial relation over Q, i.e. for all q ∈ Q
there is a state q′ ∈ Q such that q → q′, and q0 ∈ Q a
distinguished initial state.

Since it is often the case that we want to prove or validate
certain properties of a system, we add a valuation function
that for each state assigns a set of (observable) propositions
which are deemed true at this particular state. We call a
transition system together with a valuation function an in-
terpreted transition system.

Definition 2 (Interpreted transition system).
Given a set of atomic propositions Props, an interpreted
transition system is a tuple I = (Q,→, q0, v) where (Q,→
, q0) is a transition system and v : Q → P(Props) a valua-
tion function associating propositions with states.

In this paper we will omit the term interpreted if clear
from context or not relevant. A transition system gives rise
to a set of possible executions, or runs for short.

Definition 3 (Run, R). Given a transition system T =
(Q,→, q0) a run of the system is defined as an infinite se-
quence q0q1 . . . ∈ Qω such that q0 is the starting state and
∀n ∈ N0 : (qn, qn+1) ∈→. For a given run r, we define
r[n] (n ≥ 0) as the n-th state qn occurring on the run and
r[n,∞] (n ≥ 0) as the postfix of the run starting from po-
sition n. The set of all possible runs over T is denoted by
RT. We define runs analogously for interpreted transition
systems. In this case, we use the notation RI or simply R
if I is clear from context.

We consider some of the behaviours as desired, others as
undesired; hence, a norm is a set of desired behaviours which
is a subset of all possible behaviours. In the remainder of
this section we assume that we are given a transition system
that models the set of possible runs R that can occur.

Definition 4 (Norm, compliance, violation). A norm
N is a subset of system runs, i.e. N ⊆ R. A run r com-
plies with a norm N , for short r is N -complient, if and
only if r ∈ N . Otherwise, r violates N , for short r is an
N -violation.

It is important to note that we are not interested in how
such a norm is acquired (which can be through a deontic
specification, emergent behaviour of the system or through
a conflict resolution of multiple possible norms), we merely
use the fact that once we have a mechanism to decide which
trace is “good” and “bad”, we can acquire a set of desired
traces. A monitor observes the behaviours of the system.

In this paper we adopt the view that a monitor for each
possible run r constructs a candidate set of runs that repre-
sents all the possibilities that might have actually occurred.
In the ideal case, if r takes place the monitor should ob-
serve r and nothing else. However, due to several reasons,
e.g. cost limitations, noise or environmental restrictions, it
is not always possible to perfectly monitor the behaviours
of the system. In the general case, we model a monitor as
a function m : R → P(R). Intuitively, given a run r ∈ R
and a monitor m, the set m(r) contains all the runs that the
monitor considers possible as being the actual run r.

Definition 5 (Monitor m, Rm). A monitor m over
system behaviours R is a function m : R → P(R). We
define m(R′) =

⋃
r′∈R′ m(r′) for a set R′ ⊆ R of runs.

Moreover, we define Rm as the corresponding relation over
R×R derived from m, i.e. rRmr

′ iff r′ ∈ m(r).

We can associate properties with monitors. Consider for
example the extreme case in which a monitor m given the
set R is defined asm(r) = R for all r ∈ R. In this particular
case, the monitor cannot distinguish anything; for each run
of the system it is possible that any arbitrary run might
have actually occurred. The other extreme case which we
have already mentioned earlier is the case in which it holds
that m(r) = {r} for all r ∈ R. Here we might say that
the monitor can distinguish everything; it always observes
the actual run. We introduce the following properties of a
monitor.

Definition 6 (Properties of a monitor). Let m be
a monitor over system behaviours R. We say that m is

• broken iff there exists a run r ∈ R such that m(r) = ∅.
• correct iff for all runs r ∈ R we have r ∈ m(r).
• consistent iff for all runs r1, r2, r3 ∈ R we have if (r1 ∈
m(r3) and r2 ∈ m(r3)) then r1 ∈ m(r2) and r2 ∈
m(r1).
• ideal iff for all runs r ∈ R we have m(r) = {r}.
The property of correctness states that a monitor should

never exclude the true run from the set of possibilities. For
example, an incorrect monitor may observe something that
never actually took place (e.g. something like a noisy cam-
era). The property of consistency states that if a moni-
tor cannot differentiate between two runs, then the monitor
should neither be able to differentiate these two alternatives
from each other. When a monitor is broken, it can be seen
as a monitor that makes impossible observations; none of
the runs from R are deemed similar to the run that was
observed.

Proposition 1. Letm be a monitor over system behaviours
R. A monitor m is correct iff Rm is reflexive, broken iff Rm

is not serial, consistent iff Rm is Euclidian, and ideal iff Rm

is the identity relation.

This proposition holds since the definitions of broken, cor-
rect, consistent and ideal directly coincide with the afore-
mentioned properties of binary relations. However, this al-
lows us to use results found in the study of binary relations
to properties of monitors. For example, we can see that if
a monitor m is both correct and consistent, then Rm is an
equivalence relation. Moreover, if a monitor is correct, then
it is not broken and if a monitor is ideal, then it is correct.
Certainly more relations can be shown, but that is beyond
the scope of this paper. We end this section with an exam-
ple.

492

q0

start

q1 q2

Figure 1: A simple transition system.

Example 1. Consider the transition system shown in Fig-
ure 1, with states Q = {q0, q1, q2}. Let N = {(q0 q1)ω} con-
sist of a single run which only visits q0 and q1 in succession.
We define the following monitor: m(r) = {r′ ∈ R | r[1] =
r′[1]}. This monitor observes only the first step and parti-
tions the runs into two distinct classes: one class consists
of all the runs that initially visit state q1 and the other one
of all the runs that initially visit q2. This monitor is correct
and consistent, but it is not ideal. If r initially visits q2, then
all the runs in the set m(r) are N -violations. However, if
r initially visits q1, exactly 1 run in the set m(r) is not an
N -violation while the remaining runs are.

