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ABSTRACT

Dec-POMDPs are a powerful framework for planning in mul-
tiagent systems, but are provably intractable to solve. De-
spite recent work on scaling to more agents by exploiting
weak couplings in factored models, scalability for unrestricted
subclasses remains limited. This paper proposes a factored
forward-sweep policy computation method that tackles the
stages of the problem one by one, exploiting weakly coupled
structure at each of these stages. To enable the method to
scale to many agents, we propose a set of approximations:
approximation of stages using a sparse interaction structure,
bootstrapping off smaller tasks to compute heuristic payoff
functions, and employing approximate inference to estimate
required probabilities at each stage and to compute the best
decision rules. An empirical evaluation shows that the loss
in solution quality due to these approximations is small and
that the proposed method achieves unprecedented scalabil-
ity, solving Dec-POMDPs with hundreds of agents.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms, Performance

Keywords

Multi-agent planning, factored decentralized partially ob-
servable Markov decision processes.

1. INTRODUCTION
A key challenge of collaborative multiagent decision mak-

ing is the presence of imperfect information [2]. Even in
single-agent settings, incomplete knowledge of the environ-
ment’s state (e.g., due to noisy sensors) complicates decision
making. However, multiagent settings often exacerbate this
problem, as agents have access only to their own sensors.
This paper focuses on the finite-horizon decentralized par-

tially observable Markov decision process (Dec-POMDP) [2,
18], a model that can represent such problems under uncer-
tainty. We consider factored Dec-POMDPs [21], which—by
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explicitly representing the structure present in the problem—
open the door to methods that exploit this structure and
thus scale to many more agents. While there have been pos-
itive results for specific subclasses that restrict the type of
structure [1, 12, 33, 32], so far only moderate scalability has
been achieved for general Dec-POMDPs. Since even find-
ing an ǫ-approximate solution is NEXP-complete [24], any
method that is guaranteed to be computationally efficient
cannot guarantee an absolute bound on the error. There-
fore, in this paper, we abandon optimality guarantees and
aim for scalability in the number of agents.

In particular, we propose an approximate approach based
on forward-sweep policy computation (FSPC), a technique
that approximates the Dec-POMDP by a series of one-shot
Bayesian games (BGs), one for each stage [5, 20]. Our
method, called factored FSPC (FFSPC), exploits weakly
coupled structure at each stage by replacing the BGs with
collaborative graphical BGs (CGBGs). The main algorith-
mic contribution of the paper is a set of approximations
necessary to make FFSPC feasible for problems with many
agents. First, we approximate the interaction structure be-
tween agents by constructing CGBGs with a predefined fac-
torization. Second, instead of following the common practice
of solving the underlying (PO)MDP, we employ a new class
of heuristics based on transfer planning that directly approx-
imate the factored Dec-POMDP value function. Third, we
use approximate inference to efficiently construct the CG-
BGs. Finally, we approximately solve the CGBGs by apply-
ing Max-Sum to their agent and type independence factor
graphs.

We present an extensive empirical evaluation that shows
that FFSPC is highly scalable with respect to the number
of agents, while attaining (near-) optimal values. A detailed
analysis of our approximation indicates no significant de-
crease in value due to sparse factorization and approximate
CGBG construction, and that the transfer planning heuris-
tics significantly outperform two baselines. Finally, we test
the limits of scalability of FFSPC, showing that it is able to
scale to 1000 agents, in contrast to previous approaches for
general factored Dec-POMDPs, which have not been demon-
strated beyond 20 agents.

2. FACTORED DEC-POMDPS
In a Dec-POMDP, multiple agents must collaborate to

maximize the sum of the common rewards they receive over
multiple timesteps. Their actions affect not only their im-
mediate rewards but also the state to which they transition.
While the current state is not known to the agents, at each
timestep each agent receives a private observation correlated
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Figure 1: The 2DBN and ~θ-DBN (explained in
Sec. 4.3) for FFG.

with that state. In a factored Dec-POMDP [21], the state
consists of a vector of state variables and the reward function
is the sum of a set of local reward functions.
A factored Dec-POMDP is a tuple

〈

D,S,A,T,R,O,O,b0,h
〉

,
where

• D = {1, . . . ,n} is the set of agents.

• S = X1 × . . . × X|X| is the factored state space; S is

spanned by a set X =
{

X1, . . . ,X|X|

}

, of state variables
or factors and a state is an assignment of all factors
s = 〈x1, . . . ,x|X|〉.

• A = ×iAi is the set of joint actions, where Ai is the
set of actions available to agent i.

• T is a transition function specifying the state transition
probabilities Pr(s′|s,a).

• R = {R1, . . . ,Rρ} is the set of ρ local reward func-
tions. These correspond to an interaction graph [16]
with (hyper-) edges E such that the total immediate
reward R(s,a) =

∑

e∈E Re(xe,ae).

