
Which Mechanism for Sponsored Search Auctions with
Externalities?

Nicola Gatti
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

ngatti@elet.polimi.it

Marco Rocco
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

mrocco@elet.polimi.it

ABSTRACT
Sponsored search is one of the most successful applications
of economic mechanisms in real life. A crucial issue is the
modeling of the user behavior to provide the best target-
ing of ads to each user. Experimental studies show that
the click through rate of an ad is dramatically affected by
both its position and the other displayed ads. However,
these externalities rise severe currently open computational
issues in the determination of the best allocation and of the
payments, preventing their adoption in practice so far. In
the present paper, we provide a number of results when
the most famous externality model, the cascade model, is
adopted: we design the first exact algorithm for computing
the efficient allocation, we show that the previously pre-
sented constant–approximation algorithm does not lead to
any incentive compatible mechanism, we design a monotonic
constant–approximation algorithm for finding the allocation
and two different polynomial–time algorithms for the pay-
ments, each with different properties, leading to incentive
compatible mechanisms. Finally, we provide a thorough
experimental evaluation of the presented algorithms with
Yahoo! Webscope A3 dataset to identify which mechanism
should be adopted in concrete applications.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multi–agent systems

General Terms
Algorithms, Economics

Keywords
Auction and mechanism design

1. INTRODUCTION
In sponsored search auctions a publisher selects ads to be

placed in a number of slots on a web page and an adver-
tiser pays the publisher only when its ad is clicked. Spon-
sored search auctions play a central role in Internet mone-
tization, e.g., in the first half of 2010, revenue from online
advertising totalled $12.1 billion in the U.S. alone, of which

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

search revenue accounted for 47%, dominating display ads,
the second–largest revenue source [10].

The auction model currently most adopted is the gener-
alized second price (GSP) [6], in which ads are allocated
to slots in decreasing order of value and an advertiser pays
the next highest value when clicked. GSP auction has been
demonstrated not to be truthful, i.e., bidding true values
is not the best strategy of the advertisers, and this poses
severe issues on the stability of the market [6]. Indeed,
while with complete information the GSP admits multiple
Nash equilibria in pure strategies and the worst (in terms of
revenue) equilibrium for the mechanism corresponds to the
truthful equilibrium obtained with Vickrey–Clarke–Groves
(VCG) mechanism [14], when, as usual, information is un-
certain the GSP can admit Bayes–Nash equilibria that are
much worse (up to 1

8
) for the mechanism w.r.t. the VCG

equilibrium [13]. Thus, although the VCG is not used by
the main search engines (but it is by Facebook), its study is
commonly considered of extraordinary importance.

A crucial issue in sponsored search auctions is the study
of effective user models and their exploitation in the auction
mechanism. Recently, a number of works showed that exter-
nalities play an important role in the user behavior [1, 7, 12].
On the other hand, externalities can make the winner de-
termination problem intractable, even when approximated,
e.g., it is APX–hard in [7]. The most famous user model is
the cascade model [12], in which a user is assumed to scan
the ads sequentially from the slot in the top to the slot in
the bottom with a probability to observe the subsequent slot
that depends on the positions (position–dependent external-
ity) and on the ads (ad–dependent externality). Although
several experimental activities confirmed that the behavior
of the users is close to the one described by the cascade
model [5, 11], the adoption of this model in practice is cur-
rently an open problem. Indeed, it is not known whether
it is possible to design a truthful economic mechanism in
which the problems to find the (approximate) optimal allo-
cation and the payments are in P and, even if they are in P ,
whether their compute time is short enough for the adoption
of the mechanism in online situations.

In this paper we explore the problem of designing compu-
tationally efficient truthful mechanisms for sponsored search
auctions with externality. The main contributions we pro-
vide are as follows.

• We develop a branch–and–bound algorithm to com-
pute the efficient allocation whose complexity is expo-
nential in the number of slots.

• We show that the polynomial time allocation function

635

with 1−ε
4

approximation ratio designed in [12] is not
monotone [3] and therefore that no mechanism adopt-
ing such allocation function can be truthful.

• We design a monotone polynomial–time allocation func-
tion providing an approximation of 1−ε

4
of the efficient

allocation.

• We design two polynomial–time payment functions,
each with a different computational complexity. We
use them together with our allocation function to de-
sign computationally efficient truthful mechanisms, each
with different properties. From the slowest to the
fastest: the first mechanism is truthful in expectation
and individually rational and weakly budget balanced
in ex post, and the second mechanism is truthful and
weakly budget balanced in expectation and individu-
ally rational in ex post.

• For the two proposed approximation mechanisms we
derive theoretical bounds on the loss in probability of
the mechanism w.r.t. the average behavior.

• We provide a thorough experimental evaluation of the
algorithms exploiting the Yahoo! Webscope A3 dataset
with the aim to determine the best mechanism in terms
of tradeoff between compute time and quality of the
allocation for each combination of ads and slots.

