
Dynamic Weighted Voting Games

Edith Elkind
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

eelkind@ntu.edu.sg

Dmitrii Pasechnik
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore
dima@ntu.edu.sg

Yair Zick
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

yair0001@ntu.edu.sg

ABSTRACT
We initiate the study of dynamic cooperative games—coope-
rative games where the characteristic function may change
over time. We introduce two types of algorithmic prob-
lems for such games: computing a given solution concept
at time t, and checking that a certain function of the game
(e.g., the Shapley value of a given player or the value of the
least core) remains within given bounds during time interval
[t0, t1]. We then investigate the complexity of these problems
for dynamic weighted voting games, where the weight of each
player and the quota are functions of time that are given by
low-degree polynomials with integer coefficients. We provide
pseudopolynomial algorithms for problems of both types, for
a variety of solution concepts. We then use our results to
investigate the changes in power distribution in the Council
of the European Union over the next 50 years.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

Keywords
weighted voting; cooperative game; time

1. INTRODUCTION
Cooperative game theory studies interactions among strate-
gic agents who can benefit from working together and shar-
ing costs/payoffs of their joint actions. Briefly, a (transfer-
able utility) cooperative game is defined by a set of players
and a characteristic function, which for every subset of play-
ers specifies the amount that the players in this subset can
earn by working together. The payoff earned by a coalition
is them distributed among the coalition members according
to some solution concept, such as the core or the Shapley
value.

There are several families of cooperative games that re-
ceived substantial attention from the multiagent research
community in recent years, due to their ability to model in-
teresting real-life scenarios. One such example is the family
of weighted voting games. These are cooperative games that
can be described by a vector of weights (one for each player)
and a quota: a coalition is winning (has value 1) if its total
weight meets or exceeds the quota and losing (has value 0)

otherwise. Such games model parliamentary voting, where
agents are parties and the weight of each party is the number
of representatives it has, or shareholder voting, where each
voter’s weight is the number of shares she owns. They have
been used to formally analyze the power distribution in the
Council of the European Union [12] and the United Nations
security council [9, 16]. They can also be used to reason
about agent societies, where an agent’s weight corresponds
to the amount of resources (time, money, battery power) it
contributes.

Now, traditionally cooperative games are viewed as static
objects. However, in some applications of cooperative game
theory the characteristic function of the game may evolve
over time. For instance, in the Council of the European
Union a country’s voting weight depends on its population,
and over the next few decades the populations of the EU
member states are likely to change considerably. Similarly,
if we use weighted voting to model decision-making in a
multiagent system and associate an agent’s weight with the
amount of resources it has, the agents’ weights will change
as they expend their resources to execute tasks at hand.
Often it can be assumed that the game changes in a pre-
dictable manner: for instance, one can obtain fairly accurate
population estimates for the EU countries by analyzing his-
toric data. For weighted voting games, this means that the
players’ weights can be described by succinctly representable
functions of time (e.g., low-degree polynomials). For a given
time interval [t0, t1], these functions define a continuum of
weighted voting games: each t ∈ [t0, t1] corresponds to a
game G(t) obtained by evaluating the weight and the quota
functions at time t.

Given an evolving, or dynamic, cooperative game, we may
wish to understand its properties, either at a certain point
in the future, or over a given time interval. For instance, we
may want to check if a particular event (such as, e.g., a given
agent becoming a dummy player) never happens as t changes
continuously from t0 to t1. More formally, the research chal-
lenges associated with dynamic cooperative games can be
broadly classified into two categories:

(i) computing various solution concepts (such as the Shap-
ley value or the least core) for the game G(t) for a given
value of t;

(ii) deciding whether the game G(t) possesses certain prop-
erties (such as having a non-empty core) for all t in a
given time interval [t0, t1].

Now, questions of type (i) may appear to be easy: we can
simply instantiate the game G(t) by substituting the given

515

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

value of t into the description of the evolving game, and then
apply the algorithms for computing the respective solution
concept in a static game. However, it is not clear that this
naive approach is optimal from the computational perspec-
tive: if t is sufficiently “complex”, it may be more efficient
to solve the game at t = 0 and then “evolve” the solution
as the time changes from 0 to t; this is reminiscent of the
homotopy method in numerical optimization (see, e.g., [3]).
Subsequently, we will see that this intuition can be made
precise in the context of weighted voting games.

Questions of type (ii) appear to be more difficult, as they
involve a continuum of games: one for each value of t in
[t0, t1]. One way to approach this issue is to discretize the
time interval [t0, t1], i.e., split it into a finite number of
subintervals so that the game G(t) remains unchanged on ev-
ery subinterval, and solve our problem for every subinterval.
While this approach is not universally applicable, it can be
shown to work for weighted voting games where the players’
weights and the quota are described by polynomial functions
of time. However, finding an appropriate discretization and
showing that it leads to an efficient algorithm for computing
standard solution concepts is not immediate.

Our Contribution We formally define dynamic weighted
voting games, that is, weighted voting games where the
weights and the quota are functions of time. We investi-
gate such games from a computational perspective under
the assumption that the weights and the quota are polyno-
mial functions of time whose coefficients are integers given
in unary. We consider several standard notions of coopera-
tive game theory, such as the Shapley value, the least core,
and the cost of stability. We show that, given a time point
t, we can efficiently determine the agents’ payoffs according
to the Shapley value, as well as compute the value of the
least core and the cost of stability in the game G(t). We
also show that, given a time interval [t0, t1] and bounds L
and B such that L < B, we can efficiently decide whether
a given agent’s Shapley value stays within [L,B] for every
game G(t) with t ∈ [t0, t1]; similar results can be obtained
for stability-related notions such as the value of the least
core and the cost of stability. Our proofs combine dynamic
programming techniques with arguments from algorithmic
real algebraic geometry. Finally, we observe that our meth-
ods generalize to vector weighted voting games and apply
them to analyze the dynamic vector weighted voting game
that describes the Council of the European Union under the
Treaty of Lisbon.