• O = ×iOi is the set of joint observations o = 〈o1,...,on〉.

• O is the observation function, which specifies observa-
tion probabilities Pr(o|a,s′).

• b0 is the initial state distribution at time t = 0.

• h is the horizon, i.e., the number of stages. We consider
the case where h is finite.

The goal of planning in a Dec-POMDP is to find a joint
policy π = 〈π1, . . . ,πn〉 that maximizes the expected cu-
mulative reward. A policy πi specifies an action for each

action-observation history (AOH) ~θ t
i = (a0

i ,o
1
i , . . . ,a

t−1
i ,oti),

(so πi(~θ
t
i ) = at

i), but without loss of optimality we can re-
strict our search to deterministic policies that map each ob-
servation history (o1i , . . . ,o

t
i) = ~o t

i ∈ ~Ot
i , for each stage t, to

an action: πi(~o
t
i ) = at

i. A decision rule δti of agent i is the
part of its policy that specifies actions just for stage t. That
is, δti maps observation histories ~o t

i to actions ai.
The transition and observation model in a factored Dec-

POMDP can be compactly represented in a two-stage dy-
namic Bayesian network (2DBN) [3]. Fig. 1 shows the 2DBN
for ‘fire-fighting graph’ (FFG), a benchmark problem where
a team of agents must put out as many fires as possible but
each agent can fight fire only at its two nearest houses [17].
Assuming a Dec-POMDP is factored is not restrictive

since every Dec-POMDP can be converted to a factored one
with just one factor. However, the formalism is most useful
when the problem is weakly coupled, i.e., when the 2DBN

contains sufficient conditional independence. This paper fo-
cuses on approximate methods that effectively exploit such
independence to solve Dec-POMDPs with large numbers of
agents. Because we do not make any restrictive assumptions
about the factored Dec-POMDP, our approach is completely
general, though the amount of expected speedup depends on
how much structure is present.

3. FACTORED FSPC
Forward-sweep policy computation (FSPC) is an approxi-

mate solution method for (non-factored) Dec-POMDPs that
works by solving a series of collaborative Bayesian games
(CBGs), one for each stage of the Dec-POMDP [5, 20]. In
this section, we extend FSPC to the factored setting to
create FFSPC, which replaces the CBGs from FSPC with
collaborative graphical Bayesian games (CGBGs) [21, 22].
Doing so opens the door to exploiting (conditional) inde-
pendence between agents and thereby potentially much bet-
ter scalability in the number of agents. The possibility of
FFSPC was already mentioned in [21], but this paper de-
velops and empirical evaluates this idea. Moreover, FFSPC
depends on the availability of a factored heuristic, which
has not been proposed, and in its naive form is still lim-
ited to small numbers of agents. In this paper we propose
a number of approximation techniques that enable a novel,
scalable, version of FFSPC. A more detailed description of
some of these proposed ideas can be found in [17].

At a high level, FFSPC works by repeatedly construct-
ing and solving CGBGs for consecutive stages. It starts by
constructing a CGBG for t = 0, the solution to which is a
joint decision rule δ0. This δ0 induces a partial joint pol-
icy ϕ1 = (δ0), which in turn induces a CGBG for the next
stage t = 1. Solving this CGBG leads to δ1, and hence
ϕ2 = (δ0, δ1), etc. The algorithm ends when the CGBG for
the last stage t = h− 1 is solved, at which point a full joint
policy π = (δ0, . . . , δh−1) has been constructed.

The CGBG for stage t, given ϕt, consists of the follow-
ing components: 1) the set of agents D and their joint ac-
tions A are the same as in the Dec-POMDP, 2) given ϕt =

〈ϕt
1, . . . ,ϕ

t
n〉, each agent i has a set of AOHs ~θ t

i consistent
with its past policy ϕt

i (called types in Bayesian game termi-

nology), 3) a probability over joint AOHs Pr(~θt|b0,ϕt), and
4) a set of local heuristic payoff functions {Q1

ϕt , . . . ,Q
ρ

ϕt}.

As in regular FSPC, Pr(~θt|b0,ϕt) =
∑

st Pr(s
t,~θt|b0,ϕt).