2.2 Logic-Based Setting
In the following we introduce the linear-time temporal

logic LTL [6] which can be used to characterize norms. For-
mulae of LTL are defined by the following grammar where
p ∈ Props denotes an atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ©ϕ
LTL-formulae are interpreted over a run r of a transition
system I. ©ϕ means that ϕ holds in the next state of the
run and ϕUψ that ϕ holds along the run until ψ holds. We
define �ϕ ≡ �Uϕ (eventually ϕ) and �ϕ ≡ ¬�¬ϕ (always
ϕ) as macros, as well as the standard Boolean connectives.
We recall the semantics of LTL-formulae:

I, r |=LTL p iff p ∈ v(r[0])
I, r |=LTL ¬ϕ iff I, r |=LTL ϕ

I, r |=LTL ϕ ∨ ψ iff I, r |=LTL ϕ or I, r |=LTL ψ

I, r |=LTL ©ϕ iff I, r[1,∞] |=LTL ϕ

I, r |=LTL ϕUψ iff i ≥ 0 such that I, r[i,∞] |=LTL ψ and
for all 0 ≤ k < i, I, r[k,∞] |=LTL ϕ

We also lift the semantic satisfaction relation to sets of runs
R′ ⊆ R as follows:

I, R′ |= ϕ iff ∀r ∈ R′ : I, r |=LTL ϕ.

In the following we simply write |= for |=LTL whenever
clear from context. A norm N can be defined by an LTL-
formula χ such that N contains all the runs and only the
runs satisfying χ. Note however that in the general case,
not all norms can be described in this way.

Definition 7 (χ-norm). Let χ be an LTL-formula and
I be an interpreted transition system. The χ-norm in I is
defined as the set NI(χ) = {r ∈ R | I, r |= χ}. In the fol-
lowing we will often identify N (χ) with χ and omit I when
clear from context.

Let I be a model, χ be a norm, and m be a monitor. Now
we are ready to reason about norm violations. As said in
the previous section, a run r is an N -violation iff r ∈ N (χ).
In this setting, this is equivalent to saying that r is an N -
violation iff I, r |= ¬χ. However, this violation may not be
detected by monitor m; this heavily depends on the capabil-
ities of the monitor and what it can observe. Intuitively, a

norm violation for a run r is detected if in all the possibilities
that the monitor considers, a violation occurs, i.e. whenever
m(r) ⊆ R\N (χ) holds. This statement is equivalent to say-
ing that a violation is detected if I,m(r) |= ¬χ. In the case
of a non-ideal monitor the classification is not that simple:
some runs in m(r) may violate the norm whereas others do
not.

Definition 8 (Detection of norm violation). Let I
be an interpreted transition system, r ∈ R, χ be a norm, and
m be a monitor. We say that monitor m on input r returns
(or detects a)
• χ-violation iff I,m(r) |= ¬χ;
• χ-compliance iff I,m(r) |= χ; and
• χ-indifference iff both I,m(r) |= χ and I,m(r) |= ¬χ.
A run is evaluated with respect to a given monitor and

norm. However, if the monitor detects a possible norm vi-
olation, the norm may actually not be violated. This can
happen if the monitor does not accurately detect the cur-
rent run.

Definition 9 (Classification error). Let I be a tran-
sition system, χ a norm, and m a monitor. We say that m
makes a χ-classification error on r iff

• m detects a χ-violation on r and r is not a χ-violation
(false negative classification error); or
• m detects a χ-compliance on r and r is a χ-violation

(false positive classification error).

Ultimately, we are interested in monitors which detect all
norm violations and only those.

Definition 10 (Sound, complete, sufficient). Let I
be a transition system, χ a norm and m a monitor. We say
that m is
• χ-sound in I iff for all r ∈ R it holds: I,m(r) |= ¬χ

implies I, r |= ¬χ. In words, a monitor is sound with
respect to a norm χ when for every possible run of the
system, it holds that whenever a χ-violation is detected
it is the case that the run was a χ-violation.
• χ-complete in I iff for all r ∈ R it holds: I, r |= ¬χ

implies I,m(r) |= ¬χ. In words, a monitor is complete
with respect to a norm χ when for every possible run
of the system, it holds that whenever the run was a
χ-violation it is the case that a χ-violation is detected.
• χ-sufficient in I if m is χ-sound and χ-complete.

Again, we omit I if the model is clear from context.

To summarize some of these definitions, let us return to
our example.

Example 2. We return to the transition system found in
Example 1, but now also assume we have a set of atomic
propositions Props = {p}. Together with the valuation func-
tion v defined as v(q0) = v(q1) = {p} and v(q2) = ∅, we
get an interpreted transition system I. The norm can now
be specified as an LTL formula χ = �p. Let us also con-
sider that we still have the same monitor m, i.e. m(r) =
{r′ ∈ R | r[1] = r′[1]}. It is now easy to verify that this
monitor is χ-sound; whenever for a given run r it holds that
I,m(r) |= ¬�p then certainly I, r |= ¬�p. However, this
monitor is not χ-complete. In particular, consider the run
r = q0q1(q0q2)

ω. It is clear that for this run it holds that
I, r |= ¬�p, however it also holds that I,m(r) |= ¬�p; this
is because the run (q0q1)

ω is also in the set m(r) and this run
is not a χ-violation. Thus, for this run the monitor detects
a χ-indifference, but it should have detected a χ-violation for
it to not break the property of χ-completeness.