2. PRELIMINARIES
We denote by R+, Q+ and Z+ the sets of all non-negative
real, rational and integer numbers, respectively. A coopera-
tive game G = 〈N, v〉 is given by a set of agents, or players,
N = {1, . . . , n} and a characteristic function v : 2N → R+

that satisfies v(∅) = 0; for every subset of agents S ⊆ N ,
v(S) is the value of S. Subsets of agents are often re-
ferred to as coalitions; the grand coalition is simply the set
N of all agents. Given a coalition S ⊆ N and a vector
(x1, . . . , xn) ∈ Rn, we write x(S) =

∑
i∈S xi. A cooperative

game is called simple if for all S ⊆ N we have v(S) ∈ {0, 1}
and for every S, T ∈ 2N such that S ⊆ T it holds that
v(S) ≤ v(T). In a simple game G = 〈N, v〉 a coalition S
is said to be winning if v(S) = 1 and losing otherwise. A
player i in a simple game G = 〈N, v〉 is said to be a dummy

if v(S) = v(S ∪ {i}) for every S ⊆ N \ {i}; i is said to be a
veto player if v(S) = 0 for every S ⊆ N \ {i}.

Weighted voting games are a well-studied class of simple
games. A weighted voting game with a set of players N
is described by a list of weights w = (w1, . . . , wn), where
wi ∈ R+ for each i ∈ N , and a threshold, or quota, q ∈ R+:
a coalition S ⊆ N is winning if its total weight w(S) =∑

i∈S wi is at least q and losing otherwise. We assume that
the grand coalition is winning, i.e., w(N) ≥ q. We will
denote a weighted voting game with a set of players N , a
weight vector w and a quota q by 〈N,w, q〉.

One can extend the basic framework of weighted voting
games to vector weighted voting games. A vector weighted
voting game with a set of players N is given by a list of
weight vectors (w1, . . . ,wm), where w� = (w1

� , . . . , w
n
�) for

all � = 1, . . . ,m, and a list of thresholds (q1, . . . , qm). For
each i ∈ N , wi

� is agent i’s weight in the weight vector w�.
A coalition S ⊆ N is winning in the vector weighted voting
game G = 〈N,w1, . . . ,wm, q1, . . . , qm〉 if and only if it is
winning in the weighted voting game 〈N,w�, q�〉 for each
� = 1, . . . ,m. The number m is called the dimension of G.

Example 2.1. According to the Treaty of Lisbon [2], in
the Council of the European Union a proposal made by the
European Commission passes if and only if it is supported
by 55% of the EU countries and 65% of the EU population.
Thus, voting in the Council can be seen as a vector weighted
voting game 〈N,w1,w2, q1, q2〉, where N is the set of EU
member states, |N | = 27, w1 corresponds to the population
of each state, w2 = (1, . . . , 1), q1 = 0.65w1(N), and q2 =
0.55w2(N).

Solution Concepts for Weighted Voting Games An
outcome of a cooperative game G = 〈N, v〉 is a partition
of players into coalitions together with a payoff vector that
specifies how the value of each coalition is distributed among
its members. In weighted voting games it is usually as-
sumed that the players form the grand coalition; thus, an
outcome of a weighted voting game 〈N,w, q〉 is simply a
vector (p1, . . . , pn) in (R+)

n that satisfies p(N) = 1.
A solution concept is a function that maps a cooperative

game to a subset of outcomes. In this paper, we will con-
sider the classic fairness-based solution concept known as
the Shapley value [17], as well as a standard stability-based
solution concept known as the least core [13]; we will also
consider a measure of stability for coalitional games known
as the cost of stability [4].

To define the Shapley value, we first introduce some ad-
ditional notation. Let us denote by Π(N) the set of all
permutations of N , i.e., the set of all bijective functions
π : N → N . Given a permutation π ∈ Π(N), we denote by
P i(π) the set of all predecessors of i in π, i.e., we set

P i(π) = {j ∈ N | π(j) < π(i)}.
Given an agent i ∈ N and a coalition S ⊆ N \ {i}, we say
that i is pivotal for S in a simple game G = 〈N, v〉 if v(S) = 0,
but v(S ∪ {i}) = 1. Similarly, we say that i is pivotal for a
permutation π ∈ Π(N) if i is pivotal for P i(π). The Shapley
value of agent i in G, denoted by ϕi(G), is the probability
that agent i is pivotal for a permutation π ∈ Π(N) chosen
uniformly at random. Formally,

ϕi(G) = 1

n!

∑
π∈Π(N)

v(P i(π) ∪ {i}) − v(P i(π)).

516

The most widely used solution concept for cooperative
games that is based on the idea of stability is the core. Given
a cooperative game G = 〈N, v〉, its core, denoted by Core(G),
is the set of all outcomes p = (p1, . . . , pn) such that no
coalition can profitably deviate, i.e., p(S) ≥ v(S) for all
S ⊆ N ; we say that p is stable if it is in the core of G.
While core outcomes are highly desirable, many cooperative
games have empty cores. In particular, is is known that a
simple game has a non-empty core if and only if it has a veto
player. For such games, it is useful to have a weaker notion
of stability.

One such notion is that of the ε-core [13]: an outcome
p = (p1, . . . , pn) is said to be in the ε-core of a cooperative
game G = 〈N, v〉 for some ε ∈ R if p(S) ≥ v(S)−ε for all S ⊆
N . We denote the ε-core of G by Coreε(G). Intuitively, the
outcomes in the ε-core are stable if a deviation carries a cost
of ε. Let ε∗(G) = inf{ε | Coreε(G) �= ∅}; a simple continuity
argument shows that Coreε∗(G)(G) �= ∅. The ε∗(G)-core of G
is called the least core of G; the quantity ε∗(G) is called the
value of the least core of G. Note that in the definition of the
least core we do not require ε to be non-negative; indeed, if
the game has a non-empty core, the value of the least core
may be negative.

Another approach to relaxing the notion of the core was
recently proposed by Bachrach et al. [4]. Intuitively, it is
based on computing the smallest subsidy that should be
given to the grand coalition to ensure that no coalition of
players has an incentive to deviate. Formally, given a co-
operative game G = 〈N, v〉 and a Δ ≥ 0, we define the
adjusted game GΔ = 〈N, vΔ〉 by setting vΔ(N) = v(N) +Δ,
vΔ(S) = v(S) for S � N . The cost of stability of G is then
defined as CoS(G) = inf{Δ ≥ 0 | Core(GΔ) �= ∅}; a continu-
ity argument shows that Core(GCoS(G)) �= ∅.
Polynomial Root Separation and Isolation We will
make use of two standard results from algorithmic real alge-
braic geometry. In what follows, we consider polynomials of
degree at most k with integer coefficients whose maximum
absolute value is W > 0.