2. PROBLEM STATEMENT

2.1 Sponsored search auction model
The sponsored search auction model without externalities

is composed of the following ingredients:

• N = {a1, . . . , an, a⊥} is the set of ads and a⊥ is a ficti-
tious ad — w.l.o.g. we assume each advertiser (agent)
to have a single ad, so each agent i can be identified
with ad ai;

• K = {s1, . . . , sk, s⊥} is the set of slots ordered from
the top to the bottom and s⊥ is a fictitious slot;

• qai ∈ [0, 1] is the quality of ad ai (i.e., the probability
a user will click ad ai when observed);

• vai ∈ Vai ⊆ R
+ is the value for agent i when ad ai

is clicked by a user — v = (va1 , . . . , vak) is the value
profile;

• v̂ai ∈ Vai is the value reported by agent i — v̂ =
(v̂a1 , . . . , v̂ak) is the reported value profile;

• Θ is the set of ordered allocations of ads to slots, where
each ad cannot be allocated in more than one slot —
we assign a⊥ to sj to denote that no ad is displayed
in sj , and we assign ai to s⊥ to denote that ai is not
displayed.

With a slight abuse of notation we let:

• θ(ai) to denote the slot in which ai is allocated in θ;

• θ(sj) to denote the ad allocated in sj in θ.

The externalities introduced by the cascade model assume
the user to have a Markovian behavior, starting to observe
the slots from the first (i.e., s1) to the last (i.e., sk) where
the transition probability from slot sj to slot sj+1 is given
by the product of two parameters:

• (ad–dependent externalities) cai ∈ [0, 1] is the contin-
uation probability of ai — it is assumed ca⊥ = 1;

• (position–dependent externalities) λsj ∈ [0, 1] is the

factorized prominence of sj — it is assumed λs⊥ = 0.

The click through rate CTRai(θ) ∈ [0, 1] of ad ai in an al-
location θ is the probability a user will click ai and it is
formally defined as CTRai(θ) = λθ(ai) · Cai(θ) · qai where

Cai(θ) =
Q

aj∈N:θ(aj)<θ(ai)
caj and λθ(ai) =

Q
j∈K:j≤θ(ai)

λj .

Parameter λsj is commonly called prominence [12].

2.2 Computational mechanism design problem
The problem we study is the design of an economic mech-

anism M, composed of

• an allocation function f : ×i∈NVai → Θ and

• a payment function pai : ×i∈NVai → R.

Each agent i has a linear utility ui(vai , v̂) = vai ·CTRai(f(v̂))−
pai(v̂) in expectation over the clicks. Agents pay only when

clicked and the payment is
pai (v̂)

CTRai (f(v̂))
. We are interested

in mechanisms satisfying the following properties.

Definition 2.1. Mechanism M is dominant strategy in-
centive compatible (DSIC) if reporting true values is a dom-
inant strategy for every agent (i.e., v̂ai = vai).

Definition 2.2. Mechanism M is individually rational
(IR) if no agent acting truthfully prefers to abstain from
participating to the mechanism rather than participating.

Definition 2.3. Mechanism M is weakly budget balance
(WBB) if the mechanism is never in deficit.

Definition 2.4. Mechanism M is computationally tractable
when both f and p are computable in polynomial time.

We introduce an additional property that is necessary and
sufficient to have incentive compatibility in dominant strate-
gies when the problem is linear [3], as ours is.

Definition 2.5. Allocation function f is monotone when:
CTRa(f(v̂a1 , . . . , v̂a, . . . , v̂an)) monotonically increases in v̂a

for any ad a [3].

A special kind of monotone allocation functions are the ef-
ficient ones:

Definition 2.6. Mechanism M is allocatively efficient if
f = arg maxθ

P
ai∈N vai · CTRai(f(v)).

2.3 Known results and open problems
The application of the standard VCG mechanism to the

above problem presents severe computational issues. With-
out either ad–dependent and/or position–dependent exter-
nalities, f and p are computationally easy, as shown in [12].
With both externalities, although there is no proof showing

636

the allocation problem to be NP–hard, this problem is com-
monly considered intractable.1 It is worth noting that, in
the worst case, an algorithm enumerating all the possible al-
locations has an asymptotical complexity of O(nk). This is
because in no optimal allocation a⊥ is associated with some
slot, as shown in [12]. Thus, when k is bounded, as it is
usual in practice, the problem is polynomial, but it could be
unaffordable in real time for large values of k and n. How-
ever, no work in the literature deals with the problem to find
an efficient allocation and to determine the range of values
of the parameters such that such allocation can be found in
real time in online applications.

In the literature, the problem of designing a non–efficient
computationally tractable mechanism has been partially ex-
plored. In [12], the authors present an allocation function
that guarantees a social welfare non–smaller than 1

4
of the

efficient allocation, whose computational complexity is pseu-
dopolynomial. The authors strengthen the result, providing
an algorithm with approximation ratio of 1−ε

4
, running with

O(1
ε
), where ε > 0, and polynomial in the other terms. The

authors pose the question whether it is possible to design
computationally efficient payments such that the resulting
mechanism is incentive compatible. In this paper, we show
that such a question has a negative answer even when pay-
ments require exponential time and this is because the al-
location function induced by the algorithm in [12] is not
monotone. Hence, no monotone polynomial–time allocation
function with strictly positive approximation ratio is cur-
rently known in literature.

3. VCG MECHANISM
We propose a branch–and–bound algorithm for the effi-

cient allocation function fE , necessary for the application of
the VCG mechanism. It is reported in Algorithm 1. Basi-
cally, it is a recursive backtracking algorithm. Initially, the
algorithm is called with (θ0, 1, 0) where in θ0 all the slots
are associated with a⊥. Then, at each call, the algorithm at
Step 3 adds a new ad ai to the partial current allocation θ
unless all the slots are assigned (Step 2), checks at Step 5,
by using an admissible heuristic h(θ), whether the new par-
tial allocation can lead to an allocation strictly better than
the best allocation θ∗ (whose value is best) found so far and,
in the affirmative case, the algorithm is recursively called
from the new allocation θ (Step 6). We define h(θ) as the
minimum between:

• the optimal value given by the remaining slots when
cai = 1 for all ai that are not allocated yet,

• the optimal value given by the remaining slots when
for all λsj , λsj = λsl , where sl is the last allocated slot
in θ.