However, discussed in Sec. 4, we also use local joint AOH

probabilities Pr(~θt
e|b

0,ϕt). Regular FSPC relies on heuris-
tic Q-value functions, such as QMDP, QPOMDP and QBG,

to specify the heuristic payoff function Q(~θt,a) [20]. In
FFSPC, however, the local payoff functions depend on the
actions and AOHs of a subset of agents and their sum is
the expected cumulative reward for the remaining stages:

Q(~θt,a) =
∑

e∈E Qe
ϕt(~θ

t
e, ae). This means that FFSPC

requires a factored Q-value function to use as its heuris-
tic, but so far no practical candidates have been proposed.
Still, we know that such a decomposition is possible since
the Q-function of every joint policy is factored [21]. How-
ever, in general, each local component Qe of such a Q-
function depends on a subset of state factors (the state factor
scope X(e)) and the AOHs and actions of a subset of agents

(the agent scope A(e)): Qe(xt
X(e),

~θt
A(e),aA(e)) (abbreviated

Qe(xt
e,~θ

t
e,ae)). Fortunately, given a past joint policy ϕt, we
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can construct the local payoff functions for the CGBG from
these local Q-functions:

Q
e
ϕt(~θ

t
e,ae) =

∑

x
t
e

Pr(xt
e|~θ

t
e,b

0
,ϕ

t)Qe(xt
e,~θ

t
e,ae). (3.1)

The solution of a CGBG is thus given by:

δ
t∗ = argmax

δt

∑

e∈E

∑

~θt
e

Pr(~θt
e|b

0
,ϕ

t)Qe
ϕt(~θ

t
e,δ

t
e(~θ

t
e)), (3.2)

where δt
e(~θ

t
e) is the local joint action under policy δt given

local joint type ~θt
e. The CGBG can be solved optimally

using non-serial dynamic programming (NDP) by exploiting
independence in the CGBG but this is efficient only when
the corresponding factor graph has low induced width [21].
Although there are no guarantees when applying FFSPC

with an approximate Q-value function as the heuristic, it
is in principle an exact method: it yields the optimal so-
lution when using an optimal Q-value function [21]. Also,
(factored) FSPC is closely related to variants of multiagent
A* [28, 20]; these methods compensate for lack of an op-
timal heuristic by using an admissible heuristic in combi-
nation with backtracking. However, multiagent A* cannot
scale one horizon beyond simple brute-force search [26] be-
cause it relies on full expansion of all non-leaf nodes to allow
the backtracking.1 FSPC does not backtrack, and hence
does not suffer from this problem. Moreover, despite the
lack of backtracking, it still affords good solutions in many
cases [20], making it a good starting point for an efficient
approximate method.

4. FACTORED FSPC FOR MANY AGENTS
The main goal of this paper is to develop an approxi-

mate method for factored Dec-POMDPs that can scale to
many agents. Because it exploits structure between agents,
FFSPC has the potential to scale in this fashion. However,
there are a number of barriers that prevent a direct appli-
cation of FFSPC to Dec-POMDPs with many agents from
being feasible. The main contribution of this paper is a set
of approximations to overcome these barriers.
In particular, this section describes four barriers and pro-

poses an approximation to address each one. As a result
of these heuristic approximations, no theoretical guarantees
about FFSPC’s solution quality can be made. However,
due to the immense difficulty of the Dec-POMDP setting
and the fact that computing even bounded approximations
is NEXP-complete [24], such heuristics are necessary to con-
struct an efficient and scalable method. In addition, we
demonstrate in Section 5 that, in practice, this approach
enables the (near-)optimal solution of Dec-POMDPs with
many more agents than would otherwise be possible.

4.1 Predetermined Scope Structure
While FFSPC is exact when using an optimal factored

Q-value function Q∗, computing such a Q∗ is intractable,
just as in the non-factored setting [20]. However, even if we
could compute Q∗, the scopes of its components Qe would
contain many (or all) agents and state factors for earlier
stages, because these scopes grow when performing value
backups from the last stage towards the earlier stages [21].
Consequently, the first barrier to making FFSPC scalable

1Incremental expansion [27] can mitigate this problem.

is that, even if we could compute Q∗, the resulting CGBGs
would not be efficiently solvable. Therefore, we must ap-
proximate not only the values of the Q-function, but also its
factorization.

To this end, we propose to use factored Q-value functions
with predetermined scope structure, i.e., for each stage we
specify the scope for each component of the Q-function. For
instance, such a scope structure could simply use the imme-
diate reward scopes at each stage. Alternatively, it could use
the optimal scopes for the last two stages (i.e., immediate
reward scopes for t = h − 1 and the back-projection of the
immediate reward scopes for t = h−2) and then continue to
use the scopes specified for h− 2 for the remaining stages.

To understand the motivation for this approximation, con-
sider an extreme example of weakly coupled structure: tran-
sition and observation independent (TOI) Dec-POMDPs. In
such problems, agents have their own local states and can-
not influence the transitions or observation of one another.
As a result, in the TOI case (e.g., in ND-POMDPs), op-
timal scopes equal those of the factored immediate reward
function [16, 21]. However, it is likely that in many cases
where agents are weakly coupled (but not completely TOI),
the influence of agent i’s actions on a particular state factor
decreases with the number of links by which ai is separated
from it in the 2DBN. If so, there are many cases for which
a suitable scope structure affords a good approximation. In
this sense, our approach is similar to that of work on factored
(PO)MDPs [11, 8], which assumes that the value function
of a factored MDP is ‘close to factored’. Following the lit-
erature on factored MDPs, we use manually specified scope
structures (this is equivalent to specifying basis functions).
Developing methods for finding such scope structures auto-
matically is an important goal for future work.