Theorem 2.2 (Root Isolation [5]). Given a polyno-
mial p(·), let r1, . . . , rm be the roots of p. It is possible to
find a list of disjoint open intervals I1, . . . , Im with endpoints
in Q such that for all 1 ≤ � ≤ m we have r� ∈ I�; I1, . . . , Im
can be found in time polynomial in ||W ||k. Moreover, given
an ε > 0, it is possible to ensure that the length of all open
intervals is at most ε in time polynomial in ||W ||k and 1

ε
.

Lemma 2.3 (Root Separation [6]). Given two poly-
nomials p(·), q(·), let r, r′ be roots of either p or q. Then
|r − r′| ≥ δ, where 1

δ
≤ ||W ||2k−1.

Now suppose we have a collection of polynomials P . For
each p ∈ P , let R(p) denote the set of real roots of p, and let
R(P) = ∪p∈PR(p). We can use Theorem 2.2 and Lemma 2.3
to output a list I = (I1, . . . , Is) of pairwise disjoint intervals
and a mapping L : I → 2P that associates every interval in
I with a subset of P so that

(1) each element of R(P) belongs to some interval in I;
(2) each interval in I contains exactly one element of R(P);

(3) for each I ∈ I, L(I) lists all polynomials in P whose
root is contained in I (note that, even though I con-
tains a single point in R(P), this point can be a root
of several polynomials in P).

Moreover, Theorem 2.2 and Lemma 2.3 imply that (I, L)
can be computed in time polynomial in ||W ||2k−1. We will
refer to the data structure (I, L) as the interval representa-
tion for R(P).

3. OUR MODEL
We will now formally define dynamic weighted voting games,
which will be the focus of this paper.

Definition 3.1. A dynamic weighted voting game is a
tuple

G(·) = 〈N,w(·), q(·), t0, t1〉,
where t0, t1 ∈ R+∪{+∞}, t0 ≤ t1, w(·) = (w1(·), . . . , wn(·)),
the mappings wi : [t0, t1] → R+, i ∈ N , associate every point
in the interval [t0, t1] with a non-negative real weight, and
the mapping q : [t0, t1] → R+ associates every point in [t0, t1]
with a non-negative real quota.

Intuitively, we think of [t0, t1] as the time interval over which
the game evolves: initially, the weight of the i-th player is
given by wi(t0) and the quota is given by q(t0), and then the
weights and the quota change according to w1(·), . . . , wn(·)
and q(·), respectively.

To study algorithmic properties of dynamic weighted vot-
ing games, we need to specify a representation formalism
for them. In what follows, we assume that the weights
and the quota are given by polynomials with integer co-
efficients. Formally, we assume that there exists a k ∈ Z+

such that wi(t) = wi
kt

k + · · · + wi
1t + wi

0 for each i ∈ N
and q(t) = qkt

k + · · · + q1t + q0, where wi
j , qj ∈ Z for

all i ∈ N, j = 0, . . . , k. This assumption is reasonable,
as continuous functions are well approximated by polyno-
mials; besides, polynomial functions arise naturally if the
weights are obtained by extrapolation. Note that we do not
require the coefficients to be positive; rather, we assume that
the interval [t0, t1] is selected so that the polynomials wi(·),
i ∈ N , and q(·) take non-negative values on [t0, t1]. Also,
we assume that t0 and t1 are rational numbers. We set
W = max{maxi∈N,j=1,...,k |wi

j |,maxj=1,...,k |qj |}; also, given
a rational number r, we let ||r|| denote the length of the
binary encoding of r.

We remark that dynamic weighted voting games gener-
alize weighted voting games: it is straightforward to repre-
sent a (static) weighted voting game 〈N,w, q〉 as a dynamic
weighted voting game (e.g., we can set wi(t) ≡ wi). There-
fore, in what follows we seek algorithms whose running time
is polynomial in n and W , i.e., we implicitly assume that
the coefficients of our polynomials are given in unary: this
is because when weights are assumed to be given in binary,
the problems considered in this paper are known to be hard
even for static weighted voting games [7].

We are now ready to state the computational problems
that will be investigated in the rest of the paper.

Definition 3.2. An instance of Point-Shapley is given
by a dynamic weighted voting game

G(t) = 〈N,w(·), q(·), t0, t1〉,
a point t ∈ [t0, t1] ∩ Q, and an agent i ∈ N . The goal is to
compute the Shapley value of agent i in G(t).

517

Definition 3.3. An instance of Int-Shapley is given by
a dynamic weighted voting game

G(t) = 〈N,w(·), q(·), t0, t1〉,
a pair of points L,U ∈ Q, L ≤ U , and an agent i ∈ N . It is
a “yes” instance if L < ϕi(G(t)) ≤ U for all t ∈ [t0, t1] and
a “no” instance otherwise.

The problems Point-LeastCore and Point-CoS as well
as Int-LeastCore and Int-CoS, which deal with comput-
ing/bounding, respectively, the value of the least core and
the cost of stability, are defined similarly; the only difference
is that we do not need to specify an agent i in the description
of an instance of the problem. We skip the formal definitions
due to space constraints.

Our proofs rely on the notion of a signature of a set of
agents. Given a dynamic weighted voting game G(·) =
〈N,w(·), q(·), t0, t1〉 and a coalition S ⊆ N , we consider the
polynomial

wS(t) =
∑
i∈S

wi(t) =

k∑
j=0

∑
i∈S

wi
jt

j .

The signature of a set S, denoted by sig(S), is the list of
the coefficients of wS(·); if wS(t) = Wkt

k + · · · + W1t +
W0, we write sig(S) = (Wk, . . . ,W1,W0). Note that the
absolute value of each coefficient of wS(t) is bounded by
nW . Let Σ = [−nW,nW]k+1 denote the space of all possible
signatures for G(·). Overloading notation, we denote by σ(·)
the polynomial associated with a signature σ ∈ Σ: if σ =
(Wk, . . . ,W1,W0), then σ(t) = Wkt

k+· · ·+W1t+W0. A set’s
signature is important for two reasons. First, it completely
describes the set’s behavior as the time goes by: if we know
the signature of a coalition S, we can tell when it is winning,
when it is losing, and when agents become pivotal for S. The
second—and more important—reason is that there are not
too many different signatures: we have |Σ| ≤ (2nW +1)k+1,
so we can explicitly go over all signatures in time polynomial
in n and W .

