
Redistribution in Online Mechanisms

Victor Naroditskiy, Sofia Ceppi∗, Valentin Robu and Nicholas R. Jennings
University of Southampton

Southampton, UK
vn@ecs.soton.ac.uk,sc11v@ecs.soton.ac.uk,vr2@ecs.soton.ac.uk,nrj@ecs.soton.ac.uk

ABSTRACT
Following previous work on payment redistribution in static mech-
anisms, we develop the theory of redistribution in online mech-
anisms (e.g., [2, 10, 8]). In static mechanisms, redistribution is
important as it increases social welfare in scenarios with no resid-
ual claimant. Many online scenarios also do not have a natural
residual claimant, and redistribution there is equally important. In
this work, we adopt a fundamental online mechanism design model
where a single expiring item is allocated in each of T periods.
Agents with unit demand are present in the market between their
arrival and departure periods, which are private information along
with the value an agent attributes to the item. For this model, we
derive a number of properties characterizing redistribution in on-
line mechanisms (including revenue monotonicity properties, and
quantifying the effect an agent can have on the total revenue). We
then design two redistribution functions. The first one generalizes
the static redistribution proposed by Cavallo [2] making redistri-
bution after the departure of the last agent. For this redistribution
function we provide theoretical worst-case guarantees. The sec-
ond function is truly “online” making redistribution to each agent
on her departure. The performance of both functions is evaluated
using numerical simulations.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

Keywords
Online mechanism design, payment redistribution

1. INTRODUCTION
Revenue redistribution is a growing area of study within mecha-
nism design. Its importance can be intuitively illustrated by means
of a simple example. Consider a situation in which a number of
identical items need to be allocated among a group of agents (spe-
cific examples might include allocating free tickets for a popular
talk, deciding which roommate gets to use the living room for a
weekend party, or allocating university parking spots among fac-
ulty members). Each agent has a private value for the item, and we

∗Double affiliation with Politecnico di Milano, Milan, Italy Email:
ceppi@elet.polimi.it

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

would like to distribute the items in a way that maximizes social
welfare. In order to incentivize agents to reveal their private values,
payments must be introduced. Importantly, there is no revenue-
maximizing auctioneer or residual claimant to absorb the revenue.
Thus, any revenue collected represents the cost of truthfulness, and
decreases the social welfare. It has been shown [6] that the cost
cannot be zero: i.e., budget balance and allocative efficiency are
not compatible. Against this background, the redistribution litera-
ture aims to distribute back as much of the revenue as possible.

Much of the work on redistribution mechanisms focuses on find-
ing the best mechanism from the Groves class: i.e., on redistribut-
ing VCG payments (e.g., [10, 8, 11]). But some work has ad-
dressed non-efficient mechanisms [7, 4]. However, with the excep-
tion of [3] discussed in Section 7, all of the redistribution results
assume static settings, in which the decisions are made at the same
time in the presence of all participating agents. While relevant to
some settings, in others like electric vehicle charging and allocation
of computational resources in cloud computing this is not a suitable
model.

To this end, we provide the first results on redistribution in online
mechanisms. Specifically, we consider the case in which decisions
must be made over time, with a separate decision made each period,
and agents who arrive and depart at various times not known by the
mechanism, i.e., the private information of each agent also includes
her arrival and departure times.

As in the prior work on static models, our goal is to maximize
social welfare. Welfare maximization is a natural objective for al-
locating resources in situations without a revenue-maximizing auc-
tioneer. An example of an online setting where social welfare is the
right objective is electric vehicle charging [5, 14], where vehicles,
arriving and departing at different times of day, draw electricity
from a shared resource such as a community-owned wind turbine
or need to divide between them a joint quota made available by the
electricity distribution company. Another example is cloud com-
puting, in which computational jobs arriving over time need to be
allocated to a number of processors.

In our work we consider the fundamental model where identical
items are distributed among agents with unit demand [13]. In par-
ticular, we focus on deterministic, individually rational (i.e., each
agent should not be worse off after participating in the mechanism),
and weakly budget-balanced (i.e., the total payment collected from
the agents should be non-negative) mechanisms where truthful re-
porting is a dominant strategy. We refer to the latter property as
dominant strategy incentive compatibility (DSIC). A class of online
mechanisms satisfying these properties has been described in [13],
and we study redistribution within this class. This simple model
proves to be a good departure point for the study of redistribution
in online mechanisms. The model includes the properties specific

651

to online settings such as: (i) arrival and departure times are private
information of the agents, (ii) in each period no information about
agents arriving in the future is available, and (iii) the allocation de-
cisions in each period are interdependent. We start with deriving a
number of general properties for this online setting (see Section 3).

Based on the general properties, we design two redistribution
functions. One is a generalization of the function proposed for
static settings by Cavallo [2]. Under this rule, redistribution occurs
only after the last agent departs. We provide analytical guarantees
of the performance of the generalized redistribution. The second
function, redistributes to each agent on her departure. Performance
of both functions is evaluated in numerical simulations.

In summary, the main contributions of this work are as follows:

• We derive general results characterizing properties of redis-
tribution functions in online domains that are required to guar-
antee dominant strategy truthfulness and weak budget bal-
ance.

• Based on these general properties, we design two redistribu-
tion functions for online settings: one that redistributes to all
agents at the last period, and one that redistributes to each
agent at her departure time. Moreover, we provide theoreti-
cal guarantees on the performance of the first redistribution
function.

• We evaluate the performance of both functions in redistribut-
ing collected revenue using numerical simulations.