4.2 Transfer Planning
A second barrier to scaling FFSPC to many agents is that

the heuristic payoff functions such as QMDP and QPOMDP

that are typically used for small non-factored problems can
no longer be computed, since solving the underlying MDP or
POMDP is intractable. In fact, the problem is even more se-
vere for sparsely connected factored Dec-POMDPs: heuris-
tic payoff functions such as QMDP and QPOMDP become fully
coupled through just one backup (due to the maximization
over joint actions that is conditioned on the state or belief),
i.e., these value functions are ‘less factored’ than an optimal
factored Q∗ for the Dec-POMDP.

Therefore, since our aim is to approximate factored Dec-
POMDPs with Q-functions of restricted scope, these heuris-
tics might not be very useful even if we could compute
them. Instead, we propose to compute heuristic payoff func-
tions directly using a new approach, called transfer planning

(TP). TP computes heuristic values Qe
ϕt(~θ

t
e,ae),Qσ(~θt,a)

by solving similar tasks σ with fewer agents and using their
value functions Qσ.

We call this approach transfer planning because it is in-
spired by transfer learning [29]. In reinforcement learning,
transfer learning methods often use value functions learned
on a set of source tasks to construct an initial value function
for a related target task, which is then refined by further
learning. In contrast, we consider a planning task and use
the value functions of smaller source tasks as heuristics for
the larger target task.

For simplicity, in the following we assume some particular
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Table 1: Scopes of 5-agent FFG. Left: immediate
reward scopes, right: reduced scopes of Q∗.

(a) Non-reduced R.

e A(Re) X(Re)

1 {1} {1,2}
2 {1,2} {1,2,3}
3 {2,3} {2,3,4}
4 {3,4} {3,4,5}
5 {4,5} {4,5,6}
6 {5} {5,6}

(b) Reduced Q∗ scopes.

t e A(e,t) X(e,t)

h − 3 1 {1,2,3,4,5} {1,2,3,4,5,6}

h−2
1 {1,2,3,4} {1,2,3,4}
2 {2,3,4,5} {2,3,4,5,6}

h−1

1 {1,2} {1,2,3}
2 {2,3} {2,3,4}
3 {3,4} {3,4,5}
4 {4,5} {4,5,6}

stage t. We formalize TP using the following components:

• Σ, the set of source problems σ ∈ Σ;
• Dσ = {1σ, . . . ,nσ}, the agent set for source problem σ;
• E maps each Q-value component e to a source problem

E(e) = σ ∈ Σ;

• Ae : A(e) → DE(e) maps agent indices i ∈ A(e) in the
target task to indices Ae(i) = jσ ∈ Dσ in the source
task σ for that particular component σ = E(e).

With some abuse of notation, we overload Ae to also work
on profiles of agents, actions and histories, e.g., we write

〈~θ t
Ae(i)〉i∈e = ~θt

Ae(e). Given a set of source problems and
some (heuristic) Q-value functions for them, the transfer
planning Q-value function Q

TP
is defined as

Q
e
TP(~θ

t
e,ae),Q

σ(~θt
Ae(e),aAe(e)), σ = E(e). (4.1)

Thus, we only have to define the source problems, define
the corresponding mapping Ae for each component e, and

find a heuristic Q-value function Qσ(~θt,a) for each source
problem. Since the source problems are typically chosen to
be small, we can treat them as non-factored and use the
heuristic QMDP, QPOMDP and QBG value functions [20], or
even the true Dec-POMDP value functions.
Since no formal claims can be made about the resulting

approximate Q-values, we cannot guarantee that they con-
stitute an admissible heuristic. However, since we rely on
FSPC, which does not backtrack, an admissible heuristic
is not necessarily better. Performance depends on the ac-
curacy, not the admissibility of the heuristic [20]. The ex-
periments we present in Section 5 demonstrate that these
approximate Q-values are accurate enough to enable high
quality solutions.

Example 1. To illustrate the application of Q
TP

, we con-
sider the 5-agent FFG problem, which has 6 houses. How-
ever, the immediate reward scopes of the first and last house
are sub-scopes of other scopes as illustrated in Table 1(a)
and as such we can reduce them such that the desired Q-
value function will be factored as shown in Table 1(b) (at
h − 1). We propose to use 2-agent FFG as the source task
for each of the four components. The agent mapping is de-
fined such that the agent with the lower index is mapped
to 1σ and the agent with the higher index to 2σ. E.g., for
e = 3, Ae(3) = 1σ,Ae(4) = 2σ. Finally, computation of,
e.g., QMDP for 2-agent FFG provides the values to define
Qe

TP using (4.1).