4. SHAPLEY VALUE IN DYNAMIC
WEIGHTED VOTING GAMES

In this section, we show that both Point-Shapley and
Int-Shapley admit efficient algorithms.

Our algorithms for Point-Shapley and Int-Shapley are
based on the classic dynamic programming algorithm for
computing the Shapley value [14]; recall that, given an n-
player weighted voting game 〈N.w, q〉, this algorithm can
determine the Shapley value of any given player in time
O(n2w(N)). Similarly, the running time of our algorithms
on a dynamic weighted voting game 〈N,w(·), q(·), t0, t1〉 is
polynomial in n and W .

Theorem 4.1. An instance of Point-Shapley given by
a dynamic weighted voting game G(·) = 〈N,w(·), q(·), t0, t1〉,
a point t ∈ [t0, t1] ∩Q, and an agent i ∈ N can be solved in
time poly(nk,W k, ||t||).

Proof. To simplify notation, we assume that i = n, i.e.,
we are interested in the Shapley value of the last player. For
every S ⊆ N let δS(t) = 1 if player n is pivotal for S at time
t and δS(t) = 0 otherwise. Observe that

ϕn(G(t)) = 1

n!

∑
S⊆N

|S|!(n− |S| − 1)!δS(t). (1)

We have δS(t) = 1 if and only if wS(t) < q(t) and wS(t) ≥
q(t)−wn(t). This implies that for every S, T ⊆ N such that
sig(S) = sig(T) we have δS(t) ≡ δT (t). Thus, overloading
notation, for every σ ∈ Σ we let δσ(t) = 1 if σ(t) < q(t)
and σ(t) ≥ q(t)− wn(t) and δσ(t) = 0 otherwise. Note that
δσ(t) = δS(t) for every S such that sig(S) = σ.

Given a σ ∈ Σ and an s ∈ {0, . . . , n− 1}, let
X[σ, s] = |{S ⊆ N \ {n} | sig(S) = σ, |S| = s}|.

Then equation (1) can be rewritten as follows:

ϕn(G(t)) = 1

n!

∑
σ∈Σ

n−1∑
s=0

s!(n− s− 1)!X[σ, s]δσ(t). (2)

The expression on the right-hand side of equation (2) only
has n|Σ| terms. We will now argue that each of these terms
can be computed efficiently.

Observe first that for any given value of t and any σ ∈
Σ the quantity δσ(t) can be computed by evaluating three
polynomials (σ(·), q(·), and q(·)−wn(·)); the degree of each
of these polynomials is at most k, and their coefficients are
integers between −nW and nW . Thus, we can find δσ(t) in
time polynomial in logW , n, k, and ||t||.

Further, the quantities X[σ, s] are easy to compute by
dynamic programming. Indeed, for all σ ∈ Σ, s = 0, . . . , n−
1 and j = 1, . . . , n− 1, let

X[σ, s; j] = |{S ⊆ {1, . . . , j} | sig(S) = σ, |S| = s}|.
We can easily compute X[σ, s; j] if j = 1 or s = 0. Specifi-
cally, we have X[σ, s; 1] = 1 if s = 1 and σ = sig({1}) or s =
0 and σ = (0, . . . , 0), and X[σ, s; 1] = 0 otherwise. Similarly,
for every j = 2, . . . , n we haveX[σ, 0; j] = 1 if σ = (0, . . . , 0),
and X[σ, 0; j] = 0 otherwise. Further, for j > 1, s > 0 we
have X[σ, s; j] = X[σ, s; j − 1] +X[σ − sig({j}), s− 1; j − 1]
if σ − sig({j}) ∈ Σ and X[σ, s; j] = X[σ, s; j − 1] otherwise.
Using this recurrence, we can compute all X[σ, s; j] in time
O(n2(2nW+1)k+1). Finally, we have X[σ, s] = X[σ, s;n−1]
for all σ ∈ Σ and all s = 0, . . . , n− 1.

Thus, we can use equation (2) to solve Point-Shapley
in time poly(nk,W k, ||t||).

It is interesting to compare Theorem 4.1 with the naive
approach to computing the players’ Shapley values at time
t, which was mentioned in Section 1, namely, evaluating
all weights and quota at time t and computing the players
values in the resulting static game. Suppose for simplic-
ity that the weights and the quota are linear functions of
time, i.e., there exist a0, a1, . . . , an and b0, b1, . . . , bn such
that wi(t) = ait+ bi for all i = 1, . . . , n, and q(t) = a0t+ b0,
where ai, bi, i = 0, . . . , n, are integers given in unary, and
suppose that t is an integer number given in binary. Sup-
pose also ai > 0, bi > 0 for some i = 1, . . . , n. Then we have
wi(t) ≥ t. The running time of the dynamic programming
algorithm for computing the Shapley value scales linearly
with the maximum weight, so in this case it will be at least
t. On the other hand, the running time of the algorithm pre-
sented in Theorem 4.1 is polynomial in ||t|| ∼ log t. To put
it differently, the naive approach requires that not only the
coefficients of the polynomials but also the point t are given
in unary, whereas our algorithm remains computationally
efficient when t is given in binary.

We will now use the techniques developed in the proof of
Theorem 4.1 to solve Int-Shapley.

518

Theorem 4.2. An instance of Int-Shapley given by a
dynamic weighted voting game G(·) = 〈N,w(·), q(·), t0, t1〉,
a pair of points L,U ∈ Q, L < U , and an agent i ∈ N can
be solved in time poly(nk,W k, ||L||, ||U ||, ||t0||, ||t1||).

Proof. We assume i = n and use notation introduced in
the proof of Theorem 4.1. We first show how to solve our
problem under the assumption that t0 = 0, t1 = +∞; we
then explain how to modify our algorithm for arbitrary t0
and t1.

