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ABSTRACT
There has been much recent work on the revenue-raising
properties of truthful mechanisms for selling goods to selfish
bidders. Typically the revenue of a mechanism is compared
against a benchmark (such as, the maximum revenue ob-
tainable by an omniscient seller selling at a fixed price to
at least two customers), with a view to understanding how
much lower the mechanism’s revenue is than the benchmark,
in the worst case. We study this issue in the context of lot-
teries, where the seller may sell a probability of winning an
item. We are interested in two general issues. Firstly, we
aim at using the true optimum revenue as benchmark for
our auctions. Secondly, we study the extent to which the ex-
pressive power resulting from lotteries, helps to improve the
worst-case ratio. We study this in the well-known context
of digital goods. We show that in this scenario, collusion-
resistant lotteries (these are lotteries for which no coalition
of bidders exchanging side payments has an advantage in
lying) are as powerful as truthful ones.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Economics, Theory

Keywords
Revenue maximization, Foundations of incentive-compati-
bility, Auctions

1. INTRODUCTION
We consider a scenario in which a “digital good” is to be

sold to many potential buyers, with the objective of maxi-
mizing the revenue. A digital good is assumed to be provided
with unlimited supply and to have no cost of production.
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Given a set of selfish buyers who may have diverse valua-
tions for the good, a theoretical optimum for the revenue
(commonly denoted opt) is given by the sum of the buyers’
valuations. In a standard mechanism, the allocation algo-
rithm returns binary values so that a buyer would either win
a copy of the good, or fail to do so. Here we consider a more
expressive class of mechanisms in which a buyer i may be
offered a probability λi of receiving the item; assuming that
buyers are risk-neutral, if i has valuation vi for the item,
then i would have valuation viλi for the probability λi to
receive it. The general question we consider is, to what ex-
tent does the expressiveness of lotteries help us to design
truthful mechanisms that better approximate opt?

1.1 Model and preliminaries
We consider a setting in which we want to auction lotteries

for digital goods [9], i.e., goods with unlimited supply and
no production costs. A lottery L = (λ, p) (for a specified
item) is defined by its win probability λ ∈ [0, 1] and its
non-negative real-valued price p. A bidder with valuation
v purchasing lottery L has utility λv − p, i.e., his valuation
for the item “weighted” by the win probability minus the
lottery’s price.

The model is defined as follows. There are n selfish bid-
ders, with true valuations v1, . . . , vn, who bid b1, . . . , bn re-
spectively. A mechanism (a.k.a. auction) is a pair (A,P ):
A is an algorithm which on input b = (b1, . . . , bn) returns a
vector of win probabilities (λi(b))i=1,...,n; P (b) is a vector of
n payment functions, i.e., how much each bidder is charged
to buy the lottery. We focus on auctions which determinis-
tically propose lotteries Li = (λi(b), pi(b)) to each bidder
i; bidders buy the lottery if their utility is non-negative,
i.e., the lottery satisfies voluntary participation. Given that
win probabilities and payments are deterministic, i’s utility
λivi − pi is also deterministic. (That is, if the auction was
repeated with the same bids, each bidder would be offered
the same lottery, and the auctioneer’s revenue would be the
same. For a buyer, there remains the uncertainty regarding
the win/lose outcome of the lottery itself.)

As mentioned in the discussion below about related works,
theoretical motivations for studying this model of lotteries
are related to the ones in [5, 9]. From a more practical point
of view, the lotteries studied in the paper are perhaps bet-
ter thought of as a model of uncertainty about what a buyer
will receive. For example, in the context of TV advertising,
advertisers pay to buy an ad slot for which the size of the
exposed audience is uncertain but may be modeled with a
probability distribution (via e.g. data on programs’ audi-
ence shares). Also of relevance is Swoopo-style “recreational
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shopping”. We believe that this model may suggest new
kinds of sponsored search products, akin to TV advertising
ones, that differ from those currently used by search engines.

We aim to design truthful auctions (where bidders maxi-
mize their utility when telling their true valuations). In this
setting, from the definition of utility, it is immediate to see
that our bidders are one-parameter [2]. Therefore, accord-
ing to the characterization of truthful mechanisms for one-
parameter bidders, we have to design monotone lotteries,
i.e., lotteries for which the win probability is non-decreasing
in the bid. Moreover, pi(b) must be of the form [2, 10]:

pi(bi,b−i) = hi(b−i)+biλi(bi,b−i)−
∫ bi

0

λi(b,b−i)db, (1)

where b−i denotes the bid vector b with all but the i-th en-
try and hi is any function depending on b−i (but not bi). A
stronger requirement is to demand collusion-resistant auc-
tions in which any coalition of bidders maximizes the sum
of the utilities of its members when they are truthtelling.
Collusion-resistant lotteries are characterized in this context
in terms of singular allocations. A monotone win probabil-
ity function λi is singular if for all i, bi,b

′
−i,b−i, we have

λi(bi,b−i) = λi(bi,b
′
−i).

1 A singular win probability λi is
then a function of bi only. Goldberg and Hartline [10] prove
the following theorem.

Proposition 1 ([10]). A lottery is collusion-resistant
if and only if its win probability functions are singular.