Both values are computable in polynomial time. Heuris-
tic h(θ) obviously provides an overestimation of the optimal
value of the remaining allocation of θ and therefore the al-
gorithm is sound. The algorithm runs with O(nk). The
VCG payments require the determination of the best allo-
cation in k subproblems, as described in [14]. Therefore the
complexity of the VCG mechanism is O(k · nk).

1
The hardness proof used in [7] cannot be directly applied to the

cascade model because the reduction assumes λ to be equal to one
and the cascade model is easy in this case.

Algorithm 1 fEAllocation(θ, j, best)

1: θ∗ ← θ
2: if j ≤ k then
3: for all ai �= θ(sz) with z < j do
4: θ(sj)← ai
5: if

P
h CTRah (θ) · vah + Cθ(sj)(θ) · h(θ) > best then

6: (θ′, best′)← fEAllocation(θ, j + 1, best)
7: if best′ > best then
8: best← best′

9: θ∗ ← θ′

10: return (θ∗, best)

4. NON–EFFICIENT ALLOCATION FUNC-
TIONS

4.1 Non–monotonicity of the 1−ε
4

[13]
We briefly review the pseudopolynomial–time 1

4
–approxi-

mation algorithm from which the authors derived their 1−ε
4

approximation algorithm in [12] because we can show that
even the allocation function induced by this algorithm is
not monotone. The 1

4
–approximation algorithm works as

follows:

• find the allocation θ maximizing
P

ai
λθ(ai) · vai · qai ,

• under the constraint that, letting sl the last slot with
an ad different from a⊥, Cθ(sl)(θ) ≥ 1

2
.

The last constraint can be also represented as
Pl

i=1 log2
1

cai≤ 1.
The property of monotonicity of an allocation function

can be easily captured in the case of the sponsored search
auction with externalities observing Fig. 1: increasing vai

and keeping fix all the others va−i the allocation θ changes
and the CTRai(θ) monotonically increases. We state the
following.

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5vai

C
T
R

a
i

Figure 1: Relation between CTRai and vai .

Proposition 4.1. The allocation function induced by the
above 1

4
–approximation algorithm is not monotone.

Proof. Consider an auction with 5 ads and 4 slots, where:

qai vai cai
a1 0.500 2.0 0.50
a2 0.300 3.0 0.90
a3 0.250 2.0 0.90
a4 0.200 x 1.00
a5 0.111 10.0 0.10

λ
s1 1.00
s2 0.60
s3 0.50
s4 0.36

637

We can show that the allocation function is not monotone
in va4 . The allocations chosen by the allocation function in
the range x ∈ [1.554, 2.500] are:

• 1.554 ≤ x ≤ 2.23: the allocation is {a2, a3, a4, a5} and
CTRa4 = λs3 · ca2 · ca3 · qa4 = 0.081,

• 2.23 < x ≤ 2.5: the allocation is {a1, a4, a5} and
CTRa4 = λs2 · ca1 · qa4 = 0.060.

Therefore, increasing va4 = x along [1.554, 2.5], the CTRa4

decreases from 0.081 at x ≤ 2.23 to 0.06 at x > 2.23. This
shows that the allocation function is not monotone. �

As shown in [3], with linear utility functions, the mono-
tonicity of the allocation function is necessary to have in-
centive compatibility. Thus, no incentive compatible mech-
anism can be designed when the above allocation function is
used. The same holds for the 1−ε

4
–approximation algorithm

described in [12], given that an example similar to the above
can produced also for this allocation function.

4.2 Pseudopolynomial–time monotone f 1
4

We propose a variation of the 1
4
–approximation algorithm

described in [12] that we prove to be monotone and to pro-
vide an approximation of 1

4
. This approximation algorithm

runs in exponential time when numeric precision is exact and
it is pseudopolynomial when finite precision is accepted. We
call this allocation function f 1

4
. It works as follows:

• find the allocation θ maximizing
P

ai
CTRai(θ) · vai ,

• under the constraints that, letting sl the last slot with
an ad different from a⊥, Cθ(sl)(θ) ≥ 1

2
, and

• under the constraints that for every 1 < j < l it holds
qθ(sj) · vθ(sj) ≤ qθ(sj−1) · vθ(sj−1).

The algorithm is reported in Algorithm 2. For each ad
a ∈ N , the algorithm removes a from N (Step 1) and at
Step 2 sorts all the remaining ads in N in decreasing order
in qai ·vai . Then it searches for the best allocation in which a
is the last displayed ad (not necessarily in slot sk) under the
two above constraints. This is done by dynamic program-
ming in a similar fashion used by the dynamic programming
algorithm for the knapsack problem with cardinality and ca-
pacity constraints [15]. We use a data structure list in which
we insert partial allocations characterized by (φ,ψ, χ), where
φ is the value of the allocation, ψ is the number of allocated
slots, χ is the product of the continuations probabilities of all
the ads in the allocation. For each ad aj ∈ N \{a}, at Step 4
a partial allocation in which aj is displayed in the first slot
s1 is added to list(a, aj), and for all the partial allocations
in list(a, prev(aj)), where prev(aj) is the ad that precedes aj

in the ordered set N \ {a}, a new partial allocation is added
to list(a, aj) in which aj is appended (Steps 5−6). Then, at
Step 7 all the dominated partial allocations of list(a, aj) are
removed. Exactly, (φ, ψ, χ) ∈ list(a, aj) is dominated when:

• χ < 1
2
,

• ψ = k,

• there exists (φ′, ψ′, χ′) ∈ list(a, aj) with φ′ ≥ φ, ψ′ ≤
ψ, χ′ ≥ χ.