For every σ ∈ Σ the functions f1
σ(t) = q(t)−wn(t)− σ(t)

and f2
σ(t) = q(t)−σ(t) are polynomials of degree at most k,

so each of them has at most k roots. Let Fσ(t) = f1
σ(t)f

2
σ(t),

and let Rσ be the set of non-negative real roots of Fσ; we
have |Rσ| ≤ 2k. The set {t | σ(t) < q(t)} is a union of open
intervals; similarly, {t | σ(t) ≥ q(t) − wn(t)} is a union of
closed intervals. Hence, the set {t | σ(t) < q(t), σ(t) ≥ q(t)−
wn(t)} is a union of open, closed, or half-closed intervals
with endpoints in Rσ∪{0,+∞}. Consequently, the function
δσ(·) (defined in the proof of Theorem 4.1) remains constant
on every interval with endpoints in Rσ ∪ {0,+∞}.

Now, let R = ∪σ∈ΣRσ, and set ρ = |R|. Observe that
ρ ≤ 2k|Σ| = 2k(2nW +1)k+1. Renumber the points in R so
that R = {r1, . . . , rρ}, r1 ≤ · · · ≤ rρ, and let Ij = (rj , rj+1)
for j = 1, . . . , ρ − 1; also, set I0 = (0, r1), Iρ = (rρ,+∞).
Clearly, for each j = 1, . . . , ρ − 1 and for each σ ∈ Σ the
function δσ(·) remains constant on Ij , and, consequently,
ϕn(·) is also constant on Ij . We refer to the points in R as
phase transitions.

We will now describe how ϕn(·) changes at a point rj ∈ R,
j = 1, . . . , ρ. Pick some r−j ∈ Ij−1 and r+j ∈ Ij . The signa-
tures in Σ can be classified into the following five categories
with respect to j:

• Σ0
j = {σ | δσ(r−j) = δσ(r+j)};

• Σ1
j = {σ | δσ(rj) = δσ(r+j) = 1, δσ(r−j) = 0};

• Σ2
j = {σ | δσ(rj) = δσ(r+j) = 0, δσ(r−j) = 1};

• Σ3
j = {σ | δσ(rj) = δσ(r−j) = 1, δσ(r+j) = 0};

• Σ4
j = {σ | δσ(rj) = δσ(r−j) = 0, δσ(r+j) = 1}.

Further, for any signature σ ∈ Σ it is easy to determine
which of these five categories it belongs to: it suffices to
check whether the polynomials f1

σ(·) and f2
σ(·) change sign

at rj (and, if yes, what is the direction of this change).
If σ ∈ Σ0

j , its contribution to the Shapley value of player n

does not change as t increases from r−j to r+j . The contribu-

tion of sets with signatures in Σ1
j ∪Σ2

j is constant on [r−j , rj)

and [rj , r
+
j], while the contribution of sets with signatures in

Σ3
j ∪Σ4

j is constant on [r−j , rj] and (rj , r
+
j]. Thus, we obtain

ϕn(rj) = ϕn(r−j) (3)

+

n−1∑
s=0

s!(n− s− 1)!(
∑
σ∈Σ1

j

X[σ, s]−
∑
σ∈Σ2

j

X[σ, s])

and

ϕn(r) = ϕn(rj) (4)

+

n−1∑
s=0

s!(n− s− 1)!(
∑
σ∈Σ4

j

X[σ, s]−
∑
σ∈Σ3

j

X[σ, s])

for all r ∈ Ij .

This analysis suggests the following procedure for deciding
Int-Shapley. We start by evaluating ϕn(t) at t = 0: this
requires substituting t = 0 into the polynomials f1

σ(·) and
f2
σ(·) for all σ ∈ Σ, and using expression (2). We check if
the result belongs to [L,U], and output “no” and stop if this
is not the case (recall that we assume t0 = 0).

We then process the points in R one by one, from left
to right. For each j = 1, . . . , ρ, we first use equation (3) to
compute the Shapley value of player n at rj given his Shapley
value on Ij−1. Having computed ϕn(rj), we use equation (4)
to compute the Shapley value of player n on Ij . We output
“no” and stop if at any point in the computation we obtain a
value that does not belong to [L, U]. If ϕn(·) stays between
L and U for all rj , j = 1, . . . , ρ and on all Ij , j = 0, . . . , ρ,
we output “yes”.

The difficulty with implementing this procedure is that
it seems to require computing the set R, which consists of
roots of polynomials of degree up to k, and therefore may
contain points in R \ Q. However, it is not hard to see
that we can work with the interval representation of R in-
stead. Indeed, to implement our algorithm it suffices to have
a sorted list of the elements of R, and, for each rj ∈ R, to
be able to compute the sets Σ�

j , � = 1, . . . , 5. Now, the
interval representation (I, L) of R allows us to sort the ele-
ments of R. Further, to decide whether a given polynomial
σ belongs to Σ�

j , � = 1, . . . , 5, it suffices to check whether
σ ∈ L(Ij) and, if the answer is positive, to evaluate σ at
the endpoints of Ij , where Ij is the interval associated with
rj . The endpoints of all intervals in I are rational numbers
that have been computed in time polynomial in ||W ||2k+1,
so their bit representation is of size polynomial in ||W ||2k+1.
Consequently, one can evaluate σ at these points in time
polynomial in ||W ||2k+1. Hence, for t0 = 0, t1 = +∞ the
problem Int-Shapley can be solved in time polynomial in
nk, W k, ||L||, and ||U ||, as required.

If t0, t1 can be arbitrary, we proceed in the same manner,
starting from t = 0; however, we only check that the result
of our computation belongs to [L, U] for points that lie in
[t0, t1] and intervals that intersect [t0, t1].

Example 4.3. Consider a dynamic weighted voting game
with a set of players N = {1, 2, 3}, weights w1(t) = 2t,
w2(t) = 3 − t, w3(t) = 1, quota q(t) = 3, and time interval
[t0, t1] = [0, 2]. Player 3 is pivotal for {1} if 1 ≤ t < 1.5
and for {2} if 0 < t ≤ 1; he is never pivotal for the empty
coalition or for {1, 2}. Thus, we have

ϕ3(t) =

⎧⎪⎨
⎪⎩

0 if t = 0 or t ≥ 1.5
1
6

if 0 < t < 1 or 1 < t < 1.5
1
3

if t = 1

Note that the Shapley value of player 3 at t = 1 differs from
his Shapley value on the adjacent intervals (0, 1) and (1, 1.5).