4.3 Approximate Inference
The third barrier to scaling FFSPC lies in the marginal-

ization required to compute the probabilities needed to con-
struct the CGBG for stage t. In particular, constructing

each CGBG requires generating each component e sepa-
rately. However, as (3.1) shows, in general this requires

the probabilities Pr(xt
e|~θ

t
e,b

0,ϕt). Moreover, in any effi-
cient solution algorithm for Dec-POMDPs, the probabilities

Pr(~θt
e|b

0,ϕt) are necessary, as illustrated by (3.2). Since

maintaining and marginalizing over Pr(s,~θt|b0,ϕt) is intract-
able, we resort to approximate inference, as is standard prac-
tice when computing probabilities over states with many fac-
tors. Such methods perform well in many cases and their
error can be theoretically bounded [4].

In particular, we use the factored frontier algorithm [15]

to perform inference on a DBN, which we call ~θ-DBN, con-
structed for the past joint policy ϕt under concern. This
~θ-DBN, illustrated in Fig. 1(b), models stages 0, . . . ,t and
has both state factors and action-observation histories as its
nodes. The dynamics of the ~θ-DBN follow from those of
the original DBN given ϕt. This formulation can be fur-
ther generalized to allow influence of other agents’ actions

and observations on ot+1
i and thus ~θ t+1

i . For simplicity, we
consider only the above setting here.

Starting at t = 0, factored frontier represents the distribu-
tion in a fully factored form, i.e., as the product of marginal

probabilities p(xt
i) and p(~θ t

i ). Given such a distribution for
a stage t, the next-stage distribution can be approximately
computed by directly computing the new marginals on each

node Xt+1
i (either xt+1

i or ~θ t+1
i ): the node’s CPT is mul-

tiplied by the marginals of its parents Xt
P1

. . . Xt
Pl

and the
parents are marginalized out directly. Given the completely
factored distribution as computed by factored frontier, we
can estimate local probabilities using

∀e Pr(xt
e,~θ

t
e|b

0
,ϕ

t) ≈
∏

i∈X(Qe)

p(xi)
∏

i∈A(Qe)

p(~θ t
i ). (4.2)

However, the special structure of the ~θ-DBN enables a
slightly more accurate representation that makes use of the
intermediate results of the factored frontier algorithm. This
is particularly important when using heuristic Q-functions of
the form Qe(xt

e,a
t
e) (as do some baselines in our experimen-

tal evaluation): using (4.2) would then result in a heuristic

that specifies the same payoff for all ~θt
e (cf. (3.1)).

To overcome this problem, we propose to perform the com-
putation of the new marginals in a fixed order: first the

marginals of all state factors xj , then the marginals of all ~θi.

These latter ~θi marginals are computed in two phases. The
first phase marginalizes only over the parents in the previ-
ous time slice. This leads to a nearly completely factored
distribution p:

p(s,~θ) =

|X|
∏

j=1

p(xj) ·
n
∏

i=1

p(~θi|xI), (4.3)

where xI denotes the set of state factors from the same time

slice that influence the probability of ~θi. This distribution

can now be used to compute Pr(xt
e|~θ

t
e,b

0,ϕt) in (3.1). In the
second phase, the xI are also marginalized out.

4.4 Approximate Solution of CGBGs
The fourth barrier to scaling FSPC is the need to ef-

ficiently solve the large CGBGs constructed as described
above. While optimal solutions can be computed via non-
serial dynamic programming (NDP) [21], this approach will
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not scale well, as it constructs a factor graph where the vari-
ables are entire decision rules, the number of which grows
doubly exponentially with the horizon. Moreover, NDP
scales exponentially in the induced width of the graph, which
can be large if there are many agents.
However, in recent work we showed that CGBGs contain

additional structure called type independence [17, 22]: for
a particular agent, the action choice for one AOH is condi-
tionally independent of the action choice for another AOH.
While this structure cannot be exploited effectively by NDP
because it induces a high width, the popular Max-Sum al-
gorithm [10, 7, 9, 25] can effectively exploit the structure
via an agent and type independence (ATI) factor graph [22].
Here, each variable is the action taken for a particular type
(i.e., AOH) of a particular agent, and each factor is the con-
tribution (to the expected value) of a local joint type. The
resulting solution method is exponential only in a param-
eter k, the maximum number of agents participating in a
payoff function (but not in the number of histories), and
was empirically shown to lead to (near-)optimal solutions at
low computational costs on a range of CGBGs [22]. We em-
ploy this combination of Max-Sum applied to the ATI factor
graph to solve the CGBGs in FFSPC.