The remainder of the paper is organized as follows. First, we de-
scribe the online mechanism design model we adopt from [13]. We
proceed with a series of results pointing out the features that an on-
line redistribution function must satisfy to guarantee weak budget
balance and DSIC. Then, we propose two redistribution functions
analyzing them in terms of the percentage of revenue redistributed.
Finally, we present the results of numerical simulations of the func-
tions described.

2. MODEL OF ONLINE MECHANISMS
Existing literature on online mechanism design discusses several
models of online allocation (see [13] for an overview). We fo-
cus on a fundamental model proposed in [9, 13]. Specifically, we
study the class of deterministic, model-free online mechanisms. In
such mechanisms, the allocation rule itself is deterministic, and the
mechanism does not need a model of future arrivals of the agents
in order to compute the allocation. Furthermore, in this work we
only consider online mechanisms where truthtelling (i.e., true re-
porting of types by the agents) is a dominant strategy. Determin-
istic, model-free, dominant-strategy mechanisms are the most de-
sirable mechanisms to design as they require no prior information
on agents’ types, and do not make any assumptions about risk-
preferences of the agents.

Formally, there are T discrete time periods, and agents may ar-
rive and depart within [1, T]. There is an identical item available
for allocation in each period.1 The items are “expiring", and if
not allocated within their period, they disappear (this is natural, for
example, when items correspond to computational time on a ma-
chine). We define the type of agent i as θi = (ai, di, vi), where
ai is her arrival period, di is her departure period (1 ≤ ai ≤
di ≤ T), and vi ∈ R is her value for obtaining the item. We
sometimes refer to the interval [ai, di] when agent i is present as
agent i’s active window. We use N to denote the set of agents
1The case of multi-unit supply per period is not discussed in this
paper, but our model can be extended to cover this case.

that are present at some time between 1 and T , with the cardinal-
ity denoted by n = |N |. We denote2 by πt : θ → {0, 1}n the
greedy allocation function [13] that, at each time t, allocates the
good to the previously unallocated agent who is present at time
t and has the highest value among all unallocated agents present
at t. Allocation to agent i is specified by πt

i(θ) ∈ {0, 1}. For-
mally, πt

i(θ) = 1 if i ∈ N t and i = argmaxj∈Nt vj where

N t = {j ∈ N | t ∈ [aj , dj] and
∑t−1

t′=aj
πt′
j (θ) = 0} denotes the

set of agents active on day t. If there are multiple active agents with
the same highest value, the allocated agent is determined randomly.

The utility of agent i ∈ N from participating in the market is
ui(θ) = viπi(θ) − xi(θ) where xi(θ) denotes the payment of
agent i (defined in Equation 1 and generalized in Equation 3), and
πi(θ), defined as

∑di
t=ai

πt
i(θ) indicates whether agent i has been

allocated (πi(θ) = 1) or not (πi(θ) = 0).
We remark that, for this deterministic, single-unit demand set-

ting, the state of the art characterization was first presented by
Hajiaghayi et al. [9] (and, in a more extended form, by Parkes
[13]). Assuming individual rationality and zero payment from un-
allocated agents, they show that the allocation function πt can be
truthfully implemented in single-valued domains with limited mis-
reports3 (i.e., no early arrivals/late departures can be reported) if
and only if the payment xi of each agent i ∈ N takes the form:

xi(θ) = x̂i(θ) =

{
vc(θ−i, ai, di) if πi(θ) = 1

0 otherwise
(1)

where vc(θ−i, ai, di) denotes the critical value of agent i:

vc(θ−i, ai, di) = min
v′
i
∈R

v′i | πi(θ
′
i, θ−i) = 1, for θ′i = (v′i, ai, di) (2)

We dispose of the assumption that unallocated agents’ payment
is zero, and characterize all possible ways to modify the payment
function above:

xi(θ) = x̂i(θ)− h(θ−i, ai, di) (3)

where h(θ−i, ai, di) is the redistribution agent i receives.
In the next section we discuss how redistribution should be de-

fined in order for the allocation mechanism to maintain DSIC and
weak budget balance. Note that, individual rationality—the prop-
erty that each agent has a non-negative utility—is satisfied by the
mechanism described above if and only if the redistribution is non-
negative. This will be the case throughout the paper.

The last part of the model that needs to be specified is the evalu-
ation metric. As in much of the work on the static case (e.g., [2, 10,
8]), we evaluate mechanisms based on the worst-case performance
guarantee: i.e., the welfare that is guaranteed regardless of agents’
private information.

In order to better explain our results, we benchmark them against
the existing results for the static case. The relevant static case is
allocating m identical items among n agents (by definition, there
is only one period T = 1 in the static case). Note that in the online
case, since we consider the scenario with single unit supply (i.e.,
only one item can be allocated in each time interval), the number
of items is the same as the number of periods m = T .

2To avoid complicated notation, we use types θ of all agents N as
an argument to the allocation function π and of all agents except i,
N \ i, to the payment function xi. However, allocation at period t
is decided based only on the types of the agents that already arrived
in the market. The types of agents that have not yet arrived are not
used (and, in fact, cannot be known) by these functions.
3We adopt this assumption throughout the paper.

652

The worst-case ratio for allocating m items among n agents is
measured as the percentage of revenue that is guaranteed to be re-
distributed back to the agents regardless of their types:

r(m,n) = min
θ

H(θ)

R(θ)
(4)

where R(θ) =
∑

i∈N xi(θ) is the collected revenue, and H(θ) =∑
i∈N h(θ−i) is the total amount redistributed. Note that the best

possible ratio of any mechanism satisfying weak budget balance is
one (corresponds to a fully budget-balanced mechanism).