5. STABILITY IN DYNAMIC WEIGHTED
VOTING GAMES

In this section, we prove analogues of Theorem 4.1 and 4.2
for the least core. That is, we show that Point-LeastCore
and Int-LeastCore admits efficient algorithms as long as
the coefficients of the polynomials that describe the weights
are given in unary. We then explain how to extend these
results to Point-CoS and Int-CoS.

519

Theorem 5.1. An instance of Point-LeastCore given
by a dynamic weighted voting game G(·) = 〈N,w(·), q(·), t0, t1〉
together with a point t ∈ [t0, t1] ∩ Q can be solved in time
poly(nk,W k, ||t||).

Proof. The value of the least core of a weighted vot-
ing game 〈N,w, q〉 can be obtained by solving the following
linear program:

min ε

pi ≥ 0 for each i ∈ N (5)∑
i∈N

pi = 1 (6)

∑
i∈S

pi ≥ 1− ε for each S ⊆ N s. t.
∑
i∈S

wi ≥ q (7)

This linear program is known to possess a separation oracle
whose running time is polynomial in n and w(N) [8]; this im-
plies that it can be solved in pseudopolynomial time [15]. We
will now show that this result can be extended to dynamic
weighted voting games, leading to an efficient algorithm for
Point-LeastCore.

Given a dynamic weighted voting game G(·) and a t ∈
[t0, t1] ∩ Q, let LP(t) be the linear program for the least
core associated with G(t). As t changes from t0 to t1, the
linear program LP(t) changes, too: when a losing coalition S
becomes winning, we add a constraint of the form

∑
i∈S pi ≥

1 − ε, and when a winning coalition S becomes losing, we
remove the corresponding constraint. If sig(S) = sig(T),
the constraints corresponding to S and T are added/deleted
simultaneously. We will use this observation to design a
separation oracle for LP(t), for each t ∈ [t0, t1].

Recall that a separation oracle for LP(t) receives a can-
didate solution (p1, . . . , pn, ε) ∈ Qn+1 as its input; it should
output“yes” if (p1, . . . , pn, ε) satisfies all constraints of LP(t)
and identify a violated constraint otherwise. To implement
such a separation oracle, we proceed as follows.

Consider a candidate solution (p1, . . . , pn, ε). We first
check that it satisfies constraints (5) and (6); this can be
done in time polynomial in the bit size of (p1, . . . , pn, ε).
Then for each signature σ ∈ Σ, let Y [σ] = min{p(S) |
sig(S) = σ}; we use the convention that min ∅ = +∞, i.e.,
if there are no sets with signature σ, then Y [σ] = +∞. One
can think of Y [σ] as a measure of maximal “unhappiness”
of sets whose signature is σ. The quantities Y [σ], σ ∈ Σ,
are easy to compute by dynamic programming. Specifically,
for every j = 1, . . . , n we let Y [σ; j] = min{p(S) | sig(S) =
σ, S ⊆ {1, . . . , j}}. We have Y [σ; 1] = p1 if σ = sig({1})
and Y [σ; 1] = +∞ otherwise. Further, it is not hard to see
that for j > 1 we have Y [σ; j] = min{Y [σ; j − 1], Y [σ −
sig({j}); j − 1] + pj} if σ − sig({j}) ∈ Σ and Y [σ; j] =
Y [σ; j − 1] otherwise. Finally, we have Y [σ] = Y [σ;n]. The
running time of this procedure is polynomial in n, |Σ|, and
the bit size of (p1, . . . , pn, ε).

Having computed Y [σ] for all σ ∈ Σ, we can check for
each σ ∈ Σ whether σ(t) ≥ q(t). This requires evaluating
two polynomials of degree k, which can be done efficiently.
Let Σ+(t) = {σ ∈ Σ | σ(t) ≥ q(t)}; this is the set of signa-
tures that correspond to coalitions that are winning at time
t. Therefore, LP(t) contains a constraint that corresponds
to a coalition S ⊆ N if and only if sig(S) ∈ Σ+(t). We then
compute y(t) = minσ∈Σ+(t) Y [σ]; this requires O(|Σ|) com-
parisons of rational numbers whose bit size is polynomial in
that of (p1, . . . , pn, ε).

Note that y(t) is the minimal payoff that any winning set
gets at time t; therefore, if y(t) ≥ 1− ε, then every coalition
with signature in Σ+(t) (i.e., every coalition that is winning
in G(t)) is paid at least 1 − ε, so we output “yes”. Other-
wise, we identify a coalition S with p(S) = y(t) (this can
be done using standard dynamic programming techniques,
i.e., keeping track of a signature σ∗ such that Y [σ] = y(t),
and some set S∗ such that sig(S∗) = σ∗) and output it.
Clearly, such a coalition corresponds to a violated constraint
of LP(t). Thus, this algorithm correctly implements a sep-
aration oracle for LP(t). Also, its running time is poly-
nomial in nk, W k, ||t||, and the bit size of (p1, . . . , pn, ε).
Hence, we can solve LP(t) (i.e., compute ε∗(G(t))) in time
poly(nk,W k, ||t||).

Theorem 5.2. An instance of Int-LeastCore given by
a dynamic weighted voting game G(·) = 〈N,w(·), q(·), t0, t1〉,
and a pair of points L, U ∈ Q, L < U , can be solved in time
poly(nk,W k, ||L||, ||U ||, ||t0||, ||t1||).

Proof. The argument is similar to the one used in the
proof of Theorem 4.2: we show that [t0, t1] can be divided
into a finite number of intervals so that the value of the least
core remains constant on every such interval and changes in
an easy-to-describe way as we move from one interval to the
other.

In more detail, given a signature σ ∈ Σ, let fσ(t) = σ(t)−
q(t) and let Rσ be the set of non-negative real roots of fσ(·).
Let R = ∪σ∈ΣR

σ and set ρ = |R|; we have ρ ≤ 2k|Σ| =
2k(2nW + 1)k+1. Renumber the points in R so that R =
{r1, . . . , rρ}, r1 ≤ · · · ≤ rρ, and let Ij = (rj , rj+1) for j =
1, . . . , ρ − 1; also, set I0 = (0, r1), Iρ = (rρ,+∞). For each
j = 0, . . . , ρ the set of winning coalitions is the same for all
games G(t) with t ∈ Ij ; consequently, ε

∗(G(t)) is constant
on Ij .