We want incentive-compatible auctions that guarantee a
good approximation of the optimal revenue of the auction-
eer. The optimal revenue is defined as opt =

∑
i vi for

bidders’ valuations v1, . . . , vn. (For a given bid vector b,
we let opt(b) =

∑n
i=1 bi.) A mechanism approximates opt

within a ratio r if the sum of the payments collected from the
bidders is at least opt/r. Alternative benchmarks for com-
parisons are used in the literature, the most prominent being
F (2) = maxi=2,...,n ivi, assuming vi ≥ vi+1 [9]. F (2) mea-
sures the maximum revenue achievable with a fixed posted
price, under the constraint that at least two items are sold.
For F(b) defined as maxi=1,...,n ibi, with bi ≥ bi+1, it is
known that F(b) = Θ(opt(b)/ ln(n)) and that for all b,
F(b) ≥ opt(b)/ ln(n) [9]. The focus on the rather technical

benchmark F (2) is mainly motivated by the impossibility of
approximating opt reasonably well (cf. [9]).

The following observation indicates the power given by
lotteries in revenue maximization. If bidders are known to
have 2 possible types, represented by a high valuation H and
a low valuation L, then opt cannot be approximated bet-
ter than about H/L by any deterministic “classical” auction
selling goods and not lotteries. By contrast, if the auction-
eer is allowed to sell lottery tickets with win probabilities of
1/2 and 1 respectively, then a bidder with valuation L would
be willing to pay L/2 to buy the first kind of ticket, while a
bidder with valuation H will pay H/2 to buy the ticket with
win probability 1. The revenue of such a lottery is opt/2.

1.2 Our contribution
Our results are summarized in Table 1. When bids are

known to come from a finite domain of size d, we establish

1The authors of [10] call these allocations posted-price. How-
ever, we prefer the name singular as it reflects better the
semantics of the property in the context of lotteries.

that the optimal revenue may be approximated within fac-
tor d, but no lower constant factor is possible. Moreover,
the upper bound of d is attained by a straightforward mech-
anism that is both anonymous (that is, an offer depends
only on an agent’s bid, and not on his identity) and singu-
lar (and so collusion-resistant). Meanwhile the lower bound
applies to all truthful mechanisms, regardless of computa-
tional considerations. It is important to note that the lower
bound identifies, for any d and ε > 0, a set of “well sepa-
rated” d bids for which no truthful lottery can approximate
opt better than d− ε.2

The motivation to study two-value domains {L,H}, L <
H, arises from the fact that one can provably achieve the
best approximation guarantee with respect to F (2) under
this assumption [1] (see below for more details). More gen-
erally, many real-life applications involve bidders with valu-
ations from a finite domain. Money is, by its very nature,
discrete with reasonable lower and upper bounds. Similarly,
auctions on the web may collect bids through drop-down
menus; the available values define a finite domain.

Regarding bids that may come from a continuous domain
[1, H], we obtain a tight bound of ln(H) + 1, where again
the upper bound is obtained via a simple collusion-resistant
lottery and the lower bound holds for any truthful lottery.

Our lower bounds measure the limitation of truthful mech-
anisms in terms of approximation guarantee to opt indepen-
dently of the number of bidders. Surprisingly, the best one
can achieve when requiring incentive-compatibility is in fact
obtainable by mechanisms having the stronger property of
collusion-resistance. To the best of our knowledge, this is the
first known case in which collusion-resistant mechanisms are
as strong as truthful ones. This represents, in a sense, a first
positive result on (deterministic) collusion-resistant mecha-
nisms which have otherwise very limited power, as shown
by the strong negative results in [10, 15]. Let us note that,
regardless of the size of the domain, there always exists a
bid vector for which F (2) = opt (e.g., a vector of all L for
binary domains) and therefore the approximation guaran-

tees of our lotteries w.r.t. F (2) do not improve over known
results in the worst case. (Nevertheless, this is not surpris-
ing as our lotteries are resistant to collusive behavior and
not just truthful as the auctions designed to approximate
F (2).) We leave open the problem of devising incentive-

compatible auctions tailored to approximate F (2) since our
main aim here is different: firstly, using opt as benchmark
and, secondly, showing the equivalence between two notions
of incentive compatibility at different ends of the spectrum.

We use two different techniques to prove our results. The
lower bound for continuous domains is obtained by adopting
a probabilistic technique designed in [9] to bound from below
the revenue of universally truthful auctions. These are auc-
tions defined as probability distributions over deterministic
truthful auctions. To use the probabilistic technique of [9]
we prove that there is a bijection between truthful lotteries
and universally truthful auctions. However, the technique
of [9] turns out to be not flexible enough to prove bounds
which do not depend on the actual values in size-d domains.
Therefore, Theorem 7 needs the development of a new tech-
nique that we introduce in the simpler setting of two-value

2The fact that the bids identified by Theorem 7 are quite far
apart from each other explains why for continuous domains
[1, H] it is possible to approximate opt within ln(H) + 1.
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Upper bound Lower bound

D = {L,H} 2H−L
H

?
(Thm 4) 2H−L

H

#
(Thm 5)

D = {B1, . . . , Bd} d? (Thm 6) d− ε#, any ε > 0 (Thm 7)

D = [1, H] lnH + 1? (Thm 2) ln(H) + 1# (Thm 3)