In the static case of allocating identical items to agents with unit
demand, the private information of an agent is her value for an
item θi = vi. The ratio of various redistribution mechanisms can
be described as a function of m and n. For instance, as shown
in [8], the Bailey-Cavallo redistribution mechanism [2, 1] achieves
the ratio of:4

rBC(m,n) =
n−m− 1

n
(5)

In the online case, each agent’s private information also includes
the arrival and departure dates, θi = (ai, di, vi). In the next sec-
tion, we show that it is more difficult to provide positive results for
the online case and show how to remedy this in Section 4.

3. CHARACTERIZING REDISTRIBUTION
IN ONLINE MECHANISMS

We start with characterizing the class of DSIC redistribution mech-
anisms.

LEMMA 1. Under limited misreports, the mechanism specified
by the greedy allocation function πt is DSIC if and only if the pay-
ment function is given by Equation 3 where h(θ−i, ai, di) is an
arbitrary function satisfying

h(θ−i, ai, di) ≥ h(θ−i, a
′
i, d

′
i) ∀θ−i, a

′
i ≥ ai, d

′
i ≤ di (6)

PROOF. First, we show the “if” part: any payment rule (3) with
a redistribution function h(θ−i, ai, di) satisfying (6) is DSIC. Re-
call that payment rule without redistribution (1) is DSIC [9, 13]
and note that the redistribution is independent of agent’s reported
value vi. The only manipulation an agent has is with respect to ai

and di. The condition in (6) guarantees that an agent never gets a
higher redistribution by reporting a later arrival or an earlier depar-
ture. By assumption of limited misreports, agents cannot report an
earlier arrival or a later departure. Thus, the agents have no incen-
tive to misreport due to the redistribution term, and the mechanism
remains DSIC.

Next, we prove the “only if” part: only payment rules stated in
the lemma truthfully implement the greedy allocation πt. For this,
we need to argue that in a DSIC mechanism h must be independent
of vi and must satisfy (6). To argue independence of vi we invoke
results for static allocation of m items among n agents, which is
a special case of our online mechanisms when arrival and depar-
ture dates for all agents are the same. DSIC in the static case (e.g.,
see [12], Theorem 9.36) states that the difference between the pay-
ment of agent i when she is allocated and when she is not allocated
(i.e., the price she pays for the item) must be exactly the critical
value vc(θ−i, ai, di) defined in Equation 2. Thus, redistribution
to agent i must be independent of vi. Finally, we show that DSIC
requires (6). We just argued that redistribution to agent i is indepen-
dent of vi and consequently of her allocation. Suppose in violation

4The allocation rule is set to the efficient allocation function in the
Bailey-Cavallo mechanism.

of (6), agent i’s rebate is higher when she reports a later arrival or
an earlier departure. Agent i with the true value of zero (i.e., agent
who is never allocated, or never pays for being allocated), would
want to lie about her arrival/departure violating DSIC.

Next we address the issue of weak budget balance in online
mechanisms. Denote by R(θ) the total revenue collected by the
mechanism before any redistribution occurs: i.e., when h(θ−i, ai, di) =
0, ∀i. Similarly, denote by R(θ−i) the total revenue the mechanism
collects, before redistribution, if agent i were not present.

LEMMA 2. Given reports of agents other than i, θ−i, let θ′i de-
note the report of agent i that minimizes the revenue Rmin(θ−i) =
minθ′

i
∈Θ R(θ′i, θ−i). Redistribution to agent i cannot exceed Rmin(θ−i)

in a weakly budget-balanced mechanism.5

PROOF. Suppose h(θ−i, ai, di) > Rmin(θ−i). Recall that, in
order to maintain truthfulness, the redistribution to agent i must be
independent of θi. When agent i has the type θ′i, the revenue col-
lected is exactly Rmin(θ−i). Thus, given h(θ−i, ai, di) > Rmin(θ−i),
the weak budget balance property is violated as agent i receives
more than the collected revenue.

Lemma 2 provides an upper bound on the amount that can be
redistributed to each agent. We would like to redistribute as much
as possible, and are looking for ways to guarantees at least a certain
percentage of revenue is redistributed: i.e., we would like to bound
redistribution from below. One of the difficulties in doing this is
related to non-monotonicity of revenue described next.

LEMMA 3. The revenue does not monotonically increase with
the number of agents.

PROOF. The proof is by counterexample. Consider case (a) in
Figure 1. There are three agents, all present only at t1. Given
the values reported in the figure, agent 1 is allocated and the total
revenue is R(θ) = 10. Now, consider case (b) in Figure 1 in which
a new agent, agent 4, whose active window is (t1, t2) is added.
Given the values reported in the figure, the only agent allocated is
agent 4 at t1. Since her critical value is zero, the total revenue is
R(θ) = 0. Thus, even though the number of agents increased, the
total revenue actually decreased.

We observe that while revenue does not monotonically increase
in n, the critical value of each agent does.

OBSERVATION 1. Critical value of agent i is non-decreasing in
the number of other agents. This holds for all i.

This observation may seem surprising as, at first, it appears to con-
tradict Lemma 3. However, while the critical values of all agents
are monotone in the number of agents, allocation decisions are
made based on values of the agents rather than their critical val-
ues. It is possible that an agent with the highest value has the low-
est critical value because it is patient (i.e., has a late departure date
and can wait for a less competitive period). Adding such an agent
to an existing set of agents would decrease the collected revenue,
but cannot decrease the critical values of other agents. Figure 1
illustrates this.