Just as in the proof of Theorem 4.2, we can describe how
ε∗(G(·)) changes at a point rj ∈ R, j = 1, . . . , ρ. Pick some
r−j ∈ Ij−1 and r+j ∈ Ij . The signatures in Σ can be classified
into the following three categories with respect to j:

• Σ⊥
j = {σ | fσ(rj) �= 0};

• Σ↑
j = {σ | fσ(rj) = 0, fσ(r

+
j) > 0, fσ(r

−
j) < 0};

• Σ↓
j = {σ | fσ(rj) = 0, fσ(r

+
j) < 0, fσ(r

−
j) > 0}.

Moreover, for any signature σ ∈ Σ it is easy to determine
which of these categories it belongs to: it suffices to compute
the sign of fσ(·) and all of its derivatives at t = rj .

Recall that we denote by Σ+(t) the set of all signatures
that correspond to coalitions that are winning in G(t) (cf.
the proof of Theorem 5.1). We have

Σ+(rj) = Σ+(r−j) ∪ Σ↑
j

and

Σ+(r) = Σ+(rj) \ Σ↓
j for all r ∈ Ij .

Note that Σ+(r−j) contains Σ↓
j and Σ+(r) = Σ+(rj) \Σ↓

j for
all r ∈ Ij . Further, we have shown in the proof of Theo-
rem 5.1 that we can efficiently compute ε∗(G(t)) as long as
we know Σ+(t). Thus, we can now proceed as in the proof
of Theorem 4.2: we start at t = 0, compute Σ+(0) and
ε∗(G(0)), and then process the points in R one by one, re-
computing Σ+ and the value of the least core at each point

520

rj and for each interval Ij , j = 1, . . . , ρ. Further, we can
avoid computing the set R explicitly; this can be shown in
the same way as in the proof of Theorem 4.2.

Theorems 5.1 and 5.2 can be extended to Point-CoS and
Int-CoS. To see this, note that the cost of stability of a
weighted voting game G(t) can be obtained as a solution to
a linear program that is very similar to LP(t): we replace
constraints (6) and (7) with

∑
i∈N

pi = 1 + ε

and ∑
i∈S

pi ≥ 1 for each S ⊆ N s. t.
∑
i∈S

wi ≥ q,

respectively. It is easy to see that the arguments in the
proofs of Theorems 5.1 and 5.2 apply to this linear program
mutatis mutandis.

6. EMPIRICAL RESULTS
In this section we use a modified version of our algorithm
for Int-Shapley to analyze the power distribution in the
European Union over the next 50 years.

Recall that decision-making in the Council of the Euro-
pean Union (the EU Council) under the Treaty of Lisbon
can be modeled by a 27-player vector weighted voting game
of dimension 2 (see Example 2.1). One of the weight vec-
tors in this game corresponds to the states’ population, and
therefore this game evolves over time. While we presented
our model and results for weighted voting games rather than
for vector weighted voting games of arbitrary dimension, it
is easy to see that both the model itself and the algorithms
described in Sections 4 and 5 can be extended to vector
weighted voting games; moreover, our algorithms still run
in pseudopolynomial time if the dimension of the game is
bounded by a constant. Thus, the framework proposed in
this paper can be used to analyze the changes in the mem-
bers’ voting power.

Of course, we do not know for sure what the population
of each member state will be in the future. However, we can
use statistical data to extrapolate the current demographic
trends. In our experiments, we have used statistical data
on the EU states’ population from the last decade1 in order
to predict the populations of EU member states via linear
regression analysis. We have generated linear estimates of
population growth for each of the 27 member states2. That
is, for each state we have obtained a polynomial of degree 1
describing its population growth. We have normalized the
weight of each country to percentiles with a single decimal
point (i.e. 33.3%), for ease of computation.

We have extended the algorithm described in Theorem 4.2
to vector weighted voting games and implemented it in C++.
However, instead of invoking the dynamic programming al-
gorithm, i.e., enumerating all possible signatures, we sim-
ply enumerated all possible coalitions: for 27 players and
weights that can take 1000 different values (.1, . . . , 99.9, 100)

1Data was obtained from the European Commission Depart-
ment of Statistics (Eurostat) [1].
2Using linear estimates also means that we do not have to
deal with irrational numbers—see the proof of Theorem 4.2.

the latter approach turns out to be more efficient. We em-
phasize, however, that the dynamic programming-based ap-
proach would also be feasible and scales better with the num-
ber of players, so it is plausible that it would have been a
better choice for a larger number of players.

Max Min
Austria 0.0199584 (2061) 0.0182570 (2012)

Belgium 0.0259888 (2061) 0.0222924 (2013)
Bulgaria 0.0167102 (2014) 0.0106988 (2055.5)

Cyprus 0.0075948 (2059) 0.0064017 (2020.5)
Czech Republic 0.0218486 (2039) 0.0210618 (2039.5)

Denmark 0.0149227 (2061) 0.0142745 (2012)
Estonia 0.0075948 (2059) 0.0071847 (2020.5)
Finland 0.0140850 (2061) 0.0134919 (2012)
France 0.1294509 (2060) 0.1200631 (2012)

Germany 0.1585939 (2012) 0.1245375 (2060.5)
Greece 0.0242410 (2061) 0.0231040 (2013)

Hungary 0.0208000 (2020) 0.0181716 (2054)
Ireland 0.0165897 (2061) 0.0119190 (2012)

Italy 0.1162729 (2056) 0.1101284 (2012.5)
Latvia 0.0088840 (2014) 0.0074231 (2049)

Lithuania 0.0104944 (2018) 0.0089559 (2043)
Luxemburg 0.0068000 (2059) 0.0064017 (2020.5)

Malta 0.0059956 (2059) 0.0056207 (2020.5)
Netherlands 0.0340808 (2060) 0.0320960 (2013)

Poland 0.0700801 (2015) 0.0654310 (2059.5)
Portugal 0.0233734 (2061) 0.0214740 (2013.5)
Romania 0.0399632 (2012) 0.0286066 (2059.5)
Slovakia 0.0137573 (2037) 0.0129451 (2039.5)
Slovenia 0.0089034 (2018) 0.0080772 (2028)

Spain 0.1079667 (2061) 0.0822549 (2012)
Sweden 0.0216593 (2061) 0.0198683 (2013)

UK 0.1179877 (2053) 0.1151077 (2014)

Table 1: The maximal and minimal Shapley values
of all EU states, based on a linear population growth
estimate. The number in brackets denotes the year
at which the minimum (or maximum) is reached.