At Steps 9 − 10, a is added to all the partial allocations in
list(a, last(N \ {a})), where last returns the last element of
the ordered set, updating φ with the value of a. In this way,
all the allocations satisfying the two above constraints are
generated. Finally, the best allocation is chosen among all
those in list(a, last(N \ {a})) for every a (Step 11).

Algorithm 2 f 1
4
Allocation

1: for all a ∈ N do
2: sort N \ {a} in decreasing order in qaj · vaj
3: for all aj ∈ N \ {a} do
4: add (λs1 · vaj · qaj , 1, caj) to list(a, aj)

5: for all (φ, ψ, χ) ∈ list(a, prev(aj)) do
6: add (φ+ λsψ+1 · χ · vaj · qaj , ψ+ 1, χ · caj) to list(a, aj)

7: remove dominated (φ, ψ, χ) in list(a, aj)
8: add (λs1 · va · qa, 1, ca) to list(a, a)

9: for all (φ, ψ, χ) ∈ list(a, last(N \ {a})) do
10: add (φ+ λsψ+1 · χ · va · qa, ψ + 1, χ · ca) to list(a, a)

11: return (φ, ψ, χ) ∈ list(a, a) maximizing φ for a ∈ N

Proposition 4.2. The asymptotical computational com-
plexity of Algorithm 2 is exponential.

Proof. The worst case complexity corresponds to the largest
number of elements in list. In order to find this number, it
is necessary to make all the parameters cai , λsj , vai , qai in-
teger. This is done by multiplying all the parameters by
a constant O(10L) where L is the used bit length. Focus
on φ and χ: the latter clearly requires a shorter bit length.
However, χ requires a bit length O(Lk). Thus, the size of
list(a, aj) is O(k · n2 · Lk). �

Proposition 4.3. When finite precision is accepted, the
asymptotical computational complexity of Algorithm 2 is O(n2·
k · 10L) where L is the bit length used to represent log2.

Proof. We compute each log2(
1

cai
) for each ai and we

make them integer by multiplying them by 10ω for some
ω. The capacity constraint Cai ≥ 1

2
can be written asP

ai
log2(

1
cai

) ≤ 1. Thus the number of possible differ-

ent values for χ in Algorithm 2 is O(10L). Therefore, by
removing dominated elements in list, the maximum size is
O(n2 · k · 10L). �

Thus, the above algorithm runs in pseudopolynomial time,
being exponential in the numeric representation.

Proposition 4.4. The allocation function induced by Al-
gorithm 2 is monotone.

Proof. Basically, the proof is because the allocation func-
tion is maximal (efficient) in its range. Assume by contra-
diction that the allocation function is not monotone and
therefore that there are two allocations θ, θ̃ such that:

• θ = f 1
4
(vai , va−i)

• θ̃ = f 1
4
(ṽai , va−i)

• CTRai(θ̃) > CTRai(θ)

• vai > ṽai

The cumulative value of θ can be expressed as CTRai(θ) ·
vai + γ, where γ is a constant. Similarly, the cumulative

value of θ̃ can be expressed as CTRai(θ̃) · vai + γ̃, where γ̃
is constant. From the first two above conditions:

638

• CTRai(θ) · vai + γ ≥ CTRai(θ̃) · vai + γ̃

• CTRai(θ̃) · ṽai + γ̃ ≥ CTRai(θ) · ṽai + γ

Combining these two inequalities with CTRai(θ̃) > CTRai(θ),
it follows ṽai ≥ vai that is in contradiction with vai > ṽai .
Therefore, f 1

4
is monotone. �

Proposition 4.5. Algorithm 2 is a 1
4
–approximation al-

gorithm of the efficient allocation.

Proof. Algorithm 2 finds the efficient allocation among
a subset of allocations Θ ⊆ Θ determined by the two con-
straints defined above. The allocation returned by the algo-
rithm presented in [12] belongs to Θ and it is a 1

4
–approxi-

mation of the efficient allocation. Given that such an algo-
rithm does not return the optimal allocation in the range
Θ, optimizing a different objective function from the so-
cial welfare, the allocation function we present above can-
not find a worse allocation. Therefore, f 1

4
is at least a 1

4
–

approximation algorithm. �

4.3 Polynomial–time monotone fc
1−ε
4

It is possible to produce a polynomial time 1 − ε approx-
imation algorithm of the one presented in the previous sec-
tion, obtaining thus an 1−ε

4
–approximation algorithm for

the efficient allocation fE . We call such allocation function
fc

1−ε
4

. To obtain this, we round the continuation probabili-

ties as
j

log2(1
c
)

τ

k
, where τ depends on ε. We have modified

f 1
4

in the following way:

• the third component χ of (φ,ψ, χ) is
P —

log2(1
cai

)

τ

�
over the allocated ai,

• the capacity constraint Cai ≥ 1
2

is substituted withP
ai

—
log2(1

cai
)

τ

�
≤ 1

τ
.