493

3. LTL-BASED MONITORS
We introduce monitors built from LTL-formulae. Firstly,

we introduce (basic) LTL-monitors which use a single LTL-
formula to classify runs of the system. Then, in Section 3.3
we consider how to combine these monitors to obtain more
expressive ones. We call the latter type combined LTL-
monitors and refer to both types as LTL-based monitors.

3.1 Basic LTL-Monitors
In this section we will discuss the topic of using LTL for-

mulas in order to characterize monitors. Given an LTL-
formula ξ a ξ-monitor can distinguish runs which satisfy ξ
from those which do not satisfy ξ. This is a much simpler
characterization of a monitor since it only divides the set of
runs into two classes; the set of runs that satisfy ξ and the
set of runs that do not. Intuitively, if two runs r and r′ both
satisfy ξ, then it holds that m(r) = m(r′). The converse
also holds, if they do not satisfy ξ then the observed sets are
also the same. We can define this formally as follows.

Definition 11 (ξ-monitor). Let ξ be an LTL-formula
and I be a transition system. The ξ-monitor over I is the
function mξ : R → P(R) defined as follows: mξ(r) := {r′ ∈
R | I, r |= ξ iff I, r′ |= ξ}. Again, we omit I if clear from
context.

Let us briefly return to our example to see how we can
associate an LTL-formula with a monitor.

Example 3. Returning to the interpreted transition sys-
tem found in Example 2, we could have also defined this
monitor as a ©p-monitor. Both this monitor and the moni-
tor in the example for any arbitrary run r return exactly the
same set m(r).

3.2 Examples of LTL-Monitors
We assume that we have a set of propositions C denoting

the set of state conditions under which something can be
monitored and a set of propositional formulae P denoting
the state properties which can be verified. Both sets are as-
sumed to be fixed and motivated below. The intuition here is
that a monitor cannot always under any circumstances val-
idate any property. E.g. a monitor that measures whether
a car is exceeding the speed limit can only do this if the
car is in front of the monitor. Moreover, under this condi-
tion not any property can be checked; perhaps the monitor
can observe the speed, but it cannot observe whether the
driver is wearing his/her seatbelt. We assume that every
LTL-monitor has the form �(ϕc → ϕp) such that ϕc (re-
spectively ϕp) is an LTL-formula consisting only of temporal
operators in combination with propositional formulae from
C (respectively P).

State Monitors. We call a �(ψc → ψp)-monitor a state
monitor where ψc ∈ C and ψp ∈ P . Intuitively, this monitor
checks under each occurance of ψc whether the propositional
formula ψp holds. Thus this monitor guarantees that at each
moment in time in a run of the system, either the event ψc

has not occurred, or if it has, the validity of the property
ψp is guaranteed. The class of all possible state monitors is
given by Mstate(C ,P)

Transition Monitors. We call a �((ψc ∧©ψ′
c)→ (ψp ∧

©ψ′
p))-monitor a transition monitor where ψc, ψ

′
c ∈ C and

ψp, ψ
′
p ∈ P . This monitor checks at any moment in time

if the conditions ψc and ψ′
c are succinctly met and, if so,

whether ψp and ψ′
p are succinctly satisfied. The class of all

possible transitions monitors is given by Mtrans(C ,P)

Sequence Monitors. We call a �((
∧k

i=0©iψi
c) →

(
∧k

i=0©iψi
p))-monitor (where ψj

c ∈ C , ψj
p ∈ P , 0 ≤ j ≤

k, k ∈ N0 and©i :=© . . .©︸ ︷︷ ︸
i-times

) a sequence monitor of length

k. Notice that for k = 0 this definition reduces to state
monitors and for k = 1 to transition monitors. The class of
all possible sequences monitors (for arbitrary k) is given by
Mseq(C ,P).

3.3 Combinations of LTL-Monitors
In Section 3.1 we have introduced monitors that are built

from LTL-formulae. As we will show in Section 4, a moni-
tor mξ can classify the space of all system behaviours into
two classes: one class contains runs satisfying ξ and the
other one runs which do not. Moreover, we show that, in
case of a sufficient monitor, these (equivalence) classes must
exactly coincide with the corresponding equivalence classes
emerging from the norm (cf. Theorem 1). This also implies
that the formula ξ must be very similar to the norm itself;
hence, if the norm is a “complicated” (in terms of expressiv-
ity) formula, ξ will most probably be one too. Therefore,
we propose a combination of monitors. The idea is that we
start with simple monitors and combine them to more com-
plex ones without using more complex formulae. Firstly, we
formally introduce the concept of combined monitors.

Definition 12 (⊕, Σ-monitor). Let m1,m2 : R →
P(R) be two monitors. We define the monitor m ⊕ m′ :
R → P(R) as follows: m⊕m′(r) := m(r) ∩m′(r).

Let Σ be a set of LTL-formulae. The (combined) Σ-
monitor is the function mΣ : R → P(R) with mΣ(r) =
⊕ξ∈Σmξ(r).

The following result is clear from the definition of mΣ.

Proposition 2. The operator ⊕ is associative and com-
mutative.

To illustrate the concept of combined monitors, we con-
sider the following example.

Example 4. Consider a transition system I with five states
{q0, . . . , q4}, a set of runs RI = {q0(q1)ω,
q0(q2)

ω, q0(q3)
ω, q0(q4)

ω} and labeling v(q0) = v(q4) = ∅,
v(q1) = {r, s}, v(q2) = {r}, v(q3) = {s}. We refer to
run q0(qi)

ω with ri, for i = 1, . . . 4. Suppose the norm
is given by χ = ©((r ∧ ¬s) ∨ (¬r ∧ s)). Consider the
two LTL-monitors m©r and m©s. Then, we have that
m©r(r1) = m©r(r2) = {r1, r2} and m©r(r3) = m©r(r4) =
{r3, r4} and m©s(r1) = m©s(r3) = {r1, r3} and m©s(r2) =
m©s(r4) = {r2, r4}. Clearly, none of these monitors is χ-
sufficient. Let Σ = {©r,©s}, then for the monitor mΣ we
have mΣ(ri) = {ri} for i = 1, . . . 4. That is, the monitor
perfectly classifies all runs and is χ-sufficient. We note that
the LTL-monitor m©r∧©s is not χ-sufficient.