5. EXPERIMENTS
We evaluate FFSPC on two problem domains: FFG and

Aloha [17]. The latter consists of a number of islands that
each need to regularly transmit radio messages to its local
population. However, transmissions of neighboring island
will lead to collisions. We consider a number of island con-
figurations where the islands form a line and one with four
islands in a square configuration. Aloha is considerably
more complex than FFG for several reasons. First, it has 3
observations per agent (transmission, no transmission, colli-
sion), which means that the number of observation histories
grows much faster. Also, the transition model of Aloha is
more densely connected than FFG: the reward component
for each island is affected by the island itself and by all its
neighbors. As a result, in all the Aloha problems we con-
sider, there is at least one immediate reward function whose
scope contains 3 agents, i.e., k = 3. For a more detailed
description of Aloha see [17].
In all cases, we use immediate reward scopes that have

been reduced (i.e., scopes that form a proper sub-scope of
another scope are removed) before computing the factored
Q-value functions. This means that for all stages, the fac-
tored Q-value function has the same factorization.
To compute Q

TP
, the transfer-planning heuristic, for the

FFG problem, we use 2-agent FFG as the source problem
for all the components and map the lower agent index in a
scope to agent 1 and the higher index to agent 2. ForAloha,
we use the 3-island in-line variant as the source problem and
perform a similar mapping (e.g., the lowest agent index in a
scope is mapped to agent 1, the middle to agent 2 and the
highest to agent 3).
To test the efficacy of transfer planning, we compare to

two baselines. The first, naive regression (NR), computes
the non-factored QMDP(s,a) and then applies linear regres-
sion to find the least-squares factored approximation of the
form Q =

∑

e Q
e(xe,ae). While this yields a factored QMDP,

it scales poorly: the numbers of joint actions and states in
the underlying MDP grow exponentially with the numbers
of agents and state factors, respectively. Hence, both the
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Figure 2: FFSPC (ff) solution quality compared to
optimal and the baselines.

solution of the underlying MDP and the regression problem
become intractable. The second approach avoids exact solu-
tion of the underlying MDP by bootstrapping in an approxi-
mate dynamic programming (ADP) algorithm. We extended
techniques from [11] to enable efficient regression.

Reported timing results are CPU times with a resolution
of 0.01s. Each method receives 1 hour of wall-clock time
in which to compute solutions for all considered horizons
(typically h = 2, . . . ,5 or 6). The reported statistics are
means over 10 restarts of each method. Once joint policies
have been computed, we perform 10,000 simulation runs to
estimate their true values.

5.1 Comparison to Optimal Methods
For problems small enough to solve optimally, we com-

pare the solution quality of FFSPC to that of GMAA*-
ICE, a state-of-the-art method for optimally solving Dec-
POMDPs [27]. We use TP with the QMDP and QBG heuris-
tic for the source problems. As baselines, we include a joint
policy that selects actions uniformly at random, and the best
joint policy in which each agent selects the same fixed ac-
tion for all possible histories (though the agents can select
different actions from each other).

Fig. 2 compares FFSPC’s solutions to optimal solutions
on both problems. Fig. 2(a) show the results for FFG with
two (red) and three agents (green). Optimal solutions were
computed up to h = 6 in the former and h = 4 in the latter.
FFSPC with Q

TP
heuristic and using QBG for the source

problem (‘ff QBG’) achieves the optimal value for all these
instances. When using the QMDP TP heuristic (‘ff QMDP’),
results are near optimal. For three agents, the optimal value
is available only up to h = 4. Nonetheless, the curve of
FFSPC’s values has the same shape of as that of the optimal
values for two agents, which suggests these points are near
optimal as well. While the fixed action baseline performs
relatively well for shorter horizons, it is worse than random
for longer horizons because there always is a chance that the
unselected house will keep burning forever.

Fig. 2(b) shows results for Aloha. The QBG TP heuris-
tic is omitted since it performed the same as QMDP. For
all settings at which we could compute the optimal value,
FFSPC matches this value. Since the Aloha problem is
more complex, FFSPC, in its current form, runs out of
memory for higher horizons, because the number of local
joint types for each component grows quickly in the Aloha

problem. For instance, since the immediate reward scopes
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Figure 3: A comparison of FFSPC (ff) with different heuristics and other methods on FFG and Aloha.
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Figure 4: FFG problem. (a), (b) Influence of approximate inference. (c), (d) Comparison of different scopes.

contain 3 agents, the 3-agent problem is fully coupled. Fur-
thermore, the agents have 3 observations, yielding 33 = 27
observation histories (and thus types) per agent, for stage
t = 3. This in turn yields 273 = 19,683 local joint types (and
thus factors) associated with each component of a CGBG for
t = 3. In addition, the fixed action baseline performs sur-
prisingly well, performing optimally for 3 islands and near
optimally for 4 islands. As with FFG, we expect that it
would perform worse for longer horizons: if one agent sends
messages for several steps in a row, its neighbor is more
likely to have messages backed up in its queue.