Our first result on providing a worst-case performance guarantee
is negative, showing that for any m and n, there are types of agents
such that for each of them Rmin(θ−i) = 0. This is in contrast
to the static case of allocating identical items where, a non-zero
ratio could be achieved for n > m + 1 for all agent values (see
Equation 5). We show this through the following lemma.
5This result is a generalization of Lemma 3 derived in [2] for static
mechanisms.

653

(a)

t1

Agent 1
v1 = 12

Agent 2
v2 = 10

1

Agent 3
v3 = 9

NoAgent
vNA = 0

(b)

t1 t2

Agent 1
v1 = 12

Agent 2
v2 = 10

Agent 3
v3 = 9

Agent 4
v4 = 15

NoAgent
vNA = 0

4

present allocated i critical value
of agent i

Figure 1: Example of non-monotonicity of revenue in the num-
ber of agents.

t1 t2 ... T

Agent 1
v1 = v

Agent 2
v2 = v

1

Agent 3
v3 = 0

...
v... = 0

Agent m
vm = 0

present

allocated

i critical value
of agent i

Figure 2: Problem instance in which the worst-case ratio is zero
independently of m and n.

LEMMA 4. The worst–case ratio of an online mechanism is
zero for any m and n.

PROOF. Consider the example depicted in Figure 2 with T > 1.
Let the first two agents be present only in period t1 and have the
value of v, while the other n − 2 agents have the value of 0. The
revenue for this problem instance is v: one of the first two agents is
allocated and pays the value of the other. The corresponding social
welfare before redistribution is zero. We argue that this cannot be
improved through redistribution. By Lemma 2, agent 1 can receive
no redistribution as the revenue is zero when she reports 0. The
same for agent 2. Next, exploiting non-monotonicity of revenue,
we show that, for each agent i > 2, there is a type θ′i that results
in zero revenue, i.e. Rmin(θ−i) = R(θ′i, θ−i) = 0. Suppose the
type reported by agent i is θ′i = (t1, T, v

′), where v′ > v. By the
greedy allocation rule, agent i will be allocated on day one, but will
pay 0, resulting in zero revenue. Thus, by Lemma 2, agents i > 2
cannot receive any redistribution either.

As the lemma above showed, one can construct a type profile
θ where Rmin(θ−i) is zero for every agent. However, for value
profiles θ where revenue comes from multiple agents, not every
agent can cancel the entire revenue. We would like to bound exactly
how much the report of agent i can decrease the revenue R(θ). This
turns out to be difficult as the next example illustrates.

EXAMPLE 1 (CASCADE). There are T + 1 agents. Agent 1
has the window [1, 1] and the value v, each agent 2 ≤ i ≤ T has
the window [i− 1, i] and the value v − (i− 1)ε, for some small ε,
and agent T +1 has the window [T, T] and the value v−Tε. Each
of the agents 1 . . . T − 1 is allocated in its departure period and
pays the value of the next agent: v − iε. Ignoring the ε’s, the total
revenue from these agents is R(θ) = Tv. If agent 1 reports the
value of 0 (or, equivalently is not present in the market), each of the
agents 2 . . . T + 1 is allocated in his arrival period and pay zero.
Generalizing this, if agent i is dropped, the agents 1 . . . i− 2 each
pay v while the agents i− 1, i+ 1 . . . T pay nothing. In Figure 3,
an example of the cascade is proposed for T = 4. In particular,
part (a) shows the allocation when agent 1 is in the market and part
(b)—when agent 1 is not in the market.

In the example above, agent i ≥ 2 cancels a fraction of roughly
1− i−2

T
of the revenue. Thus, providing a uniform non-zero bound

on R(θ) − Rmin(θ−i) that holds for all agents i is not possible.
However, we can bound the difference between R(θ−i) and Rmin(θ−i).
The difference can be positive due to non-monotonicity of revenue.
Intuitively, this difference is the amount by which introducing agent
i can reduce the revenue collected had agent i not been present. To
bound it, we first characterize the effect a new agent has on the
allocation decisions.

LEMMA 5. Introducing agent i with type θi, which is allocated
in the market with agents N \i, affects the allocation of agents N \i
only by forcing out one of the previously allocated agents6

W (θi, θ−i) = W (θ−i) ∪ {i} \ {j}
where W (X) refers to the set of allocated agents when the set of
agents with types X are in the market, and j ∈ W (θ−i) is the
agent that is forced out by i.

PROOF. AgentsW (θ−i) represent the most “competitive" agents
in the market θ−i. From the point of view of agent l 	= i, arrival
of agent i causes the number of available items to decrease by one
and the critical values to weakly increase (Observation 1). Suppose
for contradiction that agent j′ /∈ W (θ−i) is allocated. The con-
tradiction is immediate, as j′ must have been allocated in the less
competitive market θ−i as well. Thus, the only agents allocated af-
ter the arrival of i, are the agents from W (θ−i). Since the number
of available items decreases by one, all agents W (θ−i) except one
(who we call j) remain allocated.

Let v̄ denote the highest value an agent can have.

LEMMA 6. The minimum revenue agent i can induce with her
report is bounded by Rmin(θ−i) ≥ R(θ−i)− v̄.