Proposition 4.6. Allocation function fc
1−ε
4

returns a 1−ε
4

–

approximation of the efficient allocation.

Proof. We provide a constructive proof, determining τ to
have that fc

1−ε
4

is an 1−ε approximation of f 1
4
. By definition,

we have τ
j

log2(1
c
)

τ

k
≤ log2(

1
c
) ≤ τ

“j
log2(1

c
)

τ

k
+ 1

”
. We let:

• θ∗ = f 1
4

• θ∗ε = fc
1−ε
4

We can write: X
i

λθ∗
ε (ai) · Cai(θ

∗
ε) · vai · qai ≥

X
i

λθ∗
ε (ai) ·

0
BB@ Y

θ∗
ε (aj)<θ∗

ε (ai)

2
−τ

0
@
6664 log2(1

caj
)

τ

7775+1

1
A

1
CCA vai · qai ≥

X
i

λθ∗(ai) ·

0
BB@ Y

θ∗(aj)<θ∗(ai)

2
−τ

0
@
6664 log2(1

caj
)

τ

7775+1

1
A

1
CCA vai · qai ≥

X
i

λθ∗(ai) ·
0
@ Y

θ∗(aj)<θ∗(ai)

2log2(caj)−τ

1
A vai · qai ≥

2−kτ ·
X

i

λθ∗(ai) · Cai(θ
∗) · vai · qai =

(1 − ε) ·
X

i

λθ∗(ai) · Cai(θ
∗) · vai · qai

Thus, we obtain: τ =
log2

“
1

1−ε
”

k .. Given the value of τ

and that the constraint
P

ai

j
log2(1

c
)

τ

k
≤ 1

τ
is weaker than

Cai ≥ 1
2
, no potential optimal solution is discarded due to

rounding. �

We focus on the computational complexity.

Proposition 4.7. The asymptotical computational com-
plexity of fc

1−ε
4

is O(n2 · k2 · 1
ε
).

Proof. In this case, the maximum number of elements in
list(a, aj) is O(k · 1

τ
) thanks to dominations. This means that

list(·, ·) contains no more than O(n2 · k · 1
τ
) elements. Given

that log2(
1

1−ε
) → ε as ε→ 0, the complexity is O(n2 ·k2 · 1

ε
).

�

Thus, the above algorithm runs in polynomial time in 1
ε
.

We state the following proposition, whose proof is analogous
to the one of Proposition 4.4.

Proposition 4.8. Allocation function fc
1−ε
4

is monotone.

5. NON–ALLOCATIVELY EFFICIENT MECH-
ANISMS

We are now interested in defining payment rules for the
the non–allocatively efficient algorithms presented in Sec-
tions 4.2 and 4.3.

By applying the results discussed in [3], we can derive the
form of the payments to have DSIC with f ∈ {f 1

4
, fc

1−ε
4

}.
The payment associated with ad ai must be of the form:

pai(vai , va−i) = hai(va−i) + vai · CTRai(f(vai , va−i))−Z vai

0

CTRai(f(x, va−i)) · dx

where hai does not depend on vai . Assigning hai = 0 and
adopting payments pai

contingent to clicks such that:

pai
=

(pai (vai ,va−i)
CTRai (f(vai ,va−i))

if clicked

0 otherwise

The payment corresponds to the gray area in Fig. 1, while
the above integral corresponds to the white area. The cru-
cial issue here concerns the design of an efficient algorithm

639

to compute
R vai
0

CTRai(f(x, va−i)) · dx. This should be
achieved by computing all the possible values of CTRai as
vai varies and the values vai in which the CTRai changes.
The difficulty consists in computing the payments in polyno-
mial time. In this paper we propose two ways for estimating
that integral achieving incentive compatibility in expecta-
tion.

5.1 IC in expectation, ex post WBB, ex post IR
mechanisms

Adopting the concept of incentive compatibility in expec-
tation [3] w.r.t. a random component of the mechanism in
place of the concept of DSIC, we can design payments func-
tions with complexity of O(n2 · k3 · 1

ε
).

Following the approach presented in [2], we can estimate
the term

R vai
0

CTRai(f(x, va−i)) · dx in the payment for-
mula through samples. Call xai a value drawn with uniform
probability from the support [0, vai], it can be shown that:

Exai
[CTRai (f(xai , va−i)) · vai] =Z

vai

0
CTRai (f(x, va−i)) · vai ·

1

vai
· dx =

Z
vai

0
CTRai (f(x, va−i)) · dx

Therefore, the sample mean is an unbiased estimator of
the integral of the previously defined payment formula. In
order to compute the payments, it is necessary to sample a
value xai ∈ [0, vai] for each ad i displayed and then run the
allocation function for each couple (xai , va−i). Thus, the
mechanism requires to run one time the allocation function
for determining the allocation of ads and, in the worst case
(when all the ads are clicked), k times for computing the
payments for each ad allocated.

Adopting a payment strategy pai
contingent to clicks as

defined in Section 5, this mechanism satisfies the following
properties:

• IR in ex post, because uai is
R xai
0

CTRai(f(x, va−i)) ·
dx that is positive, CTRai being positive;

• WBB in ex post, because vai · CTRai(f(vai , va−i)) ≥R xai
0

CTRai(f(x, va−i)) · dx, f being monotone.