5.2 Comparison to Approximate Methods
Our goal in proposing FFSPC is to create an algorithm

that is scalable in terms of the number of agents. How-
ever, when increasing the number of agents, optimal meth-
ods break down. Therefore, we perform a comparison to
other approximate methods, including non-factored FSPC

and direct cross-entropy policy search (Dice) [19], one of the
few methods demonstrated to work on Dec-POMDPs with
more than three agents that are not transition and observa-
tion independent. For non-factored FSPC, we use alternat-
ing maximization with 10 restarts to solve the CBGs. For
Dice we use two parameter settings known as Dice-normal
and Dice-fast. In addition, in these experiments we com-
pare the TP heuristic (using QMDP) with ADP and NR.
Fig. 3(a) and (b) show the results for FFG with h =

5. For all numbers of agents except 4, FFSPC finds solu-
tions as good as or better than those of non-factored FSPC,
Dice-normal, Dice-fast, and the fixed-action and random
baselines. In addition, its running time scales much better
than that of non-factored FSPC and even the fixed-action
baseline. Hence, this result highlights the complexity of the

problem, as even a simple baseline scales poorly. FFSPC

also runs substantially more quickly than Dice-normal and
slightly more quickly than Dice-fast, both of which run out
of memory when there are more than five agents. The figures
show that TP is faster than ADP and provides much better
solutions. For 5 and 6 agents, NR finds slightly better solu-
tions than TP, but it performs very badly for 4 agents (inves-
tigation indicated that NR needs to solve an ill-conditioned
systems of equations for 4 agents). Also, NR scales poorly.

Fig. 3(c) and (d) present a similar comparison for Aloha

with h = 3. Dice-fast yielded poor results and is omitted
from these plots. Fig. 3(c) shows that the value achieved
by FFSPC matches or nearly matches that of all the other
methods on all island configurations. TP, especially, per-
forms consistently very well, while ADP and NR have in-
stances with poor value. Fig. 3(d) shows the runtime re-
sults for the inline configurations. While the runtime of
FFSPC is consistently better than that of Dice-normal,
non-factored FSPC and the fixed-action baseline are faster
for fewer agents. Non-factored FSPC is faster for 3 agents
because the problem is fully coupled: there are 3 local payoff
functions, 2 with 2 agents and one with 3 agents (so k = 3).
Thus FFSPC incurs the overhead of dealing with multiple
factors and constructing the FG but gets no speedup in re-
turn. However, the runtime of FFSPC scales better in the
number of agents.

5.3 Analysis of Factored FSPC
The experiments described above evaluate FFSPC against

a large number of baselines and compare the TP heuristic
against the ADP and NR alternatives, on the FFG problem.
Here we report experiments that analyze the other proposed
approximations.
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Figure 5: FFSPC results on FFG with many agents.

To test the influence of approximate inference, we compare
against a variant of Factored FSPC that uses exact infer-
ence. For this comparison, the NR heuristic is used because
it gives fairly good results while depending on inference of
both the states factors and histories to compute the resulting
heuristic, as explained in Sec. 4.3. Fig. 4(a) and (b) show the
results. In Fig. 4(b), exact inference clearly suffers from ex-
ponential scaling with respect to the runtime while approx-
imate inference behaves much better. Fig. 4(a) shows that
this increase in runtime efficiency comes at little cost: typi-
cally there is little or no loss in value, except for 4 agents. As
mentioned, for 4 agents the resulting linear systems become
ill conditioned, leading to very large Q-values, and thus a
change in inference can have a large impact on the solution.
However, these figures also show that this change can go in
either direction: for h = 5 exact inference is much better,
but approximate inference performs better for h = 3, 4.
We also performed experiments to establish the influence

of using different scopes, shown in Fig. 4(c) and (d). In par-
ticular, we compared the use of immediate reward scopes to
two alternatives: optimal scopes (OS) and 1-step back pro-
jected scopes (1SB). For 3 agents, shown in Fig. 4(c), OS
and 1SB are the same, since 1 back-projection fully couples
the problem. For 5 agents, and for h ≥ 3, OS and 1SB
actually specify different scope structures (as illustrated by
Table 1(b)), which allows for different values. Still, Fig. 4(d)
shows that the performance is often the same for these set-
tings too. Using OS or 1SB can result in slightly higher
payoffs than immediate reward scopes, as in Fig. 4(c). How-
ever, the reverse also occurs, as shown in Fig. 4(d).
The approximations introduced by approximate solutions

of the CGBGs are hard to quantify, since the CGBGs of the
sizes we consider cannot be tackled by any other methods
than Max-Sum. However, for small CGBGs the method was
shown to perform near-optimally [22].