The next proposition shows that there are combined mon-
itors for which there is no equivalent non-combined LTL-
monitor; that is, combined monitors are strictly more ex-
pressive.

Proposition 3. The class of LTL-monitors is not closed
under operator ⊕.

494

�� ��

�� ��
→

←

Figure 2: Schematic view to the road example.

p1, p′1start p2, p′2 p3, p′3

p2, p′1

p3, p′1

p3, p′2

p1, p′2

p1, p′3

p2, p′3

Figure 3: Transition system I of the road example.

Although this intuitively already follows from Example 4,
the actual proof of this proposition is given in Proposition 6
where we show that the number of classes a monitor parti-
tions the runs in can be strictly higher for combined monitors
than for non-combined monitors.

3.4 An Example Scenario
In this example we assume that there are two cars ap-

proaching a bottleneck in the road, both coming from oppo-
site directions and want want to reach the other side, cf. Fig-
ure 2. However, to avoid the dangerous situation where
both cars are on the bottleneck at the same time, there is
a norm in place that states that (1) When two cars are on
opposite sides of the bottleneck, cars coming from the right
have priority over cars coming from the left, and (2) No two
cars should simultaneously be on the bottleneck. We can
associate with each car three different general locations: (1)
Just before the bottleneck; (2) on the bottleneck; and (3)
after the bottleneck. We denote this by the propositions
(1) p1, (2) p2 and (3) p3 for the car coming from the left,
and (1) p′1, (2) p

′
2 and (3) p′3 for the car coming from the

right. Assuming that the cars can either wait or move for-
ward (and not reverse), the transition system is shown in
Figure 3. Any traversal of the transition system gives rise
to a run. R is the set of all these runs. Given this model,
we state the corresponding norm:

χ ≡ �((p1 ∧ p′1)→ ¬© p2) ∧ �(¬p2 ∨ ¬p′2).
In the following we consider some monitors. Following

Section 3.2, we define set C = {p1, p2, p3} and P = {p′1, p′2, p′3}
of conditions under which some property can be monitored
and of properties to be verified, respectively. The sets C and
P allow to express each possible position of the car coming
from the left (p1, p2, p3) we can verify each of the positions
of the car coming from the right (p′1, p

′
2, p

′
3).

Example 5. Consider the state monitor m�(p3→p′3) ∈
Mstate(C ,P). This monitor is intuitively understood as a
monitor that detects whether the car from the right crosses
the bottleneck before the car from the left does. For each run
going through the state (p3, p

′
1) or (p3, p

′
2) it holds that this

monitor detects a χ-violation. To see this, each of the runs
that satisfy ¬�(p3 → p′3) goes from (p1, p

′
1) to (p2, p

′
1) or

goes through the state (p2, p
′
2). However, this monitor is not

χ-complete (i.e. it does not detect all χ-norm violations):
e.g. the run (p1, p

′
1)(p2, p

′
2)((p3, p

′
3))

ω is not detected, even
though it violates the norm.

Example 6. Consider the three monitorsm1, m2 andm3

withm1 = m�((p1∧©p2)→(p′1∧©p′1)), m2 = m�((p1∧©p2)→(p′2∧©p′2))
andm3 = m�((p1∧©p2)→(p′1∧©p′2)). We have thatm1,m2,m3 ∈
Mtrans(C ,P). These monitors are, just like the previously
discussed monitor, not χ-complete. However, the monitor
obtained by combining these monitors, m1 ⊕ m2 ⊕ m3, is
χ-complete and even χ-sufficient. Although not completely
trivial, the reasoning behind it is that any run going from
(p1, p

′
1) to (p2, p

′
1) is detected by m1, any run going from

(p1, p
′
2) to (p2, p

′
2) is detected by m2 and finally any run go-

ing from (p1, p
′
1) to (p2, p

′
2) by m3. Moreover, these are ex-

actly all the runs which are χ-violations.

4. MONITORING AND PROPERTIES
In this section we discuss properties of LTL-based mon-

itors. Our main results are characterization theorems for
LTL-monitors (Theorem 1) and for combined LTL-monitors
(Theorem 2). They are later used to solve the decision prob-
lems whether there are sound and complete monitors. Of
utmost importance is that monitors partition the set of runs
in a system. Therefore we introduce the following notation:

Definition 13. Given a set X and a function f : X →
P(X), we say that f is an equivalence X-classifier if there is
a partition (Xi)i∈I of X (that is, I ⊆ N0 and each Xi ⊆ X,
∪i∈IXi = X, and Xi ∩Xj = ∅ for i, j ∈ I and i = j), and
for all x ∈ X, f(x) = Xi whenever x ∈ Xi for i ∈ I. A
binary X-classifier is an equivalence X-classifier with only
two partitions (note, possibly some of which is the empty
set). We let C(f) denote the set of equivalence classes of f .

Let us first discuss properties of non-combined LTL-monitors.
Some propositions and theorems of these monitors also ap-
ply to combined monitors; in these particular cases we refer
to the proofs in the next section of combined monitors which
are a generalization of the non-combined cases.

4.1 Properties: Non-Combined LTL-Monitors
We first show that an LTL-monitor is a binary equivalence

classifier. This means that a monitor partitions the set into
two classes; one class that satisfies the formula associated
with the monitor and one class that satisfies the negation of
this formula.