Table 1: The bounds on the approximation guarantee of the revenue of incentive-compatible lotteries versus
opt as a function of bidders’ domain; the bounds marked by ‘?’ hold for collusion-resistant lotteries, those
marked by ‘#’ apply to truthful lotteries. Theorem 7 identifies, for each value of d and ε, values of B1, . . . , Bd
for which the lower bound holds.

domains in the proof of Theorem 5. (The latter result can
also be proved via the probabilistic proof technique given
in [9].) Our new lower bounding technique relies on the
application of Carver’s theorem [6] which characterizes in-
consistent linear inequality systems in terms of certain linear
combinations of the constraints of the system. Requiring to
approximate opt within a given ratio gives rise to a lin-
ear system with a particular structure; our proofs exploit
this structure to define a suitable linear combination accord-
ing to Carver’s theorem. In setting up the system of linear
inequalities we are able to “hide” the details given by the
values in the domain and we can only focus on the asymp-
totic behavior of lotteries. Technically less involved proofs
of Theorems 5 and 7 would suffice to obtain the correspond-
ing results in the case of fixed number of bidders but would
weaken the equivalence of truthful and collusion-resistant
mechanisms to hold only in rather limited scenarios.

Finally, let us note that due to the simplicity of our anony-
mous and singular lotteries, our upper bounds hold also in
the online setting of [13], i.e., they hold in a setting in which
bidders come online and a decision on the lottery to offer
has to be made before the next bidder arrives.

Roadmap. In Section 1.3 we review the related literature
and, in particular, compare our model with that considered
in previous revenue-maximizing auctions for digital goods.
In Section 2 we give the straightforward logarithmic upper-
bound on approximability of opt through lotteries and a
matching lower bound when bidders bid from an interval
[1, H]. Domains comprised of only two values are considered
in Section 3. The results in this section are extended to any
finite domain in Section 4. Finally, we consider the relation
between our notion of lotteries and the concept of universally
truthful auctions in Section 5.

1.3 Related works
This work is motivated by the results in [5]. Briest et al.

[5] show how lotteries help in maximizing the revenue when
designing envy-free prices. Here we address a similar type of
question and aim at obtaining similar results for incentive-
compatible lotteries.

The truthful lotteries defined above naturally relate to the
truthful auctions for digital goods considered in [9]. The
authors of [9] show that no deterministic truthful auction
can guarantee a reasonable approximation of F and there-
fore focus on universally truthful auctions. However, they
also show that these auctions fail to guarantee any constant
approximation of F (cf. Lemma 3.5 in [9]) and therefore

the benchmark of interest becomes F (2). They define an
interesting auction called Random Sampling Optimal Price

(RSOP, for short) and prove that RSOP gives a (quite weak)

constant approximation of F (2); they also conjecture the
right constant to be 4. Better bounds are then proved in [7,
1]; the latter work proves the conjecture when the number of
winners is at least 6 and in general for two-valued domains.

Our lotteries are deterministic, although a degree of ran-
domness is given by the probabilistic nature of the alloca-
tion. This random aspect can be seen to imply that our
truthful lotteries are in fact equivalent to universally truthful
auctions (e.g., the lottery of the example above can be seen
as an uniform probability distribution over a deterministic
auction which charges L and one which charges H for the
item). Nevertheless, our equivalence proof also shows how
lotteries can be seen as a (arguably more intuitive) reinter-
pretation of universally truthful auctions (e.g., the univer-
sally truthful counterpart of the lottery for [1, H] domain
involves a probability distribution over an infinite number
of mechanisms). (See discussion at the end of Section 5 for
details.) Because of the aforementioned equivalence, this re-
search can also be seen as a continuation of [9] studying to
which extent the knowledge of the domain helps in approx-
imating opt (e.g., Theorems 4 and 6 contradict the inap-
proximability result in [9], i.e., Lemma 3.5 therein breaks
down for finite domains).

Another related work is [10] which considers collusion-
resistant mechanisms for bidders with domains similar to
ours. A characterization in terms of allocation rules is given
(cf. Proposition 1) for randomized mechanisms which de-
fine allocations, payments and then utilities in expectation
over the random coin tosses of the mechanism. Since in our
lotteries we work with deterministic utilities (even, when
considering lotteries as universally truthful auctions) this
characterization holds also in our setting.

A related concept is the responsive lotteries, studied in [8],
in which a single agent reports his valuations of a set of
alternatives, and is awarded one of them, using probabilities
designed to incentivize him to report his true valuations (up
to affine rescaling). The difference here is that we have just
one kind of item, and multiple agents.

Hart and Nisan [12] use a model similar to ours (risk-
neutral bidders and lottery offers) in their study of the op-
timal revenue when selling multiple items.

Other benchmarks are defined in the literature to compare
the revenue of incentive-compatible auctions, see, e.g., [14].
To the best of our knowledge, our work is the first in which
revenue is compared to opt.3

3However, in certain combinatorial settings, such as the one
considered in e.g. [3], opt, as social welfare, is used as bench-
mark for revenue maximization.
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2. LOTTERIES FOR [1, H] DOMAINS
In this section we assume that the bids belong to the in-

terval [1, H]. We begin by proving an upper-bound on the
revenue guarantee by a collusion-resistant lottery. We define

λi(b) =
ln(e · bi)
ln(e ·H)

, for any i and b.