PROOF. We saw in Lemma 3 that an agent can reduce the rev-
enue collected had she not been present. In order to influence
R(θ−i), agent i must submit a report that affects either the allo-
cation or the critical values or both. If agent i’s report sets a critical
value for one of allocated agents but agent i remains unallocated,
the revenue increases. Notice that in this case, the allocation does
not change for any of the agents, but one of the agents pays a higher
price—the critical value provided by agent i. Therefore, agent i
may be able to decrease the revenue only if she is allocated.

To prove the bound, we use Lemma 5. When agent i is allocated,
the set of other allocated agents remains the same except for one
6We implicitly assume that there are no items that are unallocated
due to lack of demand. In that case, agent i may claim the unal-
located item without forcing anyone out. However, this does not
affect any of the results in the paper.

654

t1 t2 t3 t4 = T

Agent 1
v1 = a

Agent 2
v2 = a− ε

1

Agent 3
v3 = a− 2ε

2

Agent 4
v5 = a− 3ε

3

Agent 5
v5 = a− 4ε

4

NoAgent
vNA = 0

(a)

t1 t2 t3 t4 = T

Agent 1

Agent 2
v2 = a− ε

Agent 3
v3 = a− 2ε

Agent 4
v5 = a− 3ε

Agent 5
v5 = a− 4ε

NoAgent
vNA = 0

1 2 3 4

(b)

present allocated
i critical value

of agent i

Figure 3: A cascade example. (a) R(θ) ≈ 4v when agent 1 is in the market, (b) R(θ−1) = 0 when agent 1 is not in the market.

agent that is forced out. By Observation 1, the critical values of
those agents cannot decrease with the appearance of agent i. Thus,
the amount collected from all agents but one is at least as high as it
was before agent i showed up. Agent i can reduce the revenue, by
forcing out an agent who paid a lot, and paying less herself. The
difference is the biggest when the forced out agent has the critical
value v̄ and agent i has the critical value of zero. The claim in the
lemma follows immediately.

The discussion in this section focused on general properties of
online redistribution mechanisms. In the next two sections, we ap-
ply these intuitions to design specific redistribution rules.

4. REDISTRIBUTION AT THE LAST PERIOD
Based on the mechanism of Cavallo [2] and using results from the
previous section, we can now design a redistribution mechanism.
Let us consider redistribution at period T . By then, we know the
entire set of agents N and their types. Our mechanism uses the
greedy allocation rule and the following redistribution function:

hT (θ−i) =
Rmin(θ−i)

n
(7)

where Rmin(θ−i) is defined as

Rmin(θ−i) = min
θ′i

R(θ′i, θ−i) =

min
θ′
i

∑
j∈N|πj(θ

′
i,θ−i)=1

vc((θ′i, θ−i)−j , aj , dj)

Note that the redistribution function is from the class of DSIC func-
tions characterized in Lemma 1. Also, observe that this mechanism
is a generalization of Cavallo’s redistribution [2], which is recov-
ered by setting T = 1.

We remark that Rmin(θ−i) is given by one of the following two
cases: (1) agent i reporting zero and Rmin(θ−i) = R(θ−i) as in
Example 1; or (2) agent i reporting a high value to take an item
away from a high-paying agent, and a long enough windows to
have a low payment as in the example in Figure 1.

Next, we show that the mechanism is weakly budget-balanced,
and prove performance guarantees.

THEOREM 1. The redistribution function given in Equation 7
is weakly budget-balanced.

PROOF. The proof is immediate from the definition of redistri-
bution. For each agent j, we have

1

n

∑
i∈N|πi(θ)=1

vc(θ−i, ai, di) ≥ 1

n
Rmin(θ−j)

Adding up the inequalities for all agents, we obtain the result: total
revenue collected R(θ) (left-hand size in Equation (8)) is above the
total redistribution (right-hand side):

R(θ) =
∑

i∈N|πi(θ)=1

vc(θ−i, ai, di) ≥ 1

n

∑
j

Rmin(θ−j) (8)

Recall from Lemma 4 that one can construct a problem instance
with a zero ratio for any m and n. However, we can provide pos-
itive results when enough agents are present and the total revenue
collected is higher than the highest value v̄ a single agent may have.

THEOREM 2. The worst-case ratio guaranteed by the redistri-
bution function in Equation 7 is:

r(m,n, v̄) ≥ n− 2T

n
(R(θ)− v̄)

PROOF. Since there are T items, at most T agents can be al-
located. Payment of each allocated agent j is vc(θ−j , aj , dj) =
mini∈N\{j}|ti(θ−j)∈{aj,...,dj} vi where ti(θ−j) denotes the day
when agent i is allocated in the market with agents θ−j or 0 if
agent i is not allocated. Clearly, each payment is determined by
exactly one agent. Thus, we have at most T different agents setting
payments for the allocated agents. In total, we have at most 2T
agents that are either allocated or set payments.

Removing any of the other n−2T agents, does not affect the rev-
enue, and for any such agent j, R(θ−j) = R(θ). From Lemma 6,
Rmin(θ−j) ≥ R(θ−j)− v̄. Thus, for each of the n−2T agents, the
amount redistributed is at least 1

n
(R(θ−j) − v̄) = 1

n
(R(θ) − v̄).

The total amount redistributed to these agents is n−2K
n

(R(θ) −
v̄). The amount redistributed to any of the remaining 2K is non-
negative, thus at least n−2T

n
(R(θ)− v̄) is redistributed.

655

The performance guarantee in Theorem 2 is not tight, but it
shows that the mechanism is asymptotically optimal.