Proposition 4. For each transition system I and LTL-
formula ξ, mξ is a binary equivalence R-classifier; hence,
|C(mξ)| = 2.

Proof. This is proven in the next section where we con-
sider the more general case of arbitrarily combined monitors,
i.e. this proof is a special case of Proposition 6 for monitor
m{ξ}.

Moreover, we are able to show that an LTL-monitor is always
correct, consistent, not broken and χ-sound for any LTL-
norm χ and transition system I.

495

Proposition 5. Let χ be an LTL-norm and I be a tran-
sition system. The monitor mξ is correct, consistent and not
broken. Moreover, each LTL-monitor mξ is χ-sound over I.

Proof. Again, this is proven in the next section where
we consider the more general case. This proof is a special
case of Proposition 7 for monitor m{ξ}.

Since χ-soundness trivially holds for an LTL monitor, prov-
ing that a monitor is χ-sufficient amounts to checking whether
this monitor is χ-complete.

Corollary 1. A χ-complete monitor mξ is already χ-
sound and χ-sufficient.

The next proposition characterizes exactly when a moni-
tor is sufficient for a norm.

Theorem 1 (Characterization of LTL-monitors).
Let mξ be an LTL-monitor, χ an LTL-norm, and I be a
transition system. Then, the following statements are equiv-
alent:
(a) mξ is χ-sufficient in I.
(b) if ¬χ ∧ ξ is satisfiable on I then I |= ξ → ¬χ; and

if ¬χ ∧ ¬ξ is satisfiable on I then I |= ¬ξ → ¬χ.
(c) I |= ¬χ or I |= χ or I |= ¬ξ ↔ χ or I |= ξ ↔ χ.
(d) NI(χ) =

⋃{X ∈ C(mξ) | I, X |= χ}.
Proof. This theorem is a special case of Theorem 2 for

m{ξ}. To see this we note that Con(Σ) = {ξ,¬ξ} (we refer
to Section 4.2 for the notation). For (c) we observe that for

Σ̂ = ∅ (where Σ̂ is defined in the theorem) we get I |= ⊥ ↔
¬χ which is equivalent to I |= χ. For Σ̂ = Con(Σ), we get
I |= (ξ ∨ ¬ξ)↔ ¬χ which is equivalent to I |= ¬χ.
4.2 Properties: combined LTL-monitors
In this section we discuss properties of the more general

case of combined monitors. In what follows, if not said oth-
erwise, we assume that Σ = {ξ1, . . . , ξn} where each ξi, for
1 ≤ i ≤ n is an LTL-formula. Before we present the char-
acterization theorem for combined monitors we need some
additional notation and lemmata. We use Con(Σ) to denote
the set of all conjunctions of formulae from Σ. Each con-
junction from Con(Σ), denoted ξ̂, contains for each formulae
ξ ∈ Σ either ξ itself or ¬ξ. Moreover, we assume an order
on Σ and lift it to conjunctions from Con(Σ) in the natural
way to have a well-defined representative.

Definition 14. Let X = {ξ1, . . . , ξn} be a finite set of
formulae. We define Con(∅) := {⊥} and Con(X) := {ξ′1 ∧
· · · ∧ ξ′n | ξ′i ∈ {ξi,¬ξi} for i = 1, . . . , n}.
We can now prove that any combination of LTL-monitors

is an equivalence classifier.

Proposition 6. For each interpreted transition system
I and finite set of LTL-formulae Σ, the monitor mΣ is an
equivalence classifier with |C(mΣ)| ≤ 2|Σ|.

Proof. Given ξ̂ ∈ Con(Σ), let Xξ̂ = {r ∈ R | I, r |= ξ̂}.
Clearly it holds that

⋃
ξ̂∈Con(Σ)Xξ̂ = R and given ξ̂, ξ̂′ ∈

Con(Σ) if I |= ξ̂ ↔ ξ̂′ then we have Xξ̂ = Xξ̂′ , and if I |=
ξ̂ ↔ ξ̂′ then Xξ̂ ∩ Xξ̂′ = ∅; thus {Xξ̂ ⊆ R | ξ̂ ∈ Con(Σ)}
forms a partition of R. Now let r ∈ Xξ̂′ for an arbitrary

ξ̂′ = ξ′1 ∧ ... ∧ ξ′n. Then, for all r′ ∈ R we have r′ ∈ mΣ(r)

iff I, r′ |= ξ′1 and ... and I, r′ |= ξ′n iff I, r′ |= ξ̂′ iff r′ ∈ Xξ̂′ .

This shows that mξ(r) = Xξ̂′ . The number of (unique)

elements in Con(Σ) is at most 2|Σ|, thus we have |C(mΣ)| ≤
2|Σ|.

This proposition highlights the fact that for a transition
system I and monitor mΣ, if it holds for ξ, ξ′ ∈ Σ that
ξ = ξ′, and I |= ξ ↔ ξ′ or I |= ¬ξ ↔ ξ′, then mΣ\{ξ} and
mΣ\{ξ′} are equivalent to mΣ (i.e. for every r ∈ R it holds
that mΣ(r) = mΣ\{ξ}(r) = mΣ\{ξ′}(r)). This leads us to
the following definition, which will be used in the proof of
Theorem 2.

Definition 15. Given a transition system I and set of
formulae X, let XI ⊆ X be the largest subset such that
for all ξ ∈ XI there is no ξ′ ∈ XI with ξ = ξ′ such that
I |= ξ ↔ ξ′ or I |= ¬ξ ↔ ξ′. In general, such a subset is
not unique; in this case we choose one arbitrarily.