Therefore, since
∫ bi
0

ln(e · u)du = bi ln(bi) by the aforemen-
tioned characterization of payments of truthful mechanisms
for one-parameter agents, cf. (1), we have

pi(b) = hi(b−i) +
1

ln(e ·H)

(
bi ln(e · bi)− bi ln(bi)

)
= hi(b−i) +

bi
ln(e ·H)

.

Setting hi(b−i) = 0 (the value of the functions hi has no
consequence for the truthfulness of the auction given that
it is independent of bi), we have that the utility of agent i,

when declaring bi, is vi
ln(e·bi)
ln(e·H)

− bi
ln(e·H)

which is maximized

for bi = vi. Since each bidder pays a fraction 1/ ln(e ·H) of
his bid, the revenue of this truthful auction is a (ln(H) + 1)-
approximation of opt. Finally, observe that since λi(b) =
λ(bi) then the lottery is anonymous and singular and there-
fore collusion-resistant. Thus, we have the following result.

Theorem 2. There exists a (ln(H) + 1)-approximate a-
nonymous collusion-resistant lottery for bidders whose valu-
ations belong to the interval [1, H].

By using a lower bound technique developed in [9, 10] for
universally truthful auctions and by proving a bijection be-
tween these auctions and truthful lotteries, we can show that
it is not possible to achieve a better approximation guaran-
tee even by relaxing collusion-resistance to truthfulness.

Theorem 3. For truthful lotteries and bidders bidding
from a domain [1, H], opt cannot be approximated better
than ln(H) + 1.

Proof. We show that for any truthful lottery L = (λ, p)
there exists a bid vector b ∈ [1, H]n such that the revenue
collected by L on input b is at most opt(b)/(ln(H) + 1).

To prove this we analyze the behavior of L on a bid vector
b chosen from a carefully designed probability distribution.
The outcome of the lottery is a random variable depending
on the randomness in b and λ. We prove that the expected
revenue of L is at most a ln(H) + 1 fraction of the expected
optimal revenue. Then, by definition of expectation, there
must exist a bid vector for which the claim holds.

Because of Theorem 8, L is equivalent to a universally
truthful auction A. The latter is characterized in terms of
a so-called bid-independent auction (see Definition 2.4 in
[9]). In a bid-independent auction a price is computed as a
(possibly randomized) function of b−i only and offered to
the bidder i. The bidder wins if the price is upper bounded
by bi. In the rest of the proof we will argue about the bid-
independent auction A defined upon lottery L.

Consider the bid vector b in which each bi is i.i.d. gen-
erated from the distribution in which Prob [ bi > y ] = 1/y
for y ∈ [1, H] and Prob [ bi = H ] = 1/H. Let Pi(b−i) be
the price charged by A to agent i when the bidder declares
bi and the other agents declare b−i. Note that, since A is

bid-independent then Pi(b−i) is a random variable depend-
ing on the randomness of A and b−i only. Let Ri be the
expected revenue from bidder i which is 0 if bi < Pi(b−i)
and Pi(b−i) otherwise. For p ≥ 0, E [Ri |Pi(b−i) = p ] =
p ·Prob [ bi > p |Pi(b−i) = p ] = p ·Prob [ bi > p ] ≤ 1, where
the equality in the penultimate step follows since bi is inde-
pendent of Pi(b−i). Therefore,

E [Ri ] =
∑
p

E [Ri |Pi(b−i) = p ] · Prob [Pi(b−i) = p ]

≤
∑
p

Prob [Pi(b−i) = p ] ≤ 1.

We can then conclude that the expected revenue of A on
the randomly generated bid vector b is at most n. On the
other hand, E [opt(b) ] = nE [ bi ] = n(ln(H) + 1).

3. TWO-VALUE DOMAINS
In this section we assume that bidders’ valuations are

known to come from a 2-element set {L,H}, with L < H. To
begin with, we understand how to define lambda functions
that lead to truthful lotteries and maximize the revenue.
It turns out that some simple lambda functions that corre-
spond to anonymous, collusion-resistant mechanisms guar-
antee a good approximation of the optimal revenue. We
then prove (Theorem 5) that functions of this kind suffice
to obtain optimal performance, even amongst mechanisms
that need not be collusion-resistant, but just truthful.

We initially observe that by essentially the same argu-
ments in [2] it is easy to show that a necessary condition to
obtain truthfulness is that λi(H,b−i) ≥ λi(L,b−i) for any
i and b−i.

4 For a bidder i with valuation H, the follow-
ing truthfulness constraint must be satisfied Hλi(H,b−i)−
pi(H,b−i) ≥ Hλi(L,b−i) − pi(L,b−i), which implies that
pi(H,b−i) ≤ H(λi(H,b−i) − λi(L,b−i)) + pi(L,b−i). To
maximize the revenue we would like to set pi(H,b−i) =
H(λi(H,b−i)−λi(L,b−i))+pi(L,b−i). We next show that
we can do that while guaranteeing the truthfulness of bid-
der i having valuation L. Indeed, the utility of such a bidder
when lying and declaring H is:

−pi(H,b−i) + Lλi(H) =−H(λi(H)− λi(L)) + Lλi(H)

− pi(L,b−i) ≤ Lλi(L)− pi(L,b−i)

where the last inequality follows from (L−H)(λi(H,b−i)−
λi(L,b−i)) ≤ 0. It remains to set a value for pi(L,b−i) to
guarantee voluntary participation, i.e., to guarantee that a
bidder with valuation L buys the lottery; to achieve this, we
set pi(L) = Lλi(L,b−i).