It turns out that even when we round the weights to obtain
a more tractable instance, the number of time steps in which
a phase transition occurs remains quite large, well over tens
of thousands. Phase transitions seem to be fairly evenly
dispersed over time. In other words, even under a highly
simplified model of population dynamics in the EU, power
shifts occur very often. One may argue that, in practice,
a country’s weight only changes after a population census
has been conducted, but it is plausible that in the future
population registries will be maintained electronically, and
daily updates of the voting weights would become feasible,
making frequent power shifts a reality.

In Table 1 we have used biannual measurements to obtain
predictions on the Shapley value of member states. As Ta-
ble 1 shows, it is impossible for any member state to become
a dummy player; however, there are countries whose voting
power changes significantly over the years. For instance, Ire-
land and Spain enjoy an increase of ∼ 39% and ∼ 31% in
voting power, respectively, in 50 years’ time; Bulgaria and
Germany on the other hand, stand to lose ∼ 35% and ∼ 22%

521

of their voting power, respectively (see Table 2). This shift
in voting power displaces Germany from its position as the
most influential member state in the EU Council, making
France the player with the highest Shapley value.

0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

2012 2017 2022 2027 2032 2037 2042 2047 2052 2057

Sh
ap

le
y

Va
lu

e

Table 2: The change in Shapley value for Germany,
using a linear estimate for population size, project-
ing 50 years ahead.

Our experiments demonstrate that changes in power occur
often, and the power distribution can shift dramatically in
a short period of time, especially in the presence of states
that undergo dramatic population increases. For example,
should the state of Turkey join the European Union, this is
likely to result in dramatic shifts in voting power, not only
due to Turkey being a large state, but also because of its
relatively high population growth rate.

We remark that the issue of power shifts in the EU Council
of Members under the Treaty of Lisbon has been recently
investigated by Kóczy [11]. However, in contrast with our
work, Kóczy simply uses existing software and population
estimates for computing the Shapley values at several points
in the future. His results are broadly similar to ours; the
discrepancies can be explained by using different methods
for predicting the population of the member states.

7. CONCLUSIONS AND FUTURE WORK
We have introduced the notion of dynamic weighted voting
games, which model weighted voting games that evolve over
time. We developed algorithms for answering natural com-
putational questions about such games, and applied them
to understand the dynamics of the Council of the European
Union over the next 50 years. It would be interesting to see if
we can use similar methods to analyze other classes of coali-
tional games where the characteristic function may change
over time, such as, for instance, network flow games [10]
where the arc capacity may go up or down as the time passes,
or matching games with evolving edge values.

Acknowledgements Edith Elkind was supported by Na-
tional Research Foundation (Singapore) under grant RF2009-
08. Dmitrii Pasechnik was supported by Singapore MOE
Tier 2 Grant MOE2011-T2-1-090 (ARC 19/11). Yair Zick
was supported by SINGA graduate fellowship. The first two
authors would like to thank their son Yasha, who was born
6 weeks before the AAMAS submission deadline, for being
cooperative.

8. REFERENCES
[1] Statistical database of the European Union:

Population — Demography.
http://epp.eurostat.ec.europa.eu/portal/
page/portal/population/data/main tables.

[2] Consolidated versions of the Treaty on European
Union and the Treaty on the functioning of the
European Union. Publications Office of the European
Union, Luxembourg, 2010.

[3] E. L. Allgower and K. Georg. Introduction to
numerical continuation methods, volume 45 of Classics
in Applied Mathematics. SIAM, Philadelphia, PA,
2003.

[4] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik,
M. Zuckerman, J. Rothe, and J. S. Rosenschein. The
cost of stability in coalitional games. In SAGT’09,
pages 122–134, 2009.

[5] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real
algebraic geometry, volume 10 of Algorithms and
Computation in Mathematics. Springer-Verlag, second
edition, 2006.

[6] Y. Bugeaud and M. Mignotte. Polynomial root
separation. International Journal of Number Theory,
6(3):587–602, 2010.

[7] G. Chalkiadakis, E. Elkind, and M. Wooldridge.
Computational Aspects of Cooperative Game Theory.
Morgan and Claypool, 2011.

[8] E. Elkind, L. Goldberg, P. Goldberg, and
M. Wooldridge. On the computational complexity of
weighted voting games. Annals of Mathematics and
Artificial Intelligence, 56(2):109–131, 2009.

[9] D. Felsenthal and M. Machover. Ternary voting
games. International Journal of Game Theory,
26(3):335–351, 1997.

[10] E. Kalai and E. Zemel. Totally balanced games and
games of flow. Mathematics of Operations Research,
7(3):476–478, 1982.

[11] L. A. Kóczy. Beyond Lisbon: Demographic trends and
voting power in the European Union Council of
Ministers. Mathematical Social Sciences,
63(2):152–158, 2012.

[12] D. Leech. Designing the voting system for the Council
of the European Union. Public Choice,
113(3):437–464, 2002.

[13] M. Maschler, B. Peleg, and L. S. Shapley. Geometric
properties of the kernel, nucleolus, and related
solution concepts. Mathematics of Operations
Research, 4(4):303–338, 1979.

[14] T. Matsui and Y. Matsui. A survey of algorithms for
calculating power indices of weighted majority games.
Journal of the Operations Research Society of Japan,
43(1):71–86, 2000.

[15] A. Schrijver. Theory of Linear and Integer
Programming. Wiley, Chichester, 1986.

[16] L. Shapley and M. Shubik. A method for evaluating
the distribution of power in a committee system. The
American Political Science Review, 48(3):787–792,
1954.

[17] L. S. Shapley. A value for n-person games. In H. W.
Kuhn and A. W. Tucker, editors, Contributions to the
Theory of Games, volume II, pages 307–317.
Princeton University Press, 1953.

522

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