Although the adoption of the above payments allows one
to speed up the mechanism, the randomization does not as-
sure a certain profit to the auctioneer especially when the
mechanism is repeated few times. Thus, in order to charac-
terize the quality of the above mechanism, it is interesting to
provide theoretical bounds in probability over the loss of the
auctioneer w.r.t. the exact payments computed as described
in the previous section. Let T the number of repetitions, an
error bound over the estimator of the payments can be found
by applying the Hoeffding’s bound [9]. For all the impressed
ads ai, let

Δai
=

˛̨̨
˛̨̨CTRai (f(v)) · vai −

1

T

TX
j=1

CTRai (f(xai , v−ai)) · vai−

(CTRai (f(v)) · vai −
Z
vai

0
CTRai (f(x, v−ai)) · dx)

˛̨̨
˛

Proposition 5.1. With probability at least 1− δ, it holds

Δai
≤ CTRai (f(v))vai ·

s
1

2T
· log

„
2k

δ

«

for all the impressed ads ai.

Proof. We have:

P
`
Δai

> t
´

= P

0
@
˛̨̨
˛̨̨− 1

T

TX
j=1

CTRai (f(xj, v−ai)) · vai+

Z
vai

0
CTRai (f(x, v−ai)) · dx)

˛̨̨
˛ > t

«
≤

2e
− 2T2t2PT

j=1(CTRai (f(v))vai−0)2
= 2e

− 2T2t2

TCTRai
(f(v))2v2ai =

2e
− 2Tt2

CTRai
(f(v))2v2ai

Thus, 2e
− 2Tt2

CTRai
(f(v))2v2ai = δ

k , log e
− 2Tt2

CTRai
(f(v))2v2ai = log δ

2k ,

− 2Tt2

CTRai
(f(v))2v2ai

= log δ
2k , t2 =

CTRai
(f(v))2v2ai
2T ·log 2k

δ and at the

end t = CTRai (f(v))vai ·
q

1
2T log 2k

δ �

Notice that, as expected, the precision increases as the
number T of samples increases and CTRai(f(v)) decreases,
in fact the smaller the CTRai(f(v)) the smaller the possible

error of the estimator and the error decreases with
q

1
2T

.

5.2 IC in expectation, ex post IR mechanisms,
WBB in expectation

In order to reduce further the compute time it is possible
to resort to the approach proposed in [4] computing simul-
taneously the allocation and the payments with the single
call to the allocation function f . Thus, the computational
complexity of the mechanism is O(n2 ·k2 · 1

ε
). In addition to

incentive compatibility in expectation, the other properties
satisfied by this mechanism are:

• IR in ex post ;

• WBB in expectation.

The cost of the computational complexity improvement
is the introduction of a randomized component in the allo-
cation function leading to a loss in the total value of the
allocation w.r.t. the allocation found by f and that WBB is
assured only in expectation w.r.t. the random component.

The random component consists in a modification of the
agents’ reported values vai , each with a (small) probabil-
ity μ. The modified reported values are then used to com-
pute the allocation and the payments. (Therefore, given
an allocation function f , this mechanism returns the same
allocation computed by f with a probability of (1 − μ)n,
while it can return a different allocation otherwise.) The
modification of the reported values is accomplished through
a procedure called canonical self–resampling procedure de-
scribed in [4] that generates two samples: xai(vai , wai) and
yai(vai , wai), where wai is the random seed.

Algorithm 3 computeAllocationAndPayments(va1 , . . . , van)

1: for all i ∈ N do
2: xi = canonicalSRP (vai) [4]

3: find the optimal allocation with values x: fc1−ε
4

4: for all i ∈ N do
5: compute payments: pai = CTRai (f(x)) · vai −

estimatedIntai , where

estimatedIntai =

(
CTRai

(f(x))·vai
μ if yai < vai ,

0 otherwise.

Algorithm 3 perturbs the bid through the canonical self–
resampling procedure (Step 2). Given the perturbed bids

640

(x), it finds the new optimal allocation (on average it is a
least a (1 − μ

2−μ
) · 1−ε

4
approximation of the true optimal

one) and then compute the payments as described at Step
5. The payment is negative (when yai < vai) or equal to
CTRai(f(x))vai otherwise, thus pai ≤ CTRai(f(x))vai . It
is possible to compute the contingent payments pai

dividing
pai by CTRai(x) with the x computed when ad ai is clicked,
in this way we obtain a mechanism ex post IR. The payment
formula shows that with high probability each agent pays the
mechanism more than what it would do with the payment
functions described in Section 5.1, but sometimes, it receives
a large amount of money from the auctioneer. This amount
is vai · CTRai(f(x)) · (1

μ
− 1). Hence, there are positive

transfers from the auctioneer to the advertisers and there is
no guarantee that the auctioneer receives more then what he
pays. This makes the mechanism WBB only in expectation.

Also in this case, we derive an error bound over the esti-
mator of the payment applying the Hoeffding’s bound.

Proposition 5.2. With probability at least 1− δ, it holds˛̨̨
˛̨̨ 1
T

TX
j=1

“
CTRai (x

j) · vai − esitmatedIntai (xj, yj)
”
−

E[pai]

˛̨̨
˛̨ ≤ vai

μ
·
r

1

2T
log

2n

δ

for all the ads.