From the above analysis, one could easily get an approx-
imation guarantee of 2 by setting λi(H,b−i) = 1 and λi(L,
b−i) = 1/2 for any i and b−i. However, it is possible
to do better. Below, we let NH(b) (resp. NL(b)) denote
the set of bidders declaring H (resp. L) in b. We also let
nH(b) = |NH(b)| and nL(b) = |NL(b)|.

Theorem 4. There exists an anonymous collusion-resist-
ant lottery for two-value domains {L,H}, L < H, whose
revenue is a 2H−L

H
-approximation of opt.

4We cannot blindly use the results in [2] since the technical
assumption in that work is to have the lambda functions
twice differentiable. This is not true for discontinuous func-
tions, like the lambda functions for two-value domains.
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Proof. We define λi(L,b−i) = λ(L) = H
2H−L and λi(H,

b−i) = λ(H) = 1 for all i and b−i. With the payment
functions defined above, which guarantee truthfulness, the
revenue collected by this lottery for a vector b is:

n∑
i=1

pi(b) =
∑

i∈NH (b)

pi(H,b−i) +
∑

i∈NL(b)

pi(L,b−i)

=
∑

i∈NH (b)

(
Hλ(H)− (H − L)λ(L)

)
+

∑
i∈NL(b)

Lλ(L)

=

(
nH(b)H + nL(b)L

)
H

2H − L.

The approximation guarantee follows from the observation
that the optimum is defined as nH(b)H + nL(b)L. Finally,
the collusion-resistance and the anonymity of the lottery fol-
lows from having defined λi(b) = λ(bi) for all i and b.

Next we show that no truthful lottery can improve on the
ratio obtained by Theorem 4. Lotteries that are truthful —
but not necessarily collusion-resistant — allow λi to depend
also on the bid vector b−i. The following result can be
proved with the same logic in the case of n = 1 (where the
vector b−i is trivial) with a significantly shorter proof5; we
show here that it holds for any number of bidders n. The
proof follows a simple structure. We initially upper bound
the payments of a truthful lottery in terms of the lambda
functions. Then, for the lottery to approximate opt within
a factor α, a certain system of linear inequalities, with the
lambda functions as variables, must be satisfied. Finally,
we study the combinatorics of the system and use Carver’s
theorem [6] to determine the values of α for which the system
admits solutions.

Theorem 5. No truthful lottery for domains {L,H}, L <
H, has approximation guarantee better than 2H−L

H
.

Proof. Consider a truthful lottery which has approxi-
mation guarantee better than α > 1 for a 2-value domain
{L,H}, L < H. By voluntary participation for bidders with
valuation L we have pi(L,b−i) ≤ Lλi(L,b−i). By truth-
fulness of bidders with valuation H, we have pi(H,b−i) −
pi(L,b−i) ≤ H(λi(H,b−i)−λi(L,b−i)), equivalently pi(H,
b−i) ≤ H

(
λi(H,b−i)−λi(L,b−i)

)
+pi(L,b−i). Combining

these inequalities we get

pi(H,b−i) ≤ Hλi(H,b−i)− (H − L)λi(L,b−i). (2)

From (2) we have that for all bid vectors b,∑
i∈NH (b)

(
Hλi(H,b−i)− (H − L)λi(L,b−i)

)
+

∑
i∈NL(b)

Lλi(L,b−i) ≥
n∑
i=1

pi(b).

Now, noting that
∑n
i=1 pi(b) > opt(b)

α
= nH (b)H+nL(b)L

α
,

5In such a case, the graph in Figure 1 would comprise only
two nodes and then the combinatorics involved is straight-
forward. (Moreover, n = 1 is of little significance given that
there is no difference between truthfulness and collusion-
resistance in this case.)

we can rewrite this as∑
i∈NH (b)

(Hλi(H,b−i)− (H − L)λi(L,b−i))

+
∑

i∈NL(b)

Lλi(L,b−i) >
nH(b)H + nL(b)L

α
.

Rearranging the above and noting that λi(H,b−i) ≤ 1 for
all i and b−i, we have the following system of 2n linear
inequalities:

− (H − L)
∑

i∈NH (b)

λi(L,b−i) + L
∑

i∈NL(b)

λi(L,b−i) >

− nH(b)α− nH(b)

α
H +

nL(b)

α
L for all b. (3)

There are n · 2n−1 variables {λi(L,b−i) : i ∈ [n],b−i ∈
{L,H}n−1} in the above system. Notice that each variable
λi(L,b−i) occurs only twice with a coefficient different from
0: in particular, its coefficient is 0 in all the constraints
relative to a bid vector b = (·,b′−i) with b′−i 6= b−i; for
b = (H,b−i), λi(L,b−i) has coefficient −(H − L) since i ∈
NH(b); finally, for b = (L,b−i), the variable has coefficient
L since i ∈ NL(b).

In order to prove the theorem we want to study the values
of α for which this system has no solutions. Towards this
end, we let xi(b−i) be a shorthand for λi(L,b−i) and num-

ber all the possible m = 2n bid vectors b as b(1), . . . ,b(m).
Then we denote by Γ(j)(x) the terms involved in the j-th

constraint of (3) relative to b(j), i.e.,

Γ(j)(x) :=− (H − L)
∑

i∈NH (b(j))

xi(b
(j)
−i ) + L

∑
i∈NL(b(j))

xi(b
(j)
−i )

+
nH(b(j))(α− 1)

α
H − nL(b(j))

α
L.