Again we note that mΣ and mΣI are exactly the same mon-
itors, so we use the sets Σ and ΣI interchangeably whenever
the transition system I is fixed. Analogously to Proposi-
tion 5 and Corollary 1, we get the following results:

Proposition 7. Let χ be an LTL-norm and I be a tran-
sition system. The combined monitor mΣ is correct, consis-
tent and not broken. Moreover, each combined LTL-monitor
mΣ is χ-sound over I.

Proof. That a Σ-monitor is correct, consistent and not
broken follows from the fact thatmΣ is an equivalence classi-
fier, cf. Prop. 6. For the soundness, we assume the contrary
for the sake of contradiction. Then, there is a run r such that
I,mΣ(r) |= ¬χ and I, r |= χ. But by correctness we have
that r ∈ mξ(r) and hence I, r |= ¬χ. Contradiction.

Corollary 2. A χ-complete monitor mΣ is already χ-
sound and χ-sufficient.

Again note that this corollary trivially holds, since any
combination of LTL-monitors is already χ-sound. The fol-
lowing two lemmata are needed to prove Theorem 2.

Lemma 1. Let I be a transition system, XI be a finite set
of formulae as defined in Definition 15 and let Û ⊆ Con(XI).
Then, the following formula is valid over I:

I |= ∧
ξ̂∈Û ¬ξ̂ ↔

∨
ξ̂∈Con(XI)\Û ξ̂.

Proof. We prove this by syntactic rewriting. In the fol-
lowing, we use the fact that (1)

∨
ξ̂∈Con(XI) ξ̂ = � and (2)

given ξ̂, ξ̂′ ∈ Con(XI) with ξ̂ = ξ̂′, it holds that ξ̂ ∧ ξ̂′ = ⊥.
The reason for the latter is because we can always find a ξi ∈
X which is true in ξ̂ and false in ξ̂′, or vice versa. In the fol-
lowing we omit mentioning I:

∧
ξ̂∈Û ¬ξ̂ ↔ ∨

ξ̂∈Con(XI)\Û ξ̂ ⇔(
¬∨

ξ̂∈Û
ξ̂ ∨ ¬∨

ξ̂∈Con(XI)\Û ξ̂
)
∧
(∨

ξ̂∈Û
ξ̂ ∨∨

ξ̂∈Con(XI)\Û ξ̂
)
⇔(∧

ξ̂∈Û ¬ξ̂ ∨∧
ξ̂∈Con(XI)\Û ¬ξ̂

)
∧

(∨
ξ̂∈Con(XI) ξ̂

)
⇔(∧

ξ̂∈Û

∧
ξ̂′∈Con(XI)\Û

(
¬ξ̂ ∨ ¬ξ̂′

))
⇔ �

Let us consider the combined LTL-monitor mΣI and a
run r ∈ R. For each monitor mξ with ξ ∈ ΣI, r defines one
of two equivalence classes (cf. Proposition 4). Hence, the
run r does also uniquely define an equivalence class of the
monitor mΣI which corresponds to the intersection of all
uniquely defined equivalence classes of each mξ. Formally,
we have:

Lemma 2. For each run r ∈ RI there is a unique ξ̂ ∈
Con(ΣI) with I, r |= ξ̂. We denote this formula by ξ̂(r).

Proof. Clearly, for each ξ ∈ ΣI either I, r |= ξ or I, r |=
¬ξ. Then, ξ̂(r) = ξ′1∧· · ·∧ξ′n with ξ′i ∈ {ξi,¬ξi} and ξ′i = ξi
iff I, r |= ξi. It is also clear that there can be no other

formula ξ̂′ ∈ Con(ΣI) with I, r |= ξ̂′.

496

Finally, we turn to our main result about combined LTL-
monitors. It is a generalization of Theorem 1 (cf. the proof
of that theorem). Of particular interest is characterization
(c). It says that a monitor is χ-sufficient if there is a set

Σ̂, where each ξ̂ ∈ Σ̂ characterizes one equivalence class of
mΣI , such that the disjunction of all these formulae is true
iff the norm is violated. In other words, the union of all these
equivalence classes must contain exactly the runs violating
the norm. Moreover, characterization (b) is useful to devise
a decision procedure (cf. Proposition 10).

Theorem 2 (Charact. of combined LTL-monitors).
Let Σ = {ξ1, . . . , ξn} be a non-empty and finite set of consis-
tent LTL-formulae, χ be an LTL-norm, and I be a transition
system. Then, the following statements are equivalent:

(a) mΣ is χ-sufficient over I.

(b) for all ξ̂ ∈ Con(Σ), if ¬χ ∧ ξ̂ is satisfiable on I then

I |= ξ̂ → ¬χ.
(c) I |= (

∨
ξ̂∈Σ̂ ξ̂) ↔ ¬χ where Σ̂ = {ξ̂ ∈ Con(Σ) | I |=

χ ∨ ¬ξ̂}.
(d) NI(χ) =

⋃{X ∈ C(mΣ) | I, X |= χ}.
Proof. We prove (a)⇒ (b) ⇒(c) ⇒(d)⇒ (a).

(a) ⇒ (b): Suppose (a) holds, i.e. ∀r ∈ R : I, r |= ¬χ
implies I,mΣ(r) |= ¬χ. Moreover, let I, r |= ¬χ∧ ξ̂ for some

r and I |= ξ̂ → ¬χ; i.e. I, r′ |= ξ̂ ∧ χ for some r′. However,
then r′ ∈ mΣ(r); and hence, I,mΣ(r) |= ¬χ. Contradiction.
(b) ⇒ (c): Let Σ+ (resp. Σ−) consist of all formulae ξ̂ ∈
Con(ΣI) with ¬χ ∧ ξ̂ satisfiable (resp. not satisfiable) over

I. By (b) we have that I |= ξ̂ → ¬χ for all ξ̂ ∈ Σ+ and

I |= ¬χ → ¬ξ̂ for all ξ̂ ∈ Σ−. This implies that I |=
(
∨

ξ̂∈Σ+ ξ̂) → ¬χ and I |= ¬χ → (
∧

ξ̂∈Σ− ¬ξ̂). Moreover,

we have that Con(ΣI) = Σ+ � Σ−. Then, by Lemma 1 we

obtain I |= ∧
ξ̂∈Σ− ¬ξ̂ → ¬χ from I |= (

∨
ξ̂∈Σ+ ξ̂)→ ¬χ and

thus I |= ∧
ξ̂∈Σ− ¬ξ̂ ↔ ¬χ.