OBSERVATION 2. The redistribution function is asymptotically
optimal as n → ∞: for a fixed T , the undistributed revenue goes
to zero as the number of agents in the market goes to infinity.

Redistributing at some last time period may appear to be a sig-
nificant limitation. However, it fits naturally with many settings
encountered in practice, where there is a natural maximal window
in which the online redistribution takes place (such as a day). Con-
sider, for example, the problem of allocating electricity charging
slots to a set of electric vehicles, discussed in [5, 14]. The elec-
tricity supply is scarce only during some interval during each day
(e.g. 6am to 11 pm), and we only need to design an online mech-
anism that allocates in this high-demand interval. Nonetheless, in
other applications where online redistribution can be applied there
is not such a natural maximal window, and in the next section we
present and analyze a function that redistributes continuously, on
each agent’s departure.

5. REDISTRIBUTION AT EACH AGENT’S
DEPARTURE

Previous section described a redistribution mechanism that waits
until all agents depart before computing redistribution. It is more
desirable (but also more difficult) to provide redistribution sooner.
Here we design a function that provides redistribution to each agent
on her departure. The main difficulty in designing such a function
is ensuring weak budget balance at each period. Specifically, we
need to guarantee that the amount of revenue redistributed up to
each period, does not exceed the revenue collected until then. How-
ever, in determining the part of the revenue that can be redistributed
to agent i, DSIC requires us to only include the revenue collected
independently of agent i’s report. Furthermore, unlike the static
case and the mechanism from the previous section, the number of
agents that divide the same revenue is not clear.

We approach this problem by “charging" the rebate of agent i
against payments of the agents that contribute to it. Specifically, for
agent i we define the set of agents toi that give part of their payment
to agent i. To maintain truthfulness, their payment is computed
assuming agent i is not present. Similarly, we specify the set of
agents fromj that receive part of agent j’s payment.

We propose a redistribution function, under which agent i re-
ceives on di the following redistribution:

hd(θ−i, ai, di) =

(∑
j∈toi

x̂j(θ−i)

|fromj |

)
−max

j∈toi

x̂j(θ−i)

|fromj | (9)

where toi = {k ∈ N | dk ∈ [ai, di]} and fromi = {k ∈ N | di ∈
[ak, dk]}.

Essentially, this means that agent i gets redistribution from agents
who depart when agent i is present. Symmetrically, the payment of
agent j is redistributed among the agents who are present when
agent j departs. We subtract the max term in order to ensure weak
budget-balance in the face of non-monotonicity of revenue. Note
that the rule is DSIC as it satisfies the conditions of Lemma 1.

Intuitively, note that the size of set fromj is always known on the
departure of agent j from the market, because all agents i ∈ fromj

(i.e. all agents that must receive a partial redistribution from agent
j) must have already arrived in the market by dj (because ai ≤ dj).
Moreover, the number of agents in the set fromj is also known at
the time in which agents i get redistribution, i.e., at their departure,
because di ≥ dj .

The following theorem characterizes the function in terms of the
crucial property of weak budget balance.

THEOREM 3. The redistribution function in Equation 9 is weakly
budget-balanced.

PROOF. Recall x̂i defined in Equation 1.

∑
i

hd(θ−i, ai, di) =
∑
i

∑
j∈toi

x̂j(θ−i)

|fromj |
−

∑
i

max
j∈toi

x̂j(θ−i)

|fromj |

=
∑
j

∑
i∈fromj

x̂j(θ−i)

|fromj |
−

∑
i

max
j∈toi

x̂j(θ−i)

|fromj |
(10)

=
∑
j

∑
i∈fromj

πj(θ−i)=1

x̂j(θ−i)

|fromj |
−

∑
i

max
j∈toi

x̂j(θ−i)

|fromj |
(11)

=
∑
j

∑
i∈fromj

πj(θ−i)=1

πj(θ)=1

x̂j(θ−i)

|fromj |
+

∑
j

∑
i∈fromj

πj(θ−i)=1

πj(θ)=0

x̂j(θ−i)

|fromj |

−
∑
i

max
j∈toi

x̂j(θ−i)

|fromj |

≤
∑
j

x̂j(θ) +
∑
j

∑
i∈fromj

πj(θ−i)=1

πj(θ)=0

x̂j(θ−i)

|fromj |
−

∑
i

max
j∈toi

x̂j(θ−i)

|fromj |
(12)

≤
∑
j

x̂j(θ) = R(θ)

Equation 10 follows from the definition of the redistribution func-
tion: amount redistributed to each agent comes from the payments
of other agents. We obtain Equation 11, by observing that x̂j(θ−i)
is positive only if agent j is allocated in the market with agents θ−i.
To prove Equation 12 observe that when agent j is allocated regard-
less of the presence of i (i.e., πj(θ−i) = πi(θ) = 1) the payment
of j is his critical value, which can only increase with the presence
of agent i: x̂j(θ−i) = vc((θ−i)−j , aj , dj) ≤ vc(θ−j , aj , dj) =
x̂j(θ). Finally, we prove the last inequality below. We want to
show that ∑

j

∑
i∈fromj

πj(θ−i)=1

πj(θ)=0

x̂j(θ−i)

|fromj | ≤
∑
i

max
j∈toi

x̂j(θ−i)

|fromj | (13)

We first show that for every i there is at most one agent j such
that πj(θ−i) = 1 and πj(θ) = 0. First, note that πj(θ−i) = 1
and πj(θ) = 0 imply πi(v) = 1: if agent i had not been allo-
cated, then excluding him, would not have changed the allocation,
and agent j would have remained unallocated. By Lemma 5, the
allocation when agent i enters the market changes by forcing ex-
actly one agent out. Thus, there is only one agent j | πj(θ−i) =
1, πj(θ) = 0, and we obtain

∑
i

max
j∈toi

x̂j(θ−i)

|fromj | ≥
∑
i

∑
j|πj(θ−i)=1,

πj(θ)=0

x̂j(θ−i)

|fromj |

=
∑
j

∑
i|πj (θ−i)=1,

πj(θ)=0

x̂j(θ−i)

|fromj |

The last equality holds as the summations on either side exhaus-
tively cover all non-zero terms x̂j(θ−i).