We use Carver’s theorem [6] which characterizes inconsistent
systems of linear inequalities: according to [6], (3) above
admits no solution if and only if we can find m + 1 non-
negative constants kj , such that

m∑
j=1

kjΓ
(j)(x) + km+1 ≡ 0, (4)

with at least one of the k’s being positive. We next show
how to define the constants k1, . . . , km so that the two oc-
currences with non-null coefficients of each variable xi(b−i)
cancel out. We define a graph which has a vertex for each
possible bid vector. We put an edge between two vertices if
the corresponding bid vectors are adjacent, i.e., they differ
in only one entry. Each vertex then has exactly n neigh-
bors. This is a layered graph with n + 1 layers. Let layer
` be the set of all vertices whose corresponding bid vec-
tors are comprised of ` H’s and n − ` L’s. The graph is
indeed layered as by definition a node at layer ` only has
neighbors at layer ` − 1 and ` + 1. For a bid vector b(j)

whose associated vertex lies in layer ` of the graph we define

kj = L`

(H−L)`
. The construction is depicted in Figure 1 for

the case of n = 3. To show that this definition of constants
cancels out the x’s in (4) consider a variable xi(b−i). The
two occurrences of xi(b−i) with a non-zero coefficient are for
the bid vectors b1 = (H,b−i), in which case xi(b−i) has co-
efficient −(H−L), and b2 = (L,b−i), in which case xi(b−i)
has coefficient L. The two vertices associated to b1 and b2
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(L,L,L)

(H,L,L)

(L,H,L)

(L,L,H) (L,H,H)

(H,L,H)

(H,H,L)

(H,H,H)

Layer 0 1 2 3

Constant kj 1 L
H−L

L2

(H−L)2
L3

(H−L)3

Figure 1: The graph constructed in the proof of Theorem 5 for n = 3.

are by definition connected, with b1 being a node at layer
nH(b1) and b2 being a node at layer nH(b2). By construc-
tion, we have nH(b2) = nH(b1) − 1 and therefore, letting
` = nH(b1) − 1, we have that the constant k correspond-

ing to b1 is L`+1

(H−L)`+1 while the constant corresponding to

b2 is L`

(H−L)`
. This means that the contribution of variable

xi(b−i) to (4) is:(
L

L`

(H − L)`
− (H − L)

L`+1

(H − L)`+1

)
xi(b−i) = 0.

Then,
∑m
j=1 kjΓ

(j)(x) =
∑m
j=1 kjΓ

(j) is equal to

m∑
j=1

kj

(
nH(b(j))(α− 1)

α
H − nL(b(j))

α
L

)
.

We now study for which values of α the above sum is not
positive.

Consider all the nodes at layer ` of the graph. We call this
set of nodes S`. We abuse the notation and say that b ∈ S`
to mean that the node corresponding to b is at layer ` of the
graph; we then rewrite the summation above and impose it
to be less than or equal than 0:

m∑
j=1

kjΓ
(j) =

n+1∑
`=2

− ∑
b(j)∈S`−1

kj
nL(b(j))

α
L

+
∑

b(j)∈S`

kj
nH(b(j))(α− 1)

α
H

 ≤ 0.

If the whole summation is non-positive, then there exists
at least one layer ` for which the inner summation is non-
positive. That is,

−
∑

b(j)∈S`−1

kj
nL(b(j))

α
L+

∑
b(j)∈S`

kj
nH(b(j))(α− 1)

α
H ≤ 0

The bid vectors b in S` have exactly ` H’s, i.e., nH(b) = `
and nL(b) = n− `, and then their number is

(
n
`

)
. Moreover,

all those bid vectors have the constant k set to (L/(H −

L))`. Therefore, by the definition of constants kj , the above
inequality implies

− 1

α
+

1

(H − L)

α− 1

α
H ≤ 0,

which in turns yields α ≤ 2H−L
H

. This means that for these
values of α, the weighted sum of the known terms in (4)
is non-positive. Therefore, there exists a non-negative con-
stant km+1 which together with the constants k1, . . . , km
defined above satisfies (4). In other words, for α ≤ 2H−L

H
,

the system (3) has no solutions and therefore no truthful
lottery can guarantee better approximation ratios.

4. THE CASE OF FINITE DOMAINS
Similarly to the two-value domains, one could study three-

valued domains {L,M,H}, L < M < H. With such a study,

one would prove an upper bound of 3HM−HL−M2

HM
for sin-

gular, anonymous lotteries (this is done by setting λ(H) =
1, λ(M) = 2MH+LH

3HM−HL−M2 and λ(L) = HM
3HM−HL−M2 ) and a

matching lower bound for truthful ones. However, we prefer
to focus on asymptotic bounds (on the approximability of
opt) in terms of the number of allowed bid values in the
domain, as opposed to detailed bounds in terms of those
values. That is the goal of this section.

We begin by noticing that it is possible to design a col-
lusion-resistant lottery collecting a |D|−1 fraction of opt
when bidders bid from a finite domain D = {B1, . . . , Bd},
B1 > . . . > Bd.