Proof. We have:

P

 ˛̨̨
˛̨ 1
T

TX
j=1

(CTRai (f(x
j
)) · vai − esitmatedIntai (x

j
, y
j
))−

E[pai]

˛̨̨
˛̨ > t

!
= 2e

− 2T2t2PT
j=1(vai−vai+

vai
μ

)2
= 2e

− 2T2t2

T (
vai
μ

)2

Thus, 2e

− 2Tt2

(
vai
μ

)2
= δ

n , log e

− 2Tt2

(
vai
μ

)2
= log δ

2n , − 2Tt2

(
vai
μ

)2
= log δ

2n ,

t2 = (
vai
μ)2 1

2T log 2n
δ , and t =

vai
μ

q
1

2T log 2n
δ . �

This mechanism presents a larger variance in payments
than that described in Section 5.1. Here, the bound depends
also on 1

μ
and therefore, keeping μ close to zero to have a

fine approximation of the best allocation returned by f , 1
μ

can be very large.

6. EXPERIMENTAL ANALYSIS
Experimental setting.The experimental evaluation is

based on the Yahoo! Webscope A3 dataset. For every
day, advertiser, keyword, and position Yahoo! Webscope
A3 specifies, over a period of 4 months, the average bid
value, the number of displays without click and the num-
ber of clicks, but it does not specify the set of ads of each
allocation. Thus, we did not use directly the dataset, but
we exploited it to develop a generator of realistic synthetic
instances. We considered the 100 keywords with the highest
numbers of impressions, and for each of these keywords we
generated a separate bid and quality distribution. Each bid
distribution consists of a truncated Gaussian distribution,
where the mean and standard deviation are taken from the
dataset, the lower bound corresponds to the minimum bid
value in the dataset, and the upper bound to the highest
one. Furthermore, we used a beta distribution from which
to sample the quality. We assumed λs1 = 1, thus the quality
corresponds to the click probability when the ad is displayed

in the first position, and we used the data from the first
position to derive the parameters of the beta distribution.
We estimated the prominence λsj by computing the average

of
CTRai (θ)|θ(ai)=sj

qai
over all the ads and all the auctions.2

Instead, each continuation probability is generated as fol-
lows: we have considered two different scenarios, the first in
which we suppose most of the ads having a high continua-
tion probability, i.e. cai is uniformly drawn in [0.7, 1.0] with
probability 0.9 and from [0.0, 0.7] with probability 0.1, while
in the second we suppose that ads have a cai uniformly dis-
tributed in [0.0, 1.0]. We varied k and n as: k ∈ {2, . . . , 10}
with a step of 2 and n ∈ {5, . . . , 200} with a step of 5. For
each pair k, n we generated 20 instances. Finally, we im-
plemented our algorithms in C language and executed them
with Intel 2.20GHz and Linux kernel 2.6.32.

Allocation efficiency. We experimentally compared the
efficiency of the allocations returned by the f 1

4
and fc

1−ε
4

with ε ∈ {0.001, 0.1, 0.3, 0.5, 0.7, 0.9} w.r.t. the efficient al-
location returned by fE . Each plot in Fig. 3 reports how the

average efficiency (i.e.,
f 1

4
fE

and
fc1−ε

4
fE

) varies as the number

of ads varies, while the plots differentiate for the number of
available slots; cai are drawn uniformly from [0.0, 1.0].

20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

n

E
ffi

ci
en

cy

k=4

Pseudo

0.001

0.1

0.5

0.9

20 40 60 80 100

0.88

0.9

0.92

0.94

0.96

0.98

1

n

E
ffi

ci
en

cy

k=10

Pseudo

0.001

0.1

0.5

0.9

Figure 2: Average efficiency ratio between fc
1−ε
4

and

fE with different values of ε and n for k ∈ {4, 10} when
cai are drawn uniformly from [0.0, 1.0].

Fig. 2 shows that, surprisingly, the efficiency increases in-
creasing ε. A motivation is that increasing ε we are relaxing
the constraint

Pl
i=1 log2

1
cai

≤ 1, thus we allow the alloca-

tion with more ads that can reach the last ad with a con-
tinuation probability probability lower than 1

2
. The approx-

imation is, on average, always higher than 0.88 even with
k = 10 for ε ∈ {0.001, 0.1, 0.5, 0.9}. The results obtained
with the first scenario for the generation of cai are consis-
tent with the above ones. Thus, the efficient allocation can
be satisfactorily approximated in realistic scenarios.

Then, we have evaluated how the randomization μ used in
the payments defined in Section 5.2 affects the efficiency of
the allocation. We observed that, with both cai generation
scenarios, on average with μ ≤ 0.1 the loss of efficiency is
small (<5%) while it is ≤ 15% until μ ≤ 0.7.

Compute time. We experimentally evaluated the com-
pute time to find an allocation with fE , f 1

4
, fc

1−ε
4

with the

values of ε used above. As expected, it rises as k and n rise.
Each plot in Fig. 3 reports how the average compute time
varies as the number of ads varies, while the plots differen-
tiate for the number of available slots.

The plots in Fig. 4 report the same data, but with the
reverse approach, and they focus more in the exponential

2
λsj ∈ {1, 0.714, 0.556, 0.525, 0.494, 0.470, 0.444, 0.441, 0.432, 0.427}.