5.4 Scaling Up
To determine the limits of the scalability of FFSPC in

the number of agents, we conducted additional experiments
applying FFSPC with the QMDP TP heuristic to FFG with
many more agents. The results, shown in Fig. 5, do not in-
clude a fixed action baseline because it does not scale to the
considered problem sizes (it requires performing simulations
for all considered fixed action joint policies which becomes
expensive for many agents and the number of such joint
policies grows exponentially with the number of agents).
As shown in Fig. 5(a), FFSPC successfully computed so-

lutions for up to 1000 agents for h = 2, 3 and 750 agents for

h = 4. For h = 5, it computed solutions for up to 300 agents;
even for h = 6 it computed solutions for 100 agents, as shown
in Fig. 5(b). Due to lack of space, we omit the values for
h = 5, 6, but we found that that, for the computed entries for
h = 6, the expected value is roughly equal to h = 5. This im-
plies that the probability of any fire remaining at stage t = 5
is close to zero, a pattern we also observed for the optimal
solution in Fig. 2. As such, we expect that the found solu-
tions for these settings with many agents are in fact close to
optimal. The runtime results, shown in Fig. 5(b), increase
linearly with respect to the number of agents. While the
runtime increases with the number of agents, the bottleneck
in our experiments preventing even further scalability was
insufficient memory, not computation time.

6. RELATEDWORK
The work most closely related to ours is that on other ap-

proaches for finite-horizon (factored) Dec-POMDPs. How-
ever, many these approaches, such as MBDP (see, e.g., [26])
are geared towards scaling with respect to the horizon, not
the number of agents. MBDP methods typically use an
MDP heuristic for belief sampling, and the proposed TP
heuristic could be used instead for problems with many
agents. An optimal approach for factored Dec-POMDPs was
shown to scale to three agents [21]. This method is similar
to FFSPC in that it is also based on CGBGs, but, in order
to guarantee optimality, it performs backtracking, only ex-
ploits structure in the last stage, and does not apply any of
the efficiency-increasing approximations we propose. An ap-
proximate approach based on MBDP yielded results for up
to 20 agents [34]. For the (substantially different) infinite-
horizon case there have been results scaling to 10 agents [23].

Many research efforts have focused on special cases that
are more tractable. In particular, assumptions of transition
and observation independence (TOI) [1] have been investi-
gated to exploit independence between agents, e.g., as in
ND-POMDPs [16]. For this latter class, there have also
been a number of improvements in scalability with respect
to the number of agents (up 15 agents) [31, 14, 12, 13].
Recently, [33] proposed transition-decoupled Dec-POMDPs,
which loosen the severe restrictions of TOI. Still, many in-
teresting tasks, such as two robots carrying a chair, can-
not be modeled. Another framework that allows for certain
transition dependencies is the DPCL [30], which depends on
the specification of coordination locales to express in which
states the agents can influence each other. An approximate
solution method was shown to scale to 100 agents [32]. Ex-
cept for the work on TD-POMDPs [33], these approaches,
like our own, do not offer quality guarantees. However, in
contrast to these approaches, FFSPC does not place any re-
strictions on the class of problems that can be represented.

7. CONCLUSIONS
This paper proposed FFSPC, which approximately solves

factored Dec-POMDPs by representing them as a series of
CGBGs. To estimate the payoff functions of these CGBGs,
we computed approximate factored value functions given
predetermined scope structures. We do so via transfer plan-
ning, which uses value functions for smaller source problems
as components of the factored Q-value function for the orig-
inal target problem. An empirical evaluation showed that
FFSPC significantly outperforms state-of-the-art methods
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for solving Dec-POMDPs with more than two agents and
scales well with respect to the number of agents. In partic-
ular, FFSPC found optimal or near-optimal solutions on
problems for which the optimum can be computed. For
larger problems, it found solutions as good as or better than
comparison Dec-POMDP methods in almost all cases and
outperformed the baselines in all cases. Most strikingly,
FFSPC computed solutions for problems that cannot be
tackled by any other methods at all, not even the baselines.
In particular, it found near-optimal solutions and scaled up
to 1000 agents, where previously only problems with small
to moderate numbers of agents (up to 20) had been tackled.
While these results demonstrate that FFSPC substan-

tially advances the state of the art in scaling approximate
Dec-POMDP methods with respect to the number of agents,
its ability to scale with respect to the horizon remains lim-
ited, since the number of types in the CGBGs still grows
exponentially with the horizon. In future work we hope to
address this problem by clustering types [6]. In particular,
by clustering the individual types of an agent that induce
similar payoff profiles, we hope to scale to much longer hori-
zons. When aggressively clustering to a constant number of
types, runtime could even be made linear in the horizon.
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