Theorem 6. There exists an anonymous collusion-resist-
ant lottery for finite size-d domains, whose revenue is a d-
approximation of opt.

Proof. We define the anonymous, singular lottery λ(Bi) =
(d−i+1)/d and the corresponding payment functions pi(Bt,

b−i) =
∑d
j=tBj(λ(Bj)−λ(Bj+1)) =

∑d
j=t

Bj

d
for 1 ≤ t < d

where we set λ(Bd+1) = 0. Let us show that these pay-
ment functions indeed lead to collusion-resistance. We have
to prove that for any bidder i with valuation Bt and any
Bh ∈ D:

Btλ(Bt)− pi(Bt,b−i) ≥ Btλ(Bh)− pi(Bh,b−i).
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By definition this is equivalent to proving:

Bt(h− t)−
d∑
j=t

Bj +

d∑
j=h

Bj ≥ 0.

Now, whenever h ≤ t, the left-hand side of the above in-
equality is equal to Bt(h − t) −

∑h−1
j=t Bj which is non-

negative since Bj ≤ Bt, j ≥ t. Similarly, in the case in
which h > t, the left-hand side of the above inequality equals
Bt(h − t) −

∑t−1
j=hBj which is non-negative since Bj ≥ Bt,

j ≤ t.
To prove the approximation guarantee we note that for all

bid vectors b, we have

n∑
i=1

pi(b) ≥
d∑
t=1

nt(b)Bt

(
λ(Bt)− λ(Bt+1)

)

=

d∑
t=1

nt(b)Bt
d

=
opt(b)

d
,

Nt(b) denoting the set of bidders bidding Bt in b and nt(b)
being the size of Nt(b).

We cannot improve over the above result even by relaxing
the collusion-resistance to truthfulness, as shown by next
theorem. The proof of the lower bound below is not a sim-
ple extension of the arguments used for two-value domains.
Although the structure of the proof is similar, the difficulty
here rests on the fact that the layered graph is not adequate
to model the definition of the constants required by Carver’s
theorem. Moreover, the study of the weighted sum of the
known terms of the system is significantly more involved.
Due to lack of space, we here only give a sketch of the proof.
The interested reader is referred to [11] for a full proof.

Theorem 7. For any d and ε > 0, there exist bids B1 >
B2 > . . . > Bd > 0 such that no truthful lottery for the do-
main D = {B1, . . . , Bd} has approximation guarantee better
than d− ε.

Proof Sketch. It is not hard to see that by truthfulness
constraints any truthful lottery must satisfy the following
upper bounds on the payments, for 1 ≤ t < d.

pi(Bt,b−i) ≤ Bt(λi(Bt,b−i)− λi(Bt+1,b−i)) +

d∑
j=t+1

Bj .

We let Bd be a positive value and then define the bids of
the domain to satisfy6 Bt

Bt−1
≤ ρε

d−t+1
, for 1 < t ≤ d, where

ρε := ε
d(d−ε) and get that, for 1 ≤ t < d, it holds

pi(Bt,b−i) ≤ Bt(λi(Bt,b−i)− λi(Bt+1,b−i)) + ρεBt,

since
∑d
j=t+1Bj ≤ (d − t)Bt+1 ≤ ρεBt. We also note that

by voluntary participation, we have pi(Bd,b−i) ≤ Bdλi(Bd,
b−i) ≤ Bdλi(Bd,b−i) + ρεBd. We can now upper bound
the revenue of a truthful lottery. To ease the notation we
set λi(B,b−i) = 0 for any i,b−i, and B 6∈ D. We then get

n∑
i=1

pi(b) ≤
d∑
t=1

∑
i∈Nt(b)

(
Bt

(
λi(Bt,b−i)− λi(Bt+1,b−i)

)
6Note that this is a feasible definition as for the meaningful
values of ε, i.e., d > ε > 0, ρε

d−t−1
< 1 and therefore we are

only quantifying the “gap” between two consecutive bids of
the domain.

+ ρεBt

)
=

d∑
t=1

∑
i∈Nt(b)

Bt

(
λi(Bt,b−i)− λi(Bt+1,b−i)

)

+

d∑
t=1

nt(b)Btρε,

where, as above, Nt(b) is the set of bidders bidding Bt in b
and nt(b) = |Nt(b)|. We now assume by contradiction that
a truthful lottery has approximation guarantee better than
d − ε for the domain D as in the hypothesis. By noticing
that λi(B1,b−i) ≤ 1 for all i we then obtain the following
system of linear inequalities

d∑
t=1

∑
i∈Nt(b)

Bt

(
σtλi(Bt,b−i)− λi(Bt+1,b−i)

)
>

− d− 1

d
n1(b)B1 +

d∑
t=2

nt(b)Bt
d

for all b, where σt = 1 if t > 1 and 0 otherwise. Similarly
to Theorem 5, we enumerate all the possible m = dn bid
vectors, b(1), . . . ,b(m) and for each of those we define

Γ(j)(Λ) :=

n∑
i=1:i∈Nt(b(j))

Bt

(
σtλi(Bt,b

(j)
−i )− λi(Bt+1,b

(j)
−i )

)
,

∆(j) :=
d− 1

d
n1(b(j))B1 −

d∑
t=2

nt(b
(j))Bt
d

,

where Λ = (λ1, . . . , λn). By Carver’s theorem to reach a
contradiction and show the theorem it is enough to show
that there exist m+ 1 non-negative constants kj , such that

m∑
j=1

kj(Γ
(j)(Λ) + ∆(j)) + km+1 ≡ 0,

with at least one of the k’s being positive. We can show that
there exist constants which make the sum of the Γ functions
equal to 0 and then prove that these constants also annul
the sum of the ∆ functions.