(c) ⇒ (d): Let I |= (
∨

ξ̂∈Σ̂I
ξ̂) ↔ ¬χ. “⊆”: Let r ∈ N (χ).

Because r ∈ mΣ(r) by Prop. 7 it remains to show that
I,mΣ(r) |= χ. We have that mΣ(r) = {r′ ∈ RI | I, r′ |=
ξ̂(r)} where ξ̂(r) is the unique formula from Lemma 2, clearly

ξ̂(r) ↔ ξ̂(r′) for any r′ ∈ mΣ(r). Now suppose that there
is a run r′ ∈ mΣ(r) with I, r′ |= ¬χ. Then, we must have

ξ̂(r′) ∈ Σ̂ which implies that I, r |= ¬χ. Contradiction.
“⊇”: If r ∈ ⋃{X ∈ C(mΣ) | I, X |= χ} then clearly

I, r |= χ and hence r ∈ NI(χ).

(d) ⇒ (a): Suppose NI(χ) =
⋃{X ∈ C(mΣ) | I, X |= χ}.

By Proposition 7 we need to show that if I, r |= ¬χ then
I,mΣ(r) |= ¬χ, for all r ∈ RI. Suppose I, r |= ¬χ holds
and I,mΣ(r) |= ¬χ. Then, there is an r′ ∈ mΣ(r) with
I, r′ |= χ. By (d) there is a class X ∈ C(mΣ) with r′ ∈ X
and I, X |= χ. However, since r′ ∈ mΣ(r) iff ξ̂(r′) ↔ ξ̂(r)
we must have r ∈ X. Contradiction.

5. COMPUTATIONAL PROBLEMS
Given a norm the system designer would like to construct

a monitor which is sound and complete for the norm, or in
other words, detect all norm violations. Of course, in this
setting it is interesting how difficult it is to construct such a
monitor. In this section we present our preliminary results

on computational complexity issues regarding norm viola-
tion detection. For a given interpreted transition system I
and LTL-norm χ we consider the following problems:

1. Does there exist an LTL-monitormξ which is χ-sufficient
over I?

2. Is a given monitor m (pure LTL-based or combined)
χ-sufficient over I?

3. Is there a monitor in M , where M is a set of monitors,
which is χ-sufficient over I?

4. Can we combine monitors m1, . . . ,mk ∈ M in such a
way that m1 ⊕ . . .⊕mk is χ-sufficient?

By Proposition 5 the first question is trivial: every m¬ξ-
monitor is ξ-sound and complete. More interesting are the
three remaining questions which we answer in the following.
We define the size of a (interpreted) transition system as the
number of states and transitions in I.

Results for LTL-Monitors. According to Corollary 1
it is enough to check wether a monitor is χ-complete which
implies sufficiency. The characterization theorem for LTL-
based monitors (cf. Theorem 1) provides us with a polynomial-
space decision procedure for the second question.

Proposition 8. Let I be a transition system, mξ an LTL-
monitor, and χ an LTL-norm. The problem whether mξ is
χ-sufficient over I is PSPACE-complete in the length of I,
ξ, and χ.

Proof. Membership can be checked inPSPACE by The-
orem 1(c) using standard LTL model checking.

We reduce LTL model checking, a PSPACE-complete
problem [8], to our problem. Let I be a transition system
and ϕ be an LTL-formula. Moreover, let p be a fresh propo-
sition neither occurring in I nor in ϕ and let Ip be a copy
of I in which all states are additionally labeled p. Then, we
have that (�) I |= ϕ iff Ip |= ϕ. Moreover, we have that
(��) I |= �p and Ip |= �p. Let I′ be the disjoint union of
I and Ip together with a new state q0 which is only con-
nected to all other states of (the copies of) I and Ip. Now,
we define χ ≡ ©(ϕ ∨ �p) and ξ = �. By Theorem 1(c) we
have that mξ is χ-sufficient over I′ iff I′ |= ©(¬ϕ ∧ ¬�p)
or I′ |= ©(ϕ ∨ �p). By (�) and (��) the left part of the
disjunction (i.e. I′ |=©(¬ϕ∧¬�p)) cannot be true; hence,
we must show that I′ |= ©(ϕ ∨ �p). By construction of
I′ this is the case iff I′ |= ©ϕ iff I |= ϕ. This gives the
following polynomial-time reduction: I |=LTL ϕ iff m� is
©(ϕ ∨ �p)-sufficient over I′.

The third problem is an easy extension of the first:

Proposition 9. Let I be a transition system, M a finite
set of LTL-monitors, and χ an LTL-norm. The problem
whether some m ∈ M is χ-sufficient over I is PSPACE-
complete in the length of I, M , and χ.

Proof. We call the procedure from Prop. 8 |M |-times.
Hardness is shown in the very same way as in Prop. 8 with
M = {m�}.

More interesting is the case, when class M of monitors is
not given explicitly but by some compact description, like
the syntactic descriptions introduced in Section 3.2. We
leave this for future research.