641

50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

tim
e

(s
)

k=6

Exact

Pseudo

0.001

0.1

0.5

0.9

50 100 150 200
0

0.2

0.4

0.6

0.8

1

n

tim
e

(s
)

k=8

Exact

Pseudo

0.001

0.1

0.5

0.9

Figure 3: Average compute time between fc
1−ε
4

and

fE with different values of ε and n for k ∈ {2, 4, 6, 8}.

behavior of fE . With k = 10 and n = 100 fE can require
even more than 30 s. The approximation algorithms are so
faster than the exact one that cannot be seen in the plots.

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

k

tim
e

(s
)

n=60

Exact

Pseudo

0.001

0.1

0.5

0.9

2 4 6 8 10
0

5

10

15

20

25

30

k

tim
e

(s
)

n=100

Exact

Pseudo

0.001

0.1

0.5

0.9

Figure 4: Average compute time between fc
1−ε
4

and

fE with different values of ε and k for k ∈ {60, 100}.
In the pictures it is difficult to distinguish fc

1−ε
4

with ε =

0.001 from f 1
4

curve because their behavior is almost the

same. It can be observed that with k = 6 and n = 100 —
the allocations are O(1012) — the efficient allocation can be
computed in real time, requiring less than 0.01 s on average.
With k > 7 approximation algorithms are necessary. It can
be observed that, even with n = 200 and k = 10, compute
time is < 0.4 s when ε ≥ 0.1 and < 0.1 s when ε ≥ 0.9. Thus
with k ≤ 7 or a small number of ads the optimal strategy is
to use fE that is fast enough and optimal, while in the other
situation use fc

1−ε
4

with increasing value of ε as n increases.

In order to complete the mechanism, we need to choose
a payment rule when fc

1−ε
4

is adopted. On the basis of our

results, the payments described in Section 5.2 are the fastest
and the efficiency loss of the allocation, even with a large μ,
is moderately low. However, the very high variance makes
these payments non–attractive. Hence, the best payments
are those described in Section 5.1.

7. CONCLUSIONS AND FUTURE WORKS
In this paper we analyzed the problem to design incen-

tive compatible mechanisms in sponsored search auctions,
where the user behavior is modeled also taking into account
ad externalities through the cascade model. To be best of
our knowledge, we provided the first algorithm for finding
optimal allocations. Applying it together with the VCG pay-
ment rule we obtained an incentive compatible mechanism
with exponential complexity. To make the problem tractable
we showed that it is possible to design a monotone 1−ε

4
–

approximation allocation algorithms. For this algorithm we
designed two payment rules that allow to build two incentive
compatible mechanisms in expectation. Finally, we provided
an experimental evaluation of the presented algorithms with

Yahoo! Webscope A3 dataset, showing that the exact algo-
rithm can be used in real time within a given parameter
ranges. When the number of slots or ads becomes too large
approximation algorithms are necessary. Their adoption can
be performed in real time requiring a very short compute
time and finding very efficient allocations.

In future, we will study learning techniques to estimate
the cascade model parameters, i.e. qai , cai , and λsi , resort-
ing to the current state of the art ([4] and [8]). Another in-
teresting task is the determination of the complexity class of
the problem of finding the optimal solution for the cascade
model with both ad and position externalities, being cur-
rently supposed to be NP–hard, but no proof being known.

8. REFERENCES
[1] G. Aggarwal, J. Feldman, S. Muthukrishnan, and

M. Pál. Sponsored search auctions with markovian
users. In WINE, pages 621–628, 2008.

[2] A. Archer, C. Papadimitriou, K. Talwar, and É
Tardos. An approximate truthful mechanism for
combinatorial auctions with single parameter agents.
In SODA, pages 205–214, 2003.

[3] A. Archer and É Tardos. Truthful mechanisms for
one–parameter agents. In FOCS, pages 482–, 2001.

[4] M. Babaioff, R. D. Kleinberg, and A. Slivkins.
Truthful mechanisms with implicit payment
computation. In ACM EC, pages 43–52, 2010.

[5] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position–bias models.
In WSDM, pages 87–94, 2008.

[6] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second–price auction:
Selling billions of dollars worth of keywords. AM
ECON REV, 97(1):242–259, 2007.

[7] D. Fotakis, P. Krysta, and O. Telelis. Externalities
among advertisers in sponsored search. In SAGT,
pages 105–116, 2011.

[8] N. Gatti, A. Lazaric, and F. Trovò. A truthful
learning mechanism for contextual multi–slot
sponsored search auctions with externalities. In ACM
EC, pages 605–622, 2012.

[9] W. Hoeffding. Probability inequalities for sums of
bounded random variables. J AM STAT ASSOC,
58(301):13–30, 1963.

[10] Interactive Advertising Bureau. IAB internet
advertising revenue report. 2011 full year results.
Technical report, 2012.

[11] T. Joachims, L. Granka, B. Pan, H. Hembrooke,
F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations
in web search. ACM T INFORM SYST, 25(2), 2007.

[12] D. Kempe and M. Mahdian. A cascade model for
externalities in sponsored search. In WINE, pages
585–596, 2008.

[13] R. Paes Leme and É. Tardos. Pure and Bayes–Nash
price of anarchy for generalized second price auction.
In FOCS, pages 735–744, 2010.

[14] Y. Narahari, D. Garg, R. Narayanam, and H. Prakash.
Game Theoretic Problems in Network Economics and
Mechanism Design Solutions. Springer, February 2009.

[15] V. V. Vazirani. Knapsack. In Approximation
Algorithms, pages 68–73. Springer, 2001.

642

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