656

t1 t2

Agent 1
v1 = 12

Agent 2
v2 = 10

1

Agent 3
v3 = 9

Agent 4
v4 = 8

3

Agent 5
v5 = 7

(a)

t1 t2

Agent 1
v1 = 100

Agent 2
v2 = 99

Agent 3
v3 = 101

Agent 4
v4 = 0

3

(b)

present allocated i critical value
of agent i

Figure 4: (a) Example of the “distribution-on-departure” rule,
(b) Example that is not budget-balanced without subtracting
the second term in Equation 9.

We illustrate the redistribution function using the example in part
(a) of Figure 4. The only agent that departs when agent 1 is still
present (actually, at the same time as agent 1 departs) is agent 2.
Thus, to1 = {2}. The payment of agent 2 is distributed among
agents from2 = {1, 3} present at her departure. Thus, agents 1
receives redistribution from the payment of agent 2 (when agent 1
is not present, agent 2 is allocated and pays 9). Since part of the
payment of agent 2 will also go to agent 3, agent 1 only gets half
of agent 2’s payment h(θ−1, 1, 1) = 9

2
− 9

2
. Similarly, agent 2

receives redistribution only from agent 1, who pays 9 when agent 2
is not there and h(θ−2, 1, 1) =

9
2
− 9

2
. Agent 3 gets redistribution

from agents 1, 2, 4, and 5: h(θ−3, 1, 2) =
10
2
+ 0

2
+ 7

2
+ 0

2
− 10

2
,

etc.
We demonstrate that the second term in Equation 9 is necessary

to guarantee budget balance. Consider the instance illustrated in
part (b) of Figure 4. The revenue collected is R(θ) = 0. The
redistribution agent 3 gets when only the positive part of Equation 9
is considered is hd(θ−3, 1, 2) =

99
2

violating budget balance.
Finally, we apply the redistribution rule to the static case and

compare it to the mechanism of Cavallo in the next observation.

OBSERVATION 3. When applied to the static case, the redistri-
bution function in Equation 9 becomes

hd(θ−i, ai, di) =

(∑
j∈toi

x̂j(θ−i)

|fromj |

)
−max

j∈toi

x̂j(θ−i)

|fromj |

=
mvm−i

n− 1
− vm−i

n− 1
=

1

n− 1
(R(v−i)− 1

m
R(v−i))

=
m− 1

m(n− 1)
R(v−i)

This redistribution is slightly smaller than the Bailey-Cavallo re-
distribution of R(v−i)

n
.

6. NUMERICAL SIMULATIONS
In order to get a better insight into the performance of the two redis-
tribution functions we propose, we implemented and tested them in
numerical simulations.

Our simulation set-up is as follows. We consider a time hori-
zon of T = 100 discrete time periods, in each of which exactly 1

item is sold. The arrival time of each agent is sampled uniformly
between [1, T]. An important simulation parameter is the agent’s
patience, defined as the length of the time window she is active in
the market before she has to leave, regardless of whether she ac-
quired her desired item or not. We consider two types of agents:
patient agents, whose active window is sampled from a uniform
distribution U [1, 20] and impatient agents, whose active window is
sampled uniformly from a distribution U [1, 4].

For the agent’s values7 we consider two scenarios: one in which
they are sampled uniformly between (0, 1), and one in which they
are sampled from a normal distribution N(μ = 1, σ = 0.2), trun-
cated at zero. The total number of agents present in the market
varied between n = 20 and n = 500 in different simulation runs,
and each simulation set-up was averaged over 200 runs, with the
standard error bars computed in each case.

The performance metric we use is the ratio H(θ)
R(θ)

averaged over
multiple simulation runs. Our experiments compare the perfor-
mance of two redistribution functions: hT and hd.

Several effects can be observed from the results shown in Figure
5. First, the hT function (Equation 7) that distributes payments at
the end of the time interval is highly effective, quickly reaching the
expected ratio of over 99%. Moreover, it is not affected much by
either the type of valuation distribution or the agents’ patience. This
can be explained by the fact that end of period redistribution can
distribute to any agent present in the market at any time, and does
not depend on the amount of overlap between the agents’ active
time windows.

For the function hd (Equation 9), which redistributes immedi-
ately on the departure of each agent, several effects can be ob-
served. First, both the number of agents in the simulation and the
patience play a crucial role, with a much better redistribution being
achieved for markets with patient agents. This can be explained by
a greater overlap between agents’ windows (which allows for more
redistribution), and by the fact that the largest fractional payment
(which we need to leave undistributed, in order to ensure weak
budget balance) plays a smaller role in a larger market. For both
uniform and normally distributed valuations scenarios, we see that,
with a large enough number of agents, the redistribution ratio tends
to stabilize around a certain value. For the uniform valuation case,
around 85% of total payments collected can be redistributed in a
market with patient agents, but only around 55% in a market with
impatient agents. For the normal valuation distribution case, this
percentages go up to 94%, and 62%, respectively.