Results for Combined LTL-Monitors. Now we turn
to combined monitors. Again, by Corollary 2 it is enough
to check wether a monitor is χ-complete which implies suf-
ficiency. We consider the second problem, i.e., whether a
given combined monitor is sound and complete:

497

Proposition 10. Let I be a transition system, mΣ a com-
bined LTL-monitor, and χ an LTL-norm. The problem whether
mΣ is χ-sufficient over I is PSPACE-complete in the length
of I, Σ, and χ.

Proof. To show that the problem is in PSPACE we
use Theorem 2(b). The following procedure runs in non-
deterministic polynomial space. This is sufficient for the
result since PSPACE is closed under complement and non-
determinism. We guess a formula ξ̂ ∈ Con(Σ) and check

whether ¬χ∧ ξ̂ is satisfiable (this can be done in polynomial

space by checking I |= ¬(¬χ∧ ξ̂)) and whether I |= ξ̂ → ¬χ
(again, this can be done in polynomial space). If the answer
is yes; then, mΣ is not χ-sufficient over I.
Hardness obviously transfers.

Again, the fourth problem can be solved by applying the
previous one:

Proposition 11. Let I be a transition system, Σ be a
non-empty and finite set of LTL-formulae, and χ an LTL-
norm. The problem whether there is a non-empty subset
Σ′ ⊆ Σ such that mΣ′ is χ-sufficient over I is PSPACE-
complete in the length of I, Σ, and χ.

Proof. Firstly, we guess a subset Σ′ ⊆ Σ in polynomial
space and apply Proposition 10. Hardness is shown in the
very same way as in Prop. 8 with M = {m�}.

6. RELATED WORK AND CONCLUSIONS
Our work can contribute to the research on monitoring

program executions that aim at observing run-time behav-
ior of programs, e.g. [4, 9, 5]. Examples of such monitors
are debuggers, tracers, profilers and demons. Our analysis
can be extended and applied to study run-time monitors and
their properties. For example, in [4] a formal framework for
run-time monitors is provided that allows specification, im-
plementation, and reasoning about monitors. It proposes a
systematic approach to integrate monitors in the standard
semantics of a programming language such that the execu-
tion of a program based on the derived monitoring seman-
tics provides monitoring information without changing the
program behaviour. In contrast to our framework, the men-
tioned work does not study properties of monitors and their
relations with norms, while our approach allows reasoning
about monitors, norms, and program behaviours.

Another line of work focuses on monitoring as a runtime
verification problem [9, 2]. The main problem formulated in
these works is how to monitor certain temporal logic prop-
erties at run-time without storing an entire execution trace
and as such, they consider finite traces of possibly increas-
ing size. Since some LTL formulae can never be falsified
on finite prefixes of using an infinite-trace semantics (such
as until), they use extensions of LTL to reason about finite
(timed) traces.

Our work is also related to studies that aim at monitoring
constraints (closely related to norms) on databases over the
course of time, e.g. [5]. The main aim of this work is to
check the integrity constraints on a database with minimum
knowledge about its history and possible future. Our work
can be seen as a more general framework for analysing mon-
itors with respect to a set of constraints that needs to be
monitored. Monitoring constraints in our framework can be

modelled by special types of monitors that have restricted
knowledge about the past and future.

In this paper we developed a basic framework in which
monitors can be studied and analysed. We proposed differ-
ent types of monitors, provided a logical analysis of moni-
tors, studied the relations between monitors and norms to
be monitored, and explored some computational aspects of
norm monitoring. The language on which these monitors
and norms were built was LTL. As it turned out, combining
these simple monitors allowed us to construct complex mon-
itors with vastly growing reasoning capabilities. Moreover,
showing that such a monitor is sufficient for a given norm
(a violation is always correctly detected) still lies within the
complexity bounds of LTL model checking itself.

For future work we plan to consider syntactic restrictions
of specific classes of monitors which allow for efficient syn-
thesis. Also, more classes of monitors can be considered,
i.e. non-binary or non-correct monitors. With respect to
the latter, an interesting study would be to use our frame-
work to detect faulty monitors within a system. Finally, we
plan to add costs to the framework and to study optimal-
ity properties. Finally, we would like to note that although
our setting is defined over infinite runs it can also be given
over finite runs. In the case of LTL monitors one can use a
finite-trace semantics; in particular, a three-valued seman-
tics similar to [2] would be interesting in the context of mon-
itoring norm violations. We leave a detailed study for future
research.

7. REFERENCES
[1] N. Alechina, M. Dastani, and B. Logan. Programming

norm-aware agents. In Proceedings AAMAS-12, 2012.

[2] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for ltl and tltl. ACM Trans. Softw. Eng.
Methodol., 20(4):14:1–14:64, Sept. 2011.

[3] M. Dastani, D. Grossi, and J.-J. Meyer. A logic for
normative multi-agent programs. International Journal
of Logic and Computation, special issue on Normative
Multiagent Systems, Published online on 14 September
14 2011.

[4] A. Kishon, C. Consel, and P. Hudak. Monitoring
semantics: a formal framework for specifying,
implementing and reasoning about execution monitors.
In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 338–352,
June 1991.

[5] U. W. Lipeck and G. Saake. Monitoring dynamic
integrity constraints based on temporal logic.
Information Systems, 12(3):255–269, 1987.

[6] A. Pnueli. The temporal logic of programs. In
Proceedings of FOCS, pages 46–57, 1977.

[7] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial agent societies. In
Proceedings AAAI-92, San Diego, CA, 1992.

[8] A. P. Sistla and E. M. Clarke. The complexity of
propositional linear temporal logics. J. ACM,
32(3):733–749, 1985.

[9] P. Thati and G. Rosu. Monitoring algorithms for metric
temporal logic specifications. Electr. Notes Theor.
Comput. Sci., 113:145–162, 2005.

498

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