5. UNIVERSALLY TRUTHFUL AUCTIONS
AND LOTTERIES

Given a function f(b) we call f+(b) the right-continuous
version of f(b) defined as f+(b) = limc→b+ f(c).

Theorem 8. There exists a bijection between truthful lot-
teries and universally truthful auctions.

Proof. Let (λ, p) be a truthful lottery over [1, H]. Fix i
and b−i and consequently to ease the notation write λi(b,b−i)
as the one-variable function λ(b). We show how to define the
corresponding universally truthful auction.

We define the function

δ(b) =


0 if b < 1
λ+(b) if 1 ≤ b ≤ H
λ(H) if H < b < 2H
1 if b ≥ 2H,

where λ+(b) is the right-continuous version of λ(b). (Note
that λ+(H) = λ(H) as the domain of λ is [1, H].) Ob-
serve that δ is right-continuous, non-decreasing and that
limb→−∞ δ(b) = 0, limb→+∞ δ(b) = 1. Therefore, it is known
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that there exists on some probability space a random vari-
able X for which δ(x) = Prob [X ≤ x ] (see, e.g., Theorem
14.1 in [4]). In other words, δ is the cumulative distribution
function of a random variable X. We can use X to define a
universally truthful auction that with

Prob [x < X ≤ y ] = δ(y)− δ(x) (5)

charges a price in (x, y]. Moreover, price z is a weak thresh-
old (i.e., bidder wins by declaring at least z) if λ is right-
continuous at z, and strict (i.e., bidder wins by declaring
strictly more than z) otherwise, cf. Definition 2.4 in [9].

Conversely, starting from the cumulative distribution func-
tion of a universally truthful auction we can define a truthful
lottery by using the arguments above backwards.

Note that the universally truthful auction given by (5)
may result rather unnatural mainly because it is not clear
with which probability a certain price is charged. However,
there are cases in which δ has some properties for which (5)
can be easily decoded. Let B1 > B2 > . . . > BT be the
number of different prices charged by the lottery for some
i and b−i. If T is finite then δ is a step function and X a
discrete random variable; in this case, one can take the inter-
val (Bj , Bj−1] and infer from the proof that the universally
truthful auction will charge Bj−1 with essentially probabil-
ity λi(Bj−1,b−i) − λi(Bj ,b−i). In the case in which T is
infinite, with δ having a derivative θ which can be integrated
back to δ (e.g., λ is continuously differentiable) then θ is the
probability density function of the random variable X mean-
ing that (5) can be rewritten as

∫ y
x
θ(u)du so to obtain an

infinitesimal weight for the prices in (x, y].
Finally, let us observe that the proof above holds for col-

lusion-resistance as well when lotteries are singular.

6. CONCLUSIONS
We consider incentive-compatible auctions in which the

auctioneer sells lottery tickets for winning the good being
auctioned. We aim at the design of auctions maximizing
the revenue; the benchmark of interest is, in this setting,
the optimal revenue, defined as the sum of bidders’ valu-
ations. Although well motivated, rather technical bench-
marks, such as F (2) defined above, are instead used in re-
lated literature. We study these auctions in the context of
digital goods and prove the equivalence, in terms of approxi-
mation guarantee to the optimal revenue, between collusion-
resistant and truthful auctions (cf. Table 1). The former is
a much stronger requirement than the latter: it requires the
auctions to be resistant to coalitions of cheating bidders ex-
changing side payments. This equivalence is proved to be
true in three different scenarios of bidders’ domains: binary,
finite and interval [1, H], using either a new technique to
bound the revenue of truthful lotteries (which we regard as
our main technical contribution) or an equivalence between
universally truthful auctions and truthful lotteries which al-
lows to apply a known technique due to [9]. The proof of
equivalence shows that the concept of incentive-compatible
lotteries is rather useful: lotteries can be much more natural
to imagine than universally truthful auctions.

A number of questions are raised by our results. For ex-
ample, one could look at distributions over lotteries, rather
than the deterministic lotteries we focus on, with the intent
of obtaining better approximations of opt. Furthermore,
it would be interesting to evaluate whether the feasibility

of using the optimal benchmark is due to the assumptions
on the domains, or rather to the expressiveness of lotter-
ies. We believe that a study of lotteries in settings different
from that of digital goods can shed light on this important
question. Notice, however, that moving from the digital
good setting may imply that we have to give up collusion-
resistance in order to get any reasonable performance. In-
deed, consider a 1-item auction with 2 possible bid values
{L,H}, L < H; Suppose that λi had to depend only on bid
bi and not b−i. Since we have only one item available to sell,
we need

∑n
j=1 λj(H) ≤ 1, from which it follows that some j

satisfies λj(H) ≤ 1/n. Suppose then that all other bidders
have value L, so that opt = H. All the other bidders would
pay at most L while j pays at most H/n, so for H � nL
this fails to approximate opt within any constant.
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