Thus, despite the fact that one can construct a worst-case ex-
ample where the ratio of payments distributed is 0, our numerical
simulations show that these cases are quite rare and that the ex-
pected ratio, for both the redistribution functions proposed, when
there are more than 100 patient agents in the market, is above 80%
when the valuations are uniformly distributed and above 90% when
the valuations are normally distributed.

7. CONCLUSIONS AND FUTURE WORK
This work has initiated the study of redistribution in online mecha-
nisms. We first characterized properties of online mechanisms rel-
evant to redistribution and then designed two redistribution func-
tions. The first one generalizes the static mechanism of Cavallo,
and redistributes at the last period when the types of all agents
are available to compute redistribution. This function is asymp-
totically optimal (as the number of agents increases), but unsatis-
fying for settings where agents are not available after they depart,

7Note that, unlike time which is discretized, the valuations are real
numbers.

657

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of agents in the market

R
ed

is
tr

ib
ut

io
n

ra
tio

hT rule, patient agents

hT rule, impatient agents

hd rule, patient agents

hd rule, impatient rule

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of agents in the market

R
ed

is
tr

ib
ut

io
n

ra
tio

hT rule, patient agents

hT rule, impatient agents

hd rule, patient agents

hd rule, impatient agents

Figure 5: Redistribution amount as a fraction of total revenue for a setting with uniformly distributed valuations (left) and normally
distributed valuations (right).

or there is no natural end period. The second function remedies
these shortcomings, by making redistribution to each agent on her
departure. We do not provide worst-case guarantees for the sec-
ond function, but evaluate it in numerical simulations. We find
this function performs well for various distributions of problem in-
stances redistributing at least one half and in some cases over 90%
of the collected revenue.

We know only one other paper studying redistribution in a se-
quential settings. The work of Cavallo [3] focuses on dynamic
mechanisms where agents are present for the entire time horizon
and it is their types that change from period to period. Importantly,
distributional information about future types is available, and an
efficient in expectation allocation function is used. In contrast, in
the online setting studied here, arrival and departure dates are pri-
vate information of the agents, and allocation decisions are made
at each time period with a greedy rule and without any knowledge
about the types of agents arriving in the future.

There are a number of directions for future study. One such di-
rection is to optimize the allocation function along with redistribu-
tion function. This has proved fruitful in the static case where in-
efficient allocations allowed for much higher social welfare when
allocating identical items [4, 7]. Another direction involves look-
ing at redistribution in other types of online allocation mechanisms,
such as models with items that do not expire, are heterogeneous, or
where agents have multi-unit demand. Also, one can study redistri-
bution given a model of future arrivals [13]. Finally, we intend to
consider the performance of our online redistribution mechanism
in practical applications, such as electric vehicle charging [5, 14].

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge funding from the UK Re-

search Council for project ORCHID (www.orchid.ac.uk), grant
EP/I011587/1.

9. REFERENCES
[1] M. Bailey. The demand revealing process: To distribute the

surplus. Public Choice, 91(2):107–26, April 1997.
[2] R. Cavallo. Optimal decision-making with minimal waste:

Strategyproof redistribution of VCG payments. In
AAMAS’06, pages 882–889, Hakodate, Japan, 2006.

[3] R. Cavallo. Efficiency and redistribution in dynamic
mechanism design. EC’08, pages 220–229, New York, NY,
USA, 2008. ACM.

[4] G. de Clippel, V. Naroditskiy, M. Polukarov, A. Greenwald,
and N. R. Jennings. Destroy to save. Games and Economic
Behavior, 2013.

[5] E. Gerding, V. Robu, S. Stein, D. Parkes, A. Rogers, and
N. Jennings. Online mechanism design for electric vehicle
charging. In AAMAS’11, pages 811–818, 2011.

[6] J. R. Green and J.-J. Laffont. Incentives in public
decision-making. North Holland, New York, 1979.

[7] M. Guo and V. Conitzer. Better redistribution with inefficient
allocation in multi-unit auctions with unit demand. In EC’08,
pages 210–219, 2008.

[8] M. Guo and V. Conitzer. Worst-case optimal redistribution of
vcg payments in multi-unit auctions. Games and Economic
Behavior, 67(1):69 – 98, 2009.

[9] M. Hajiaghayi, R. Kleinberg, M. Mahdian, and D. C. Parkes.
Online auctions with re-usable goods. In 6th ACM Conf. on
El. Commerce (EC’05), pages 165–174, 2005.

[10] H. Moulin. Almost budget-balanced vcg mechanisms to
assign multiple objects. Journal of Economic Theory,
144(1):96–119, 2009.

[11] V. Naroditskiy, M. Polukarov, and N. Jennings. Optimal
payments in dominant-strategy mechanisms for
single-parameter domains. ACM Transactions on Economics
and Computation, 2013.

[12] N. Nisan. Introduction to mechanism design (for computer
scientists). In N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, editors, Algorithmic Game Theory, pages
209–241. Cambridge University Press, 2007.

[13] D. C. Parkes. Online mechanisms. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, pages 411–439, 2007.

[14] V. Robu, S. Stein, E. Gerding, D. Parkes, A. Rogers, and
N. Jennings. An online mechanism for multi-speed electric
vehicle charging. In AMMA’11, LNICST, pages 100–112.
Springer, 2012.

658

